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Using observational data to quantify bias of traveller-derived 
COVID-19 prevalence estimates in Wuhan, China
Rene Niehus*, Pablo M De Salazar*, Aimee R Taylor*, Marc Lipsitch

Summary
Background The incidence of coronavirus disease 2019 (COVID-19) in Wuhan, China, has been estimated using imported 
case counts of international travellers, generally under the assumptions that all cases of the disease in travellers have 
been ascertained and that infection prevalence in travellers and residents is the same. However, findings indicate 
variation among locations in the capacity for detection of imported cases. Singapore has had very strong epidemiological 
surveillance and contact tracing capacity during previous infectious disease outbreaks and has consistently shown high 
sensitivity of case-detection during the COVID-19 outbreak.

Methods We used a Bayesian modelling approach to estimate the relative capacity for detection of imported cases of 
COVID-19 for 194 locations (excluding China) compared with that for Singapore. We also built a simple mathematical 
model of the point prevalence of infection in visitors to an epicentre relative to that in residents.

Findings The weighted global ability to detect Wuhan-to-location imported cases of COVID-19 was estimated to be 38% 
(95% highest posterior density interval [HPDI] 22–64) of Singapore’s capacity. This value is equivalent to 2·8 (95% HPDI 
1·5–4·4) times the current number of imported and reported cases that could have been detected if all locations had had 
the same detection capacity as Singapore. Using the second component of the Global Health Security index to stratify 
likely case-detection capacities, the ability to detect imported cases relative to Singapore was 40% (95% HPDI 22–67) 
among locations with high surveillance capacity, 37% (18–68) among locations with medium surveillance capacity, and 
11% (0–42) among locations with low surveillance capacity. Treating all travellers as if they were residents (rather than 
accounting for the brief stay of some of these travellers in Wuhan) contributed modestly to underestimation of prevalence.

Interpretation Estimates of case counts in Wuhan based on assumptions of 100% detection in travellers could have 
been underestimated by several fold. Furthermore, severity estimates will be inflated several fold since they also rely 
on case count estimates. Finally, our model supports evidence that underdetected cases of COVID-19 have probably 
spread in most locations around the world, with greatest risk in locations of low detection capacity and high 
connectivity to the epicentre of the outbreak.
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Copyright © 2020 Elsevier Ltd. All rights reserved.

Introduction
During the outbreak of severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), infections in travellers have 
been used to estimate the size of the epidemic in Wuhan, 
Hubei province, China, which was the epicentre of the 
outbreak.1 This approach is similar to that used for 
the 2009 H1N1 influenza pandemic, for which infections 
in tourists returning from Mexico were used to estimate 
the time-specific risk of infection (incidence or cumulative 
incidence) with the novel pandemic H1N1 influenza strain 
in Mexico (or parts thereof). The idea was that surveillance 
for H1N1 influenza virus was not intense during the early 
days of the pandemic in Mexico, the source location, and 
that detection would be far more sensitive in travellers 
leaving Mexico, who would be screened when returning 
home as a means of preventing introductions of cases 
into destination locations.2,3 Reports that health systems in 
Wuhan were overwhelmed, and that many cases of 
coronavirus disease 2019 (COVID-19) were not being 
counted, led to the use of outgoing traveller data to estimate 

the time-specific risk of COVID-19 in Wuhan.1 This 
estimate, in turn, has been used to estimate the cumulative 
incidence of infection by a specific date in Wuhan 
and, from there (typically assuming exponential growth 
and no appreciable depletion of susceptible people), the 
cumulative number of cases. Two important assumptions 
underlie this calculation. First, it assumes that detection of 
cases in the destination location has been 100% sensitive 
and specific, whether cases are detected at the airport 
(with symptoms) or later after arrival at their destination 
(incubating during travel). Second, it assumes that tra-
vellers have the same prevalence of infection as does the 
average resident of Wuhan, so the prevalence inferred in 
travellers can be directly applied in Wuhan. Here, we 
consider the extent to which these two assumptions are 
justified and the expected effects they will have on our 
understanding of the current outbreak of COVID-19.

We have previously reported4 variability between loca-
tions in the world in the relation between the number of 
travellers from Wuhan to each international destination 

Lancet Infect Dis 2020; 
20: 803–08

Published Online 
April 1, 2020 
https://doi.org/10.1016/ 
S1473-3099(20)30229-2

See Comment page 757

*Contributed equally

Center for Communicable 
Disease Dynamics, Department 
of Epidemiology, Harvard 
T H Chan School of Public 
Health, Boston, MA, USA 
(R Niehus PhD, 
P M De Salazar MD, 
A R Taylor PhD, 
Prof M Lipsitch PhD)

Correspondence to: 
Dr Rene Niehus, Center for 
Communicable Disease Dynamics, 
Department of Epidemiology, 
Harvard T H Chan School of Public 
Health, Boston, MA 02115, USA 
rniehus@hsph.harvard.edu

http://crossmark.crossref.org/dialog/?doi=10.1016/S1473-3099(20)30229-2&domain=pdf


Articles

804 www.thelancet.com/infection   Vol 20   July 2020

and the number of imported cases detected in that 
destination. On average, across locations presumed 
to have high surveillance capacity, an increase of 
31 pass engers per day in estimated travel volume from 
Wuhan to each destination was associated with 
one additional imported case reported over the period 
Jan 8, 2020, to Feb 4, 2020.4 However variation was 
reported around this average. Among destinations with 
substantial travel volume, Singapore showed the highest 
ratio of detected imported cases to daily travel volume, a 
ratio of 1·0 cumulative case count per 10·3 daily travellers. 
Singapore is known for exceptionally sensitive detection 
of cases (eg, during the 2003 outbreak of severe acute 
respiratory syndrome [SARS])5 and has had very detailed 
case-reporting during the COVID-19 outbreak. Therefore, 
to test the first assumption, that case-detection has been 
100% sensitive, we use Singapore as an example location 
with very strong case-detection capacity, and we estimate 
the capacities of other locations relative to Singapore.

To test the second assumption, that travellers and 
residents of Wuhan have the same prevalence of infection, 
we built a simple mathematical model of the point pre-
valence of infection in visitors relative to that in residents. 
This model allows us to study the expected discrepancy 
between visitor and resident prevalence for various 
scenarios, such as different durations of visits, growth 
rates of infection, or times to recovery.

Methods
Data
From 195 worldwide locations (reflecting mainly 
countries, without taking any position on territorial 
claims), we included 194, excluding the epicentre of 

mainland China. Data for imported cases aggregated by 
location were obtained from the WHO technical report 
(dated Feb 4, 2020);6 a case count of 0 was assumed for all 
locations not listed. We used case counts up to Feb 4, 2020, 
because after this date the number of imported cases 
dropped rapidly,6 probably because of the lockdown of 
Hubei province implemented from Jan 23, 2020.

We defined imported cases as people with known travel 
history from China; 82% (124 of 152) had travel history 
from Hubei province and 18% (28 of 152) from unknown 
locations in China.7 Estimates of daily air travel volume 
were obtained from Lai and colleagues7 and are based on 
historical (February, 2018) data from the International Air 
Travel Association, including estimates for 27 locations 
that are most connected to Wuhan. These data capture 
the daily average number of passengers traveling via 
direct and indirect flight itineraries from Wuhan to 
destinations outside of China. For 167 locations not listed 
by Lai,7 we set the air travel volume to three passengers 
per day, which is half the minimum reported by 
Lai.7 Because the relative (rather than absolute) flight 
connectivity of Wuhan with different locations matters 
for our model, we assumed that this relative connectivity 
was only weakly affected by early timing of the Lunar New 
Year in 2020.

Surveillance capacity was assessed using the Global 
Health Security Index, which is an assessment of 
health security across 195 locations agreeing to the 
International Health Regulations (IHR 2005). Specifically, 
we used the second category of the index, Early Detection 
and Reporting Epidemics of Potential International 
Concern published in 2019, henceforth referred to as 
simply the GHS2 index. We classified locations with GHS2 

For COVID-19 case-reporting 
for Singapore see https://www.

moh.gov.sg/covid-19

For the Global Health Security 
Index see https://www.ghsindex.

org

Research in context

Evidence before this study
We searched Google Scholar and PubMed on Feb 12, 2020, 
with the terms (“COVID-19” OR “SARS-CoV 2” OR 
“SARS coronavirus 2”) AND (“Wuhan” OR “Hubei”) AND 
“incidence traveler”. We searched for any type of article published 
in English between Dec 1, 2019, and Feb 12, 2020. Current work to 
estimate the incidence of coronavirus disease 2019 (COVID-19) 
in Wuhan uses cases detected outside of China. From this work, 
other estimates are derived, such as case-fatality rates and risk of 
exportation to locations without yet-detected cases. Assumptions 
are made that the detection capacity of cases in destination 
locations is 100% and that travellers from Wuhan have the same 
prevalence of infection as does the average resident of Wuhan.

Added value of this study
We tested both these assumptions and quantified the bias 
that they introduce. Using a Bayesian modelling approach with 
WHO case counts of imported cases, estimates of passenger 
volume from Wuhan to destination locations, and the Global 
Health Security index of epidemic surveillance strength, 

we have provided the first estimates of the global ability to 
detect imported cases of COVID-19. Importantly, we have 
also shown the variation of this ability between regions with 
different surveillance strength. Finally, we have provided the 
first mathematical model to estimate the infection prevalence 
of Wuhan visitors relative to residents as a function of key 
variables, such as the visit duration.

Implications of all the available evidence
Our study will allow better estimates to be produced of the 
global burden of COVID-19, in view of the large 
underdetection of cases. Our findings will support rapid 
deployment of outbreak surveillance and control capacities 
in regions at high risk of case importation paired with low 
surveillance capacity. Our research implies that existing 
estimates, which assume perfect detection of cases outside 
of China, should increase values for infection prevalence in 
the epicentre of the epidemic and reduce estimates of 
case-fatality based on our prevalence estimates.

https://www.moh.gov.sg/covid-19
https://www.ghsindex.org
https://www.moh.gov.sg/covid-19
https://www.moh.gov.sg/covid-19
https://www.ghsindex.org
https://www.ghsindex.org
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index above the 80th percentile as high surveillance 
locations, those with GHS2 index below the 20th per cen-
tile as low surveillance locations, and all others as loca-
tions with medium surveillance capacity. In view of 
Singapore’s high rate of COVID-19 case-detection per 
expected case, we treated this location as a special case for 
surveillance of COVID-19 and we assigned it its own 
category of most strong surveillance.

We did not need to obtain ethics approval for this study 
because we did not enrol individuals and we used data 
available publicly.

Estimating detection probability relative to Singapore
We considered detection of 18 cases by Feb 4, 2020, in 
Singapore6 to reflect the highest surveillance capacity 
among all locations, and we estimated the probability 
of detection in other locations relative to Singapore 
according to the following model. We modelled case-
detection across i = 1, . . . , n worldwide locations, with 
194 locations (n); Singapore was indexed i = 1, with the 
rest of the locations following in order of decreasing 
GHS2 index. Using the notation of McElreath,8 we 
assumed that the observed case count across n locations 
followed a Poisson distribution and that the expected 
case count was linearly proportional to daily air travel 
volume and a random variable θlevel[i] reflecting the 
ith location’s capacity of detecting cases relative to 
Singapore.

In this equation,

Yi denotes the reported case count in the ith location, λi is 
the expected case count in the ith location, β denotes the 
regression coefficient, xi is the daily air travel volume 
of the ith location, and θlevel[i] denotes the ith location’s 
capacity of detecting cases relative to Singapore.

For θhigh, θmedium, and θlow, we assigned a uniform prior 
over [0,1] and for log(β) we assigned a weakly infor m  ative 
normal prior with mean 0 and SD 50. We considered 
the global average detection probability θglobal to be a trans-
formation of θlevel[i]. In practice, having fitted the model, 
we took the weighted mean of posterior draws of θlevel[i] 
for i = 2, . . . , n, where weights are proportional to daily 
air travel volume, xi. Exclusion of Singapore (i = 1) enabled 

estimation of the global detection probability relative to 
Singapore. Conversely, 1/θglobal was the multiplier of the 
case count that could have been detected globally under a 
capacity equivalent to that of Singapore.

We calculated the mean and 95% highest posterior 
density interval (HPDI; the narrowest interval containing 
a given probability mass)8 of the numerical approximation 
of the posterior distribution of θglobal, and the mean and 
95% HPDI of the numerical approxi mation of the 
posterior distribution of 1/θglobal. Note that the estimate of 
1/θglobal and its 95% HPDI is not simply the inverse of the 
estimate for θglobal and its bounds, because the inverse of 
a mean is not equal to the mean of the inverse, and 
similarly for the HPDIs.

We fitted our model using Stan version 2.19.1,9 and 
we drew 80 000 samples from the joint posterior 
distribution of θhigh, θmedium, θlow and β using four independent 
chains (20 000 samples each), and discarded for each 
chain the first 500 samples (burn-in). Diagnostic plots of 
the Markov Chain Monte Carlo sampler for each of the 
inferred random variables (θhigh, θmedium, θlow and β) are 
shown in the appendix (p 2). All analyses are fully 
reproducible with the code available online.

Testing the effect of length of stay in point prevalence 
of travellers
In 2009, during the influenza pandemic which 
originated in Mexico, most travellers leaving Mexico 
were assumed to be tourists, or other temporary visitors, 
with relatively short stays in Mexico, and the risk that 
they were infected was assumed to represent a 
cumulative hazard over the period of their stay.2,3 The 
basic assumption was that short-term visitors faced the 
same hazard of infection as did residents of Mexico, 
but, in view of their shorter stay, visitors had a somewhat 
lower prevalence of infection when returning to their 
home location. Many estimates in 2019–20 for COVID-19 
have, instead, made the assumption of equal prevalence 
in travellers leaving Wuhan and in residents, which is 
equivalent to assuming that either all travellers are 
Wuhan residents or (if travellers are a mix of residents 
and visitors) all visitors had stayed long enough during 
the epidemic that their prevalence was similar to that of 
residents.

To quantify the difference between these two sce narios, 
assuming that all travellers are short-term visitors versus 
assuming that all travellers are residents or long-term 
visitors, we considered a simple model of an exponentially 
growing epidemic, in which the hazard of infection at 
time t is denoted λ(t) and is increasing at rate r. At the 
beginning of the epidemic, which we call time 0, the 
hazard of infection is λ(0) and thereafter λ(t) = λ(0)ert. 
Then the point prevalence of infection at time u in 
residents who have stayed in Wuhan for the duration of 
the epidemic will be the probability that they have 
become infected and not recovered by time u, assuming 
that the cumulative hazard remains small enough by that 

For the code see https://github.
com/c2-d2/detect_prob_
corona2019

See Online for appendix

Yi ~ Poisson(λi),

λi = {βxi if i = 1,
βxiθlevel[i] otherwise,

level[i] = {high if i = 2,...,65,
medium if i = 66,..., 129,
low if i = 130,..., 194,

θhigh, θmedium, θlow ~ Uniform(0, 1),  

log(β) ~ Normal(0, 50), 

θglobal = —
1

∑ n

i = 2
xi

∑
n

i = 2

xiθlevel[i],

https://github.com/c2-d2/detect_prob_corona2019
https://github.com/c2-d2/detect_prob_corona2019
https://github.com/c2-d2/detect_prob_corona2019
https://github.com/c2-d2/detect_prob_corona2019
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point that there has been no appreciable depletion of 
susceptible people.

This equation assumes exponentially distributed time to 
recovery, with mean duration y–¹, when we assume that 
the infection is only detectable until the time of recovery 
(for other cases, time to recovery should be duration of 
detectable infection). The same quantity for a visitor 
who had only been in Wuhan for d days before departure 
would be as follows:

In this equation, we assume that visitors differ from 
residents only in the duration of exposure, not in the 
intensity of exposure. Under these assumptions, the 
ratio of prevalence in visitors to that in residents, which 
we call V, would be as follows:

Once u and, thus, the number of cases in the 
exponential phase of the epidemic is substantial, this 
term can be well approximated as V ≈ 1–e–(r + y)d. We plot 
this approximation of V since doubling times aligned 
with a range of times to recovery and a range of lengths 
of stay (appendix p 3). The expression for V can also be 
expressed in terms of the transmission rate by replacing 
r + γ by β denoting the transmission rate. This step yields 
the expression V ≈ 1 – e–βd. We also include an analysis of 
V under the relaxed assumption that the transmission 
rate for residents and visitors might be different 
(appendix p 1).

Role of the funding source
The funders had no role in study design, data collection, 
data analysis, data interpretation, or writing of the report. 
All authors had full access to all data in the study and 
had final responsibility for the decision to submit for 
publication.

Results
Global ability to detect imported cases of COVID-19, 
weighted by flight volume from Wuhan, was estimated at 
38% (95% HPDI 22–64) of Singapore’s capacity (figure 1). 
Equivalently, an estimated 2·8 (95% HPDI 1·5–4·4) 
times the current number of imported and detected 
cases could have been detected if all locations had had 
the same detection capacity as Singapore, leading to 
1·8 (0·5–3·4) undetected cases per detected case. 
Globally, detection capacity varied widely: the ability to 
detect imported cases among, according to GHS2 index, 
locations with a high surveillance capacity was 40% 
(95% HPDI 22–67), among locations with medium 
surveillance capacity it was 37% (18–68), and among 
locations with low surveillance capacity it was 11% (0–42; 
figure 1).

The prevalence ratio between Wuhan’s temporary 
visitors and residents approached 1·00 as the epidemic 
growth rate, the duration of stay, and the recovery rate 
increased, and it approached 0·00 for short duration of 
stay, long time to recovery, and slower epidemic growth 
(figure 2). For example, for a visiting duration of 1 week 
(7 days), an epidemic doubling time of 5 days, and a time 
to recovery of 11 days, the prevalence in visitors is 
predicted to be 0·80 (ie, 80% of that in residents). 
Instead, for a visiting duration of 3 days, the prevalence 
in visitors would be 0·50 (50% of that in residents).

Discussion
In our study, we tested two assumptions underlying the 
estimation of incidence at the epicentre of the COVID-19 
outbreak. The first of these was that the capacity 
for detection of international imported cases is 100% 
sensitive and specific across locations. Although we know 
of no reason to doubt specificity of detection, we tested the 
assumption of 100% sensitivity. Based on findings of our 
previous study,4 we assumed Singapore has the highest 
capacity for surveillance with respect to COVID-19. 
We regressed cumulative cases against Wuhan-to-location 
air travel volume, considering Singapore to have the 
greatest detection capacity, and estimating relative under-
detection compared with Singapore in remaining loca-
tions (classified according to the GHS2 index). Although it 
is unlikely that the GHS2 index reflects the true ranking of 
locations for any specific epidemic, we assume that it can 
capture roughly different levels of surveillance capacity. 
We, therefore, grouped locations (apart from Singapore) 
into three classes of surveillance capacity (high, medium, 
and low) instead of using exact ranking. Although possibly 
important for detection, our model does not account 
for differences in typical flight duration to different 
destinations.

We estimated that detection of exported cases from 
Wuhan worldwide is 38% (95% HPDI 22–64) as 
sensitive as it has been in Singapore. Put another way, 
this estimate implies that the true number of cases in 
travellers is at least 2·8 (95% HPDI 1·5–4·4) times the 
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number that has been detected. Equivalently, for each 
detected exported case there are at least 1·8 (95% HPDI 
0·5–3·4) undetected cases. If the model is correct, this 
is a lower bound on the frequency of undetected cases 
for two reasons. First, Singapore’s detection capacity 
is probably not 100% efficient. Singapore had, as of 
Feb 12, 2020, eight documented cases of COVID-19 
transmission, for which there were no known epidemio-
logical links to China or other known cases,10 implying 
that imported cases in Singapore could have gone 
undetected (although it is not certain that these imports 
came from Wuhan or elsewhere in China, and links 
might still be found). Second, Singapore’s detection 
capacity, similar to that in other locations, has relied 
largely on symptoms and travel history, so the number 
of asymptomatic or low-severity cases missed by such a 
strategy is unknown.

The second assumption we tested is that the true 
prevalence in visitors to the epicentre is similar to that of 
residents: it might be different for either of two reasons. 
First, the true prevalence could be less if people who visit 
are less well integrated into the social mixing that 
produces infection (eg, if they have stayed in specific parts 
of the city or in hotels), or it could be more if travellers 
are engaging more intensely in relevant social mixing 
(eg, through welcoming ceremonies). This aspect could, 
therefore, increase or decrease prevalence in visitors 
relative to residents (appendix p 3). In our study, we 
focused on quantifying a second difference, which is that 
some visitors will have been in the city only for a short 
time and, thus, have had less exposure to the infection 
than residents. We find this effect is most pronounced 
when the epidemic is growing slowly, when visitors have 
stayed only briefly, and when the duration of detectable 
infection is short. We found that for plausible parameters 
for COVID-19, prevalence in visitors staying only 3 days 
could be as little as half that of residents, but for longer 
stays of more than a week the visitor prevalence should be 
80% or more that of residents (figure 2). Assuming the 
population of travellers out of Wuhan is a mix of visitors 
of various durations and residents, this finding suggests 
that underestimation of source population prevalence 
because of the presence of short-stay visitors could be 
appreciable but more modest than the effect of imperfect 
detection. For example, in combination with our estimates 
of underdetection, the total under estimation of cases in 
Wuhan from only studying visitors could be around 70% 
for 7-day visits, 5-day doubling time, and 11 days of 
detectable infection or, with a 3-day visit, as much as 81%. 
The infection exposure of visitors in high-risk venues 
(eg, aeroplanes or airport toilets) could be important, and 
additional variation in exposure between travellers of diff-
er ent international destinations due to, for example, 
different dominant types of reasons for travel (eg, group 
holidays vs business trips).

Based on our model, the risk of undetected importation 
and subsequent circulation correlates with air travel 

connectivity. Indeed, at the time of writing (March 9, 2020), 
nine locations have reported more than 500 confirmed 
cases of COVID-19 (France, Germany, Iran, Italy, Japan, 
Singapore, South Korea, Spain, and the USA), suggesting 
local transmission. All locations (apart from Iran) 
are among the 27 most connected locations to Wuhan 
through air travel,7 which supports the important role of 
undetected importation through air travellers (the prob-
ability of drawing uniformly at random eight or more 

Figure 1: Posterior distributions of detection probabilities relative to Singapore
Upper panel is a density plot of θglobal. Lower panel shows posterior distributions of θlow, θmedium, θhigh. Solid vertical 
lines show median estimates. Shaded areas show 80% HPDI. Curved lines show the 95% HPDI. HPDI=highest 
posterior density interval.

0 0·25 0·50 0·75 1·00

Detection probability relative to Singapore

Low surveillance locations
(θlow)

Medium surveillance
locations (θmedium)

High surveillance 
locations (θhigh)

Weighted location average
(θglobal)

Figure 2: Ratio of infection prevalence in temporary visitors relative to that in residents
Plot shows the ratio over a range of durations of visit (in days) and a range of durations of detectable infection 
(time to recovery in days). Upper panel shows an epidemic doubling time of 5 days; lower panel shows an epidemic 
doubling time of 7 days. Ratios are shown as decimals rounded to 2 decimal places, with lighter areas as the ratio 
approaches 1·00. In this base case, we assume that the hazard of infection is the same for residents and visitors.
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highly connected locations to Wuhan under the null 
assumption that draws are independent of flight 
connection is <0·001). However, as new COVID-19 
epicentres evolve, the role of air travel from China in 
the transmission of SARS-CoV-2 is expected to decline. 
Finally, our model predicts that locations with high 
connectivity to Wuhan paired with a relatively low sur-
veillance capacity (eg, India, Maldives, New Zealand, 
Pakistan, Russia, Sri Lanka, and United Arab Emirates) 
are probably underdetecting imp orted cases and 
potentially also self-sustained transmission.

Our finding that imported cases detected among tra-
vellers probably under-represents the source popu lation 
prevalence has two important implications for the public 
health response to COVID-19. First, this finding has 
implications for approaches to case burden and severity 
estimation that use cases in travellers to impute cases in 
Wuhan, which are then compared (for severity estimation) 
against deaths in Wuhan. If the true number of imported 
cases is underestimated, then there are more cases in 
Wuhan and a larger denominator, resulting in reduced 
estimates of severity compared with severity estimates 
assuming 100% detection in travellers.11 Future studies 
should account for our evolving under standing of 
detection capacity when estimating case numbers and 
severity in source population on the basis of traveller case 
numbers. Second, our model predicts the scenario in 
which the virus has been imported from Wuhan and 
remained partly undetected in nearly all locations. An 
important corollary of this possibility is that, despite large 
efforts to detect and stop the virus from entering new 
locations, many undetected imported cases can occur and 
cause hidden local transmission until a sizable number 
of cases accumulates, leading to inter national spread 
of COVID-19 beyond locations’ detection and reporting 
capacities.
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