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The universal properties of human languages have been the sub-
ject of intense study across the language sciences. We report
computational and corpus evidence for the hypothesis that a
prominent subset of these universal properties—those related
to word order—result from a process of optimization for effi-
cient communication among humans, trading off the need to
reduce complexity with the need to reduce ambiguity. We formal-
ize these two pressures with information-theoretic and neural-
network models of complexity and ambiguity and simulate gram-
mars with optimized word-order parameters on large-scale data
from 51 languages. Evolution of grammars toward efficiency
results in word-order patterns that predict a large subset of the
major word-order correlations across languages.

language universals | language processing | computational linguistics

Understanding what is universal and what varies across
human languages is a central goal of linguistics. Across the-

oretical paradigms, linguists have hypothesized that language
is shaped by efficiency in computation (1–4) and communica-
tion (5–10). However, formalizing how these pressures explain
specific grammatical universals has proved difficult. Here, we
pair computational models that measure the communicative effi-
ciency of grammars with a simulation framework for finding
optimal grammars and show that the most efficient grammars
also exhibit a large class of language universals.

The language universals we study are the well-known Green-
berg universals of word order (11). Human languages vary in
the order in which they express information. Consider Fig. 1,
showing a sentence in Arabic (Top) and Japanese (Bottom),
both translating to “I wrote a letter to a friend.” Both sen-
tences contain a verb meaning “wrote,” a noun expressing the
object “letter,” and a phrase translating to “to a friend.” How-
ever, the order of these words is entirely different in the two
languages: the verb stands at the beginning in Arabic and at
the end in Japanese. Arabic expresses “to” by a preposition
(preceding the noun “friend”); Japanese uses a postposition
(following it).

However, this variation reflects a deep and stable regularity:
while languages ordering the objects before (Japanese) or after
(Arabic) the verb are approximately equally common around the
world, this is strongly correlated with the occurrence of pre- or
postpositions (Fig. 1, Top): languages ordering their objects the
way Japanese does have postpositions; languages ordering them
as Arabic does have prepositions.

This generalization lies in a group of language universals orig-
inally documented by Greenberg (11), known as word-order
correlations. These describe correlations between the relative
positions of different types of expressions across languages. The
example above documents that the position of the object (“let-
ter”) relative to the verb is correlated with the position of the
adposition (“to”). Greenberg also found that the order of verb
and object is correlated with other aspects of a language’s word
order (Table 1), such as the order of verb and adpositional
phrase (“wrote – to friend” in Arabic vs. “friend to – wrote” in
Japanese) and that of noun and genitive (“book – of friend” in
Arabic, “friend of – book” in Japanese).

Supported by languages on all continents, these correlations
are among the language universals with the strongest empiri-
cal support. Importantly, their validity is also independent from
specific assumptions about theories of grammar.

Explaining these patterns has been an important aim of lin-
guistic research since Greenberg’s seminal study (4, 13–19).
Prominent among this research is the argument that language
universals arise for functional reasons: that is, because they
make human communication and language processing maximally
efficient, and regularities across languages hold because these
efficiency constraints are rooted in general principles of commu-
nication and cognition (e.g., refs. 4, 5, 8, 9, and 20–26). Under this
view, the various human languages represent multiple solutions
to the problem of efficient information transfer given human
cognitive constraints.

In an early and influential functional framework, Zipf (5)
argued that language optimizes a tradeoff between two pres-
sures: to reduce complexity and to reduce ambiguity. What Zipf
called the “Force of Unification” is a pressure to reduce the com-
plexity of the language by reducing the number of distinctions
made in the language, in order to make production and process-
ing as easy as possible. The countervailing “Force of Diversi-
fication” favors languages that provide different utterances for
different meanings, so that the listener can unambiguously iden-
tify the meaning from the utterance. These two forces act in
opposing directions: producing and processing simple utterances
incurs little cost, but more complex and diverse utterances are
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Fig. 1. One word-order correlation. Languages can order the object after
(Arabic) or before (Japanese) the verb and have prepositions (Arabic) or
postpositions (Japanese). For each combination, we indicate how many
languages satisfy it, as documented in the World Atlas of Language Struc-
tures (12). Combinations on the diagonal are vastly more common than
off-diagonal ones.

required to provide enough information. The idea that many
properties of language arise from the tension between these two
pressures has a long and fruitful history in linguistics (20, 23,
27–29).

Recent work has drawn on information theory to computa-
tionally test this “dual pressures” idea in various domains of
language, showing that it predicts both basic statistical properties
of languages (30, 31) and language evolution (8) and sophis-
ticated aspects of language, such as pragmatic inference (32),
and the distribution of color words (33) and kinship categories
(34) across many languages. While it has been suggested that
the dual pressure should also apply to grammar (23), testing
these accounts is more difficult, as this requires large amounts of
data representative of language use across languages, computa-
tional methods for estimating the efficiency of entire languages,
and a simulation methodology for comparing different possible
grammars.

In this work, we address these challenges by combining
large-scale text data from 51 languages with machine-learning
techniques to estimate both aspects of the communicative effi-
ciency of grammar: complexity and ambiguity. We use machine-
learning models based on neural networks to model the evo-
lution of grammars toward efficiency. We apply this approach
to the problem of explaining Greenberg word-order correlation
universals.

In Study 1, we compare the word order of actual grammars of
51 languages with alternative “counterfactual” grammars param-
eterized by different word orders. We use our model to measure
the communicative efficiency of each possible grammar, show-
ing that the grammars of real languages are more efficient than
alternative grammars. The fact that real grammars lie at the
Pareto frontier of the efficiency space of possible grammars sug-
gests that the word order of languages has evolved to optimize
communicative efficiency.

In Study 2, we test whether efficiency optimization accounts
for the Greenberg word-order correlations. For each of the
51 languages, we create hypothetical grammars optimized
for efficiency. We then test statistically whether these opti-
mized grammars exhibit the Greenberg correlations, using a

Bayesian mixed-effects logistic regression to control for lan-
guage and language family. Efficiency optimization indeed
predicts all eight Greenberg correlations. Our results show
that general properties of efficient communication can give
rise to these universal word-order properties of human
language.

Grammars and Grammar Data
Following a long tradition in theoretical and computational lin-
guistics, we formalize the grammatical structure of languages
using dependency trees (35–39). This linguistic formalism rep-
resents grammatical dependencies as directed arcs between syn-
tactically related words, annotated with grammatical relations
like subject or object (Fig. 2). While syntactic formalisms vary,
the dependency grammar community has an agreed representa-
tion format that has been used to annotate corpora of text from
dozens of languages (40), and there are computational methods
for deriving such representations from other standard linguistic
formalisms (41).

Our models require a sample of syntactic structures as actually
used by speakers across different languages, for which we draw
on the recent Universal Dependencies project (40), which has
collected and created syntactic annotations for several dozens of
different languages; 51 languages had sufficient data for our pur-
poses. These corpora represent a typologically and genetically
diverse group of languages. We obtained a total of 11.7 million
words in 700,000 sentences annotated with syntactic structures,
with a median of 117,000 words and 7,000 sentences for each
individual language.

Study 1: Efficiency of Languages
We first ask whether the grammars of human languages reflect
optimization for efficiency of communication. To do this, we
compare the efficiency of the actual grammars of the 51 lan-
guages from the Universal Dependencies datasets to randomly
constructed baseline grammars.

Table 1. Greenberg word-order correlations, exemplified by
Arabic (left) and Japanese (right) examples

Arabic (English, . . .) Japanese (Turkish, . . .)

Correlation Correlates Correlates Correlates Correlates
no. with verb with object with object with verb

kataba risāla tegami-o kaita
wrote letter letter wrote

1© li s.adīq tomodachi ni
to a friend friend to

2© kāna s.adīq tomodachi datta
was a friend friend was

3© sawfa yaktub kak- -udesho
will write write will

4© s.adīq John John no tomodachi
friend of John John of friend

5© kutub taqra’uhā anata-ga yonda hon
books that you read that you read book

6© ’an tus.il toochaku suru koto
that she arrives arrives that

7© dhahabt ’ilā lmadrasa gakkoo ni itta
went to school school to went

8© ’urīd ’an ’ughādir ik- -itai
wants to leave to go want

Across the world, the orders of different constituents are strikingly cor-
related with that of verb and object. Selection is based on a more recent
typological study by Dryer (13), restricted to those correlations that are
annotated in available corpus data. See SI Appendix, section S1 for more
on Greenberg correlations.
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Fig. 2. An English sentence with annotated syntactic relations.

The grammars of natural languages specify how the different
words in a syntactic structure are ordered into a sentence, i.e.,
a string of words (42). This is illustrated in Fig. 3: we show how
four different grammars order objects, adpositional phrases, and
adpositions. For instance, Grammar 1—corresponding to Ara-
bic in Fig. 1—orders objects (“friends,” “letter”) after verbs and
has prepositions (“to friend”). Grammar 2 orders objects after
verbs but has postpositions (“friend – to”). Grammars 3 and 4
place the object before the verb, and one of them (Grammar 3)
corresponds to Japanese order.

Beyond the syntactic relations exemplified in Fig. 3, human
languages have further types of syntactic relations. The Uni-
versal Dependencies project, the source of our data, defines
a total of 37 syntactic relations. We adopt a variant of the
grammar model developed by Gildea and coworkers (43–45):
a grammar assigns a weight from [−1, 1] to each of these 37
syntactic relations and orders words according to the weights
assigned to their relations (see Materials and Methods for
details).

Given a large database of sentences annotated with syntactic
structures (such as those at the top of Fig. 3), obtained from
a corpus of some real language L, we can apply a grammar to
reorder the structures in the database into a dataset of counter-
factual sentences belonging to a hypothetical language defined
by that grammar (Fig. 3). This hypothetical language has iden-
tical syntactic structures and grammatical relations as the true
language L but different word order.

We create baseline grammars by randomly sampling the
weights for each syntactic relation. These baseline grammars
have systematic word-order rules similar to natural language but
do not exhibit any correlations among the orderings of different
syntactic relations. All four grammars in Fig. 3 are equally likely
under this baseline distribution.

For every 1 of the 51 languages, we construct 50 coun-
terfactual baseline versions by randomly creating 50 baseline
grammars and applying them to obtain counterfactual order-
ings for all syntactic structures that were available for that
language.

Having defined our space of possible word-order grammars,
we now turn to how to define and measure efficiency. Following
the information-theoretical literature on language processing,
we formalize the communicative efficiency of a language as a
weighted combination of two terms: the amount of informa-
tion that utterances contain about the underlying messages and
the cost or difficulty of communication (30, 32–34, 46, 47). We
model the informativity term as the degree to which listeners
can reconstruct syntactic structures from an utterance, i.e., the
parseability of the language. We model the cost or complexity
term as the predictability, or negative entropy, of the utterances,
since entropy is a standard measure of the complexity of any sys-
tem of messages (48). We use standard neural-network methods
to estimate the numerical values of parseability and predictability
from counterfactually ordered corpora. Efficiency is a weighted
sum of parseability and predictability. See Materials and Meth-
ods for details and SI Appendix, section S7 for experiments
demonstrating that our results are robust to different methods
of estimating parseability and predictability.

For each language, we computationally construct grammars
that are optimized for efficiency (Materials and Methods). This
optimization problem is challenging because both the parseabil-
ity and predictability of a sentence can only be evaluated
globally, in the context of an entire language. We address
this challenge by introducing a simple, differentiable computa-
tional formalism for describing grammatical regularities. Our
formalism makes it possible to find optimal grammars by stan-
dard methods, such as stochastic gradient descent (SI Appendix,
section S5). For each grammar, we report predictability and
parseability as estimated on the data resulting from order-
ing the syntactic structures from the corpus according to the
grammar.

In Fig. 4, we plot predictability and parseability of the gram-
mars of 51 languages, together with the distribution of random
baseline grammars, and the approximate Pareto frontier defined
by computationally optimized grammars. This Pareto frontier is
approximate because it is an average of the positions of the opti-
mized grammars generated for the corpus of each language. To
enable fair comparison with baselines and the estimated fron-
tier, we represent real languages by grammars extracted from
the actual orderings observed in the databases. These extracted
grammars have the same representational constraints as the
baseline and optimized grammars, including the fact that the
orders are purely a function of the tree structure and do not take
into account other factors, such as discourse structure, which are
not annotated in the corpora. For a comparison of the raw word
orders from corpora against appropriate baseline grammars, see
SI Appendix, section S8.
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Fig. 3. Grammars define consistent ordering rules for syntactic structures. Here, Grammars 1 and 2 order the object after the verb, and Grammars 3 and 4
order the object before the verb. Grammars 1 and 3 conform to the Greenberg correlations and are common around the world; Grammars 2 and 4 are rare
or impossible.
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Fig. 4. Predictability and parseability of the real word-order grammars of
51 languages (red), indicated by International Organization for Standardiza-
tion codes, compared to baseline word-order grammars (blue distribution).
Predictability and parseability scores are z-scored within language, to enable
comparison across languages. The gray curve indicates the approximate
Pareto frontier of computationally optimized grammars, averaged over the
51 languages, with dashed SDs.

In Fig. 4, we see that real grammars are attracted toward the
approximate Pareto frontier and away from the region of the
baseline grammars. The majority of real grammars are above
and/or to the right of their baseline equivalents, demonstrating
that they are relatively high in predictability and/or parseabil-
ity; 100% of real grammars improve over their baselines on
either predictability or parseability (P< 0.05, by one-sided t test,
with Bonferroni correction and Hochberg step-up procedure);
90% of real grammars improve over the baselines in parseability
(P < 0.05), and 80% improve in predictability (P < 0.05). See SI
Appendix, section S3 for additional analyses.

Study 2: Greenberg Word-Order Correlations
We have found that the grammars of human languages concen-
trate along the Pareto frontier of parseability and predictability.
Which grammatical properties characterize Pareto-optimal lan-
guages in general, and which properties of human languages

make them efficient? Here, we show that all languages close
to the Pareto frontier—both real and counterfactual ones—
are highly likely to satisfy Greenberg correlation universals.
That is, optimizing for efficiency produces languages that sat-
isfy these correlations. In contrast, the baseline grammars are
constructed without any correlations between the ordering of
different syntactic relations and will therefore mostly not satisfy
those universals.

We first considered the 51 real languages. Among the gram-
mars fit to the 51 languages, the number of satisfied correlations
is strongly correlated with efficiency (ρ = 0.61, P < 0.0001),
suggesting that satisfying the correlations improves language
efficiency.

We next examine those grammars from Study 1 that we had
computationally optimized for efficiency. We controlled for vari-
ation across different optima by creating eight optimized gram-
mars for each of the 51 datasets of syntactic structures from real
languages. For each real language, we created four optimized
grammars with verb–object order and four object–verb gram-
mars. We test whether the process of efficiency optimization
produces the Greenberg correlations.

For each grammar (baseline, optimized, and real), we com-
puted how many of the eight relations in Table 1 had the same
order as Japanese (in contrast to Arabic). Fig. 5 shows the
results, separately for grammars with verb–object and object–
verb orders. In optimized grammars, the order of the eight
relations is strongly correlated with the placement of the object,
similar to the 51 real languages in our sample. In contrast,
baseline languages show no correlation.

We asked whether efficiency optimization predicts the eight
correlations to hold in most languages. To answer this ques-
tion, we constructed a Bayesian multivariate mixed-effects logis-
tic regression model predicting which of the eight correlations
an optimized grammar satisfies. We controlled for variation
between the syntactic structures used in different languages and
language families by entering the language and language family
as random effects. See SI Appendix, section S4.3 for robustness
to modeling choices.

In Fig. 6, we compare the prevalence of the eight correla-
tions in real and optimized languages. For the real languages,
we indicate how many of the 51 languages satisfy a correlation.
For the optimized languages, we indicate the posterior distri-
bution of the proportion of satisfying languages, obtained from
the mixed-effects analysis. Grammars optimized for efficiency
predict all eight correlations to hold at prevalences significantly
greater than 50%, similar to actual human languages. In the
multivariate mixed-effects analysis, efficiency optimization pre-
dicts all eight correlations to hold across languages (posterior
probability, 0.9911). Optimizing for only predicability or only

Baselines Optimized Real

0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5
Object Patterners Preceding Verb Patterners

G
ra

m
m
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s

Object−Verb Verb−Object

Fig. 5. Efficiency optimization produces grammars where the orders of the eight relations in Table 1 are strongly correlated with the order of verb and
object. We arrange grammars (baseline, optimized, real) by the number of relations where the language patterns with Japanese (as opposed to with Arabic)
and plot a kernel-density estimate. Object–verb order leads to grammars where object patterners precede (like Japanese); verb–object order leads to verb
patterners preceding (like Arabic). Baseline grammars show no such correlation.
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Fig. 6. Efficiency optimization accurately predicts the Greenberg correla-
tions. For each correlation, we provide its prevalence (between 0% and
100%) among the actual grammars of the 51 languages (Real), and the
posterior distribution of the prevalence among grammars optimized for
efficiency (Optimized) on datasets from the 51 languages. Efficiency opti-
mization predicts all eight correlations to hold in the majority of grammars,
matching the distribution observed in real languages.

parseability does not predict all of the correlations (SI Appendix,
section S4).

Discussion
We found that the grammars of natural languages are more
efficient than baseline grammars and that a large subset of the
Greenberg word-order correlations can be explained in terms of
optimization of grammars for efficient communication.

Our work makes crucial use of neural-network models for
estimating the efficiency of languages. This method currently
requires large computational resources; it still takes about
3 wk to create optimized grammars for 51 languages, even
with specialized hardware. We believe that further advances in
machine learning will reduce the computational cost, making this
approach more widely applicable.

What makes the grammars of human languages efficient?
Study 2 shows that Greenberg correlations are one key prop-
erty that real languages share with optimal grammars. Prior work
has suggested dependency-length minimization as another char-
acteristic of efficient word order. This is the idea that word order
minimizes the average distance between syntactically related
words. It is known that human languages reduce this distance
compared to random baselines (49–52). Our optimized gram-
mars also share this property: we find that 100% of grammars
optimized for efficiency also reduce average distance between
related words compared to baselines (P < 0.05, by one-sided t
test).

To some extent, the Greenberg correlations and dependency-
length minimization are related, because the Greenberg corre-
lations help reduce the distance between related words (4, 53).
Consider again the sentence “I wrote letters to friends” (cf.
Figs. 1 and 3). Both real and optimized grammars of English
linearize its syntactic structure as follows:

This ordering exhibits correlations 1 and 7 from Table 1.
Among all possible ways of ordering this syntactic structure, this

one also minimizes the average distance between any two syn-
tactically related words, e.g., inverting “to” and “friends” would
increase the distance between “wrote” and “to.”

It may come as a surprise that grammars that are efficient
according to our metric also have low dependency length, even
though dependency length is never considered explicitly during
the calculation of efficiency nor the procedure for optimiz-
ing grammars. The result is especially surprising given that
our efficiency metric does not incorporate any kind of mem-
ory limitations, whereas previous functional explanations for
dependency-length minimization have typically been based on
the idea of limited working-memory resources available during
language production and comprehension (54, 55) (although see
ref. 4 for a motivation of dependency-length minimization that
is not based in memory limitations). Our results suggest that
both Greenberg correlations and dependency-length minimiza-
tion might be explainable purely in terms of maximizing the
general parseability and predictability of utterances, without a
need for further constraints. See SI Appendix, section S12 for
further discussion, along with some simulations demonstrating
how grammars that satisfy Greenberg correlations can be more
efficient in a generic sense.

An idea related to functional optimization, as we have
explored it here, is the idea that grammars are biased toward
simplicity in terms of the number of parameters required to
specify the grammar (56). For example, it has been proposed
that languages have a single head-directionality parameter and
that this accounts for the Greenberg correlations (17, 57). As an
explanation of correlations, this idea turns out to overpredict cor-
relations (13, 19), and more recent research in syntactic theory
has provided evidence against it (58–60). Nevertheless, future
research should examine whether there are more principled
connections between communicative efficiency and grammar
simplicity.

A major question for functional explanations for linguistic uni-
versals is: How do languages end up optimized? Do speakers
actively seek out new communicative conventions that allow bet-
ter efficiency? Or do languages change in response to biases that
come into play during language acquisition (61, 62)? Our work is
neutral toward such questions. To the extent that language uni-
versals arise from biases in learning or in the representational
capacity of the human brain, our results suggest that those biases
tilt toward communicative efficiency.

Unlike cross-linguistic efficiency studies in the domain of lex-
ical semantics (33, 34, 46), we did not derive a single universal
bound for the efficiency across all 51 languages in Study 1;
instead, we constructed optimized grammars individually for
each language. Each language L has its own distribution of
tree structures that speakers communicate and different gram-
mars may be optimal for different tree structure distributions (SI
Appendix, section S3.5). Our results show that the word order of
each language L is approximately optimal for the tree structures
used in L.

While our work has shown that certain word-order univer-
sals can be explained by efficiency in communication, we have
made a number of basic assumptions about how language
works in constructing our word-order grammars: for exam-
ple, that sentences can be syntactically analyzed into trees of
syntactic relations. We believe a promising avenue for future
work is to determine whether these more basic properties
themselves might also be explainable in terms of efficient
communication.

Our work provides evidence that the grammatical structure of
languages is shaped by the need to support efficient communica-
tion. Beyond our present results, our contribution is to provide
a computational framework in which theories of the efficiency
optimization of languages can be tested rigorously. While our
study has focused on syntax, our results suggest that this method
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can be fruitfully applied to testing efficiency explanations in other
domains of language structure.

Materials and Methods
Corpus Data. We use the Universal Dependencies (UD) 2.1 data (40). We
use all languages for which at least 1 treebank with a training partition
was available, a total of 51 languages. For each language where multi-
ple treebanks with training sets were available, we pooled their training
sets; similarly for development sets. Punctuation was removed. Universal
dependencies represents as dependents some words that are typically clas-
sified as heads in syntactic theory. This particularly applies to the “cc,”
“case,” “cop,” and “mark” dependencies. Following prior work studying
dependency-length minimization (50), we applied automated conversion to
a more standard formalism, modifying each treebank by inverting these
dependencies and promoting the dependent to the head position. When
a head had multiple such dependents, we iteratively applied the conversion
until no such dependents were left. Language-specific relation types were
truncated to their universal counterparts both in the design of word-order
grammars and for modeling parseability.

Word-Order Grammars. We adapt the grammar model of ref. 43 to UD. A
grammar assigns a parameter xτ ∈ [−1, 1] to every relation τ belonging to
the 37 universal syntactic relations defined by UD 2.1. A syntactic struc-
ture, consisting of a set of words and syntactic relations between them,
is then ordered into a string of words recursively starting from the root;
the dependents of a word then are ordered around the head according to
the values xτ corresponding to their syntactic relations; those dependents
where xτ < 0 are ordered before the head; the others are ordered after the
head. See SI Appendix, section S5.2 for the methodology used to extract the
languages’ actual grammars from datasets and for validation against expert
judgments.

Formalizing Efficiency. We adopt the formalization of language efficiency of
ref. 30, closely related to the Information Bottleneck (63), which has recently
been successfully applied to model lexical semantics (33). Very similar
formalizations of Zipf’s ideas have been proposed across the information-
theoretic literature on language (32, 34, 46, 64). See SI Appendix, section
S2.1 for discussion.

In this framework, the overall efficiency of language is a weighted
combination of terms representing the amount of information that utter-
ances contain about the underlying messages and the cost of commu-
nication (30, 32–34, 46). We model the first term as the degree to
which listeners can reconstruct syntactic structures from an utterance, i.e.,
the parseability of the language. This is formalized as the amount of
information that utterances u provide about their underlying syntactic
structures t:

RPars := I[U , T ] =
∑
t,u

p(t, u) log
p(t|u)

p(t)
, [1]

where the sum runs over all possible pairs of utterances u and syntactic
structures t in the language.

Again following ref. 30, we formalize the complexity of a language as
its entropy. This corresponds to the average word-by-word surprisal, the
degree to which sentences are unpredictable from the general statistics of
the language. Surprisal has been found to be a highly accurate and general
predictor of human online processing difficulty (65–67). Entropy is also a
general measure of the complexity of any system of messages (48). In expec-
tation over all utterances u in a language, the negative surprisal describes
the predictability, or negative entropy, of the utterances:

RPred :=−H[U ] =
∑

u

p(u) log p(u), [2]

where the sum runs over all possible sentences u in the language.
Maximizing one of the two scoring functions under a constraint on the

other function (e.g., maximizing parseability under a constraint on the min-
imal predictability) amounts to maximizing a weighted combination of the
two scoring functions (30):

REff := RPars +λRPred , [3]

with an interpolation weight λ∈ [0, 1) that controls the relative strength
of the two pressures. When optimizing grammars for efficiency, we set
λ := 0.9 in Eq. 3 in order to give approximately equal weight to both com-
ponents. See SI Appendix, section S2.2 for mathematical discussion of λ and
robustness to other choices.

We estimate predictability using Long Short-Term Memory recurrent neu-
ral networks (68), general sequence models that are the strongest known
predictors of the surprisal effect on human processing effort (69, 70). We
estimate parseability using a generic neural-network architecture that casts
recovery of syntactic structures as a minimum spanning-tree problem (71,
72). In order to reduce overfitting in the optimization process, we use an
unlexicalized parsing setup and add part-of-speech tags when estimating
predictability. Grammars are optimized for efficiency by simultaneous gradi-
ent descent on the parameters of the grammar and these neural models. All
parseability and predictability values are reported on the held-out (“dev”)
partitions from the predefined split for each UD corpus. See SI Appendix,
sections S5–S8 for details and for robustness of our results to modeling
choices, including evidence that our results are not specific to any particular
language model or parser.

Data Availability. Code and results are available at https://github.com/m-
hahn/grammar-optim. The efficiency optimization results from Fig. 6
were preregistered: https://aspredicted.org/th5pk.pdf (see also SI Appendix,
section S4.6).
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