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Abstract

The ATP‐binding cassette (ABC) transporters control placental transfer of several

nutrients, steroids, immunological factors, chemicals, and drugs at the maternal‐
fetal interface. We and others have demonstrated a gestational age‐dependent
expression pattern of two ABC transporters, P‐glycoprotein and breast cancer

resistance protein throughout pregnancy. However, no reports have comprehen-

sively elucidated the expression pattern of all 50 ABC proteins, comparing first

trimester and term human placentae. We hypothesized that placental ABC trans-

porters are expressed in a gestational‐age dependent manner in normal human

pregnancy. Using the TaqMan® Human ABC Transporter Array, we assessed the

mRNA expression of all 50 ABC transporters in first (first trimester, n = 8) and

third trimester (term, n = 12) human placentae and validated the resulting expres-

sion of selected ABC transporters using qPCR, Western blot and immunohisto-

chemistry. A distinct gene expression profile of 30 ABC transporters was

observed comparing first trimester vs. term placentae. Using individual qPCR in

selected genes, we validated the increased expression of ABCA1 (P < 0.01),

ABCA6 (P < 0.001), ABCA9 (P < 0.001) and ABCC3 (P < 0.001), as well as the

decreased expression of ABCB11 (P < 0.001) and ABCG4 (P < 0.01) with advanc-

ing gestation. One important lipid transporter, ABCA6, was selected to correlate

protein abundance and characterize tissue localization. ABCA6 exhibited increased

protein expression towards term and was predominantly localized to syncytiotro-

phoblast cells. In conclusion, expression patterns of placental ABC transporters

change as a function of gestational age. These changes are likely fundamental to

a healthy pregnancy given the critical role that these transporters play in the

regulation of steroidogenesis, immunological responses, and placental barrier func-

tion and integrity.
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1 | INTRODUCTION

The ATP‐binding cassette (ABC) superfamily comprise 50 proteins

classified into seven sub‐families ranging from ABCA through ABCG.

Although some of the superfamily members (ABCE and ABCF sub-

families) act as translation factors,1,2 the majority of the ABC super-

family are transporters, involved in the efflux transport activity of

specific substrates across biological barriers.3-5 In the placenta, ABC

transporters regulate fetal accumulation of numerous physiological

compounds, chemicals, and drugs that may be present in the mater-

nal circulation.6 Endogenous substrates of the ABC transporters

include steroid hormones (glucocorticoids, mineralocorticoids, estro-

gens, androgens, and progestogens), nutrients (lipids, cholesterol, and

folate), metabolic products (oxysterols, bilirubin‐ and bile salts‐conju-
gated compounds) and immunological factors (cytokines and

chemokines).5,7,8 Exogenous substrates include different environmen-

tal chemicals (bisphenol A, ivermectin, organochlorine, and

organophosphorus pesticides) and xenobiotics (antiretrovirals, antide-

pressants, antibiotics, etc).5,9-12 Thus, placental ABC transporters

control cellular metabolism, regulate local, and systemic immunologi-

cal responses and orchestrate the biodistribution of numerous

endogenous and exogenous substrates at the maternal‐fetal inter-

face.5,13,14

The cellular localization of ABC transporters in the syncytiotro-

phoblast (eg apical vs. basolateral) is essential to determine the trans-

fer orientation of their substrates in or out of the placental

barrier.5,14-16 P‐glycoprotein (P‐gp, encoded by ABCB1), breast can-

cer resistance protein (BCRP, ABCG2), and the multidrug resistance‐
associated proteins (MRPs)‐2 and 3 (ABCC2 and ABCC3, respectively)

are localized to the apical membrane of syncytiotrophoblasts, indi-

cating their extrusion activity occur from within the syncytium (and

thus the fetal compartment) towards the maternal blood‐enriched
intervillous space of the placenta. Conversely, ABCG1, MRP‐1, 3 and

5 (ABCC1, ABCC3, and ABCC5) are localized to the basolateral mem-

brane, suggesting that extrusion activity occurs from the maternal to

the fetal compartment.5 In some cases, the localization of ABC trans-

porters appears to change with advancing gestation. This is the case

for the ABCA1 lipid transporter, which has been associated with

altered steroidogenesis, placental malformation, reduced pregnancies,

and offspring morbidity.17-21

Considering that ABC transporters are also involved in the

biodistribution of several drugs commonly prescribed during preg-

nancy (ie antiemetic agents, antibiotics, synthetic glucocorticoids,

anti‐inflammatory, antidepressants, antihypertensive, and antiretrovi-

ral drugs)5,22; a better understanding of the developmental expres-

sion of ABC transporters in the placenta may provide important

insight concerning drug bioavailability into the fetal compartment

throughout pregnancy. We and others have previously demonstrated

a time‐dependent expression of P‐gp, BCRP, MRP‐1, 2 and 5 in the

human placenta throughout pregnancy,14,23-30 however, there is no

information about the developmental expression of other ABC trans-

porters, highlighting the importance of a more detailed investigation

of the expression pattern of the ABC transporter superfamily

throughout pregnancy. We hypothesized that healthy human placen-

tae exhibit a developmentally regulated pattern of ABC transporter

mRNA expression. Therefore, we sought to comprehensively investi-

gate the developmental expression of the ABC transporter super-

family (50 genes) comparing first trimester and term human

placentae from uncomplicated pregnancies.

2 | MATERIALS AND METHODS

2.1 | Sample selection and study design

Healthy human first trimester (7‐9 weeks gestation, n = 8) and term

(>37 weeks gestation, n = 12) placental samples (paraffin embedded

slides and snap‐frozen tissues) were obtained from the Research

Centre for Women's and Infants’ Health (RCWIH) BioBank, after

approval of the University of Toronto's Ethics Committee (Protocol

#26573). Healthy first trimester placental tissue specimens were

obtained following the D&C (dilation and curettage) procedure. Pla-

cental villous tissue was visually identified and dissected from other

tissues (eg decidua), by highly experienced RCWIH staff. Similarly,

placental villous tissue from term pregnancies was dissected and har-

vested immediately after birth. Placental core sampling was per-

formed by positioning the maternal surface facing up. Dissection

was then undertaken in quadrants in areas 1.5 cm away from: the

closest placental edge, the center of the placental disc, the umbilical

cord insertion site, from areas of thrombosis, infarcts or other abnor-

malities. The cuts were made to a core depth that excluded the

maternal decidua and the chorionic plate. Thus, only placental villous

tissue from healthy first and term placentae were included in the

study. Placental snap‐frozen tissue was stored at −80°C until the

time of processing, and paraffin embedded slides were stored dry at

room temperature. Considering the privacy policies regulating the

collection of specimens by the biobank, first trimester patients’
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clinical data were unavailable. However, term patients’ clinical data

were accessible and described as follows. Maternal average age was

35 ± 1.2 years and BMI was 22 ± 1.1 kg/m2. Term pregnancies were

39.5 ± 0.31 weeks and an average birth weight of 3.435 (±165) g.

All term samples were obtained from Caucasian mothers bearing

male neonates, to minimize sample heterogeneity.

2.2 | Total RNA extraction and cDNA synthesis

Extraction of total RNA from placental tissue (~30 mg) was per-

formed using the Universal RNeasy Mini kit (Qiagen, Toronto, ON,

Canada), in accordance with the manufacturer's instructions. Total

RNA concentration was assessed using Nanophotometer and RNA

integrity using Experion™ RNA Analysis kit (Bio‐Rad, Mississauga,

ON, Canada). Samples were used when RNA purity (260/280 absor-

bance) ratio was >1.8, and RNA integrity number was >7. Total

RNA (1 μg) was converted into cDNA using the SuperScript® kit

VILO™ cDNA Synthesis (Invitrogen, Grand Island, NY, USA).

2.3 | ABC transporters low density array and
individual qPCR

TaqMan® Human ABC Transporter Array microfluidic cards (TLDA,

catalog number #4378700; Applied Biosystems, Foster City, CA, USA)

were used to analyse placental ABC transporters’ mRNA expression,

as described previously.31 This array was specifically designed to assay

gene expression of the 50 ABC transporters and a further 14 refer-

ence genes. Briefly, samples were run in triplicate using a total of 10

TLDA cards. Each TLDA card consisted of eight reservoirs (four per

sample). A total of 400 ng of reverse transcribed mRNA was used per

sample (100 ng/reservoir). cDNA was combined with the 2X Taqman®

Gene Expression Master Mix (final volume 100 μL/reservoir) and

loaded into separate reservoirs followed by centrifugation. Cards were

then sealed and run individually in an Applied Biosystems ViiA™ 7

qPCR System (technologies to Thermo Fisher Scientific, Missisauga,

ON, Canada), using the following cycling conditions: 95°C for 20 sec-

onds, followed by 40 cycles of 95°C for 1 second and 60°C for 20 sec-

onds. The geometric mean of the three most stable reference genes

(beta‐2‐microglobulin [B2M], Tata‐box binding protein [TBP] and RNA

polymerase II subunit A [POLR2A]) was used to normalize the ABC

transporter mRNA levels. Cycle thresholds were assessed performed

with Thermo Fisher Cloud online software (Life Technologies), the rel-

ative expression of target genes was calculated by the 2−ΔΔCT

method.32 Heatmaps were obtained using R programming statistical

software (Foundation for Statistical Computing, Vienna, Austria). A

pre‐screening was undertaken, comparing samples derived from births

at term by vaginal (n = 8) or cesarean section (n = 4). No differences in

the relative expression of all 50 ABC transporters were observed

between these two modes of delivery, thus all term placental speci-

mens were combined into the Term group. After analysis of relative

expression, the resulting P‐values were corrected for multiple testing

by a false discovery rate (FDR)33 of 5% using the R programming sta-

tistical software.

To validate the relative expression results obtained in the array, indi-

vidual qPCR of selected ABC genes, ABCA1, ABCA6, ABCA9, ABCB1,

ABCB11, ABCG4, and ABCC3, was assessed using the same Taqman®

probes present in the TLDA cards (ID: Hs00194045_m1,

Hs00365329_m1, Hs00184824_m1, Hs00184491_m1, Hs00358656_m1,

Hs00223446_m1 and Hs00329320_m1, respectively). Their relative

expression was normalized using the gene POLR2A (Hs00172187_m1).

qPCR reactions were using the Taqman® Universal Master Mix II (Applied

Biosystems) in triplicates in a CFX96 real‐time PCR detection system (Bio‐
Rad). The cycling conditions were: 50°C for 2 minutes, 95°C for 10 min-

utes, followed by 40 cycles of 95°C for 15 seconds and 60°C for 60 sec-

onds. Changes in mRNA expression were calculated according to the

2−ΔΔCT method.32

2.4 | Western blot

To investigate protein expression of the selected ABC transporter,

total protein was extracted from placental tissue (~50 mg) using

approaches described previously.31 Briefly, nitrocellulose membranes

to which protein had been transferred were incubated overnight at

4°C in the presence of a specific primary antibody for the proteins

of interest: Anti‐ABCA6 (ab180567; Abcam, Toronto, ON, Canada) in

a 1:250 PBS dilution with 5% BSA; and anti‐ERK (sc‐7383; Santa

Cruz Biotechnology, Dallas, TX, USA) as an internal control, diluted

1:3000 in PBS with 5% milk. The membrane was then washed, pro-

cessed, and analysed as described previously.31

2.5 | Immunohistochemistry

Mounted paraffin‐embedded tissue sections (0.5 μm thickness) were

processed as described previously.31 Briefly, antigen retrieval was

performed by incubating pre‐heated (3 minutes in microwave) sec-

tions with target retrieval solution, pH 9 (Dako Agilent Technologies,

Mississauga, ON, Canada) (2 × 20 minutes on ice); followed by an

incubation in sodium citrate solution (10 mmol/L 2 × 15 minutes on

ice). Slides were then incubated with Protein Block (Dako) for

1 hour, followed by an overnight 4°C incubation with the primary

antibodies: ABCA6 (Abcam, 1:250) and anti‐IgG (Dako, used to

replace the primary antibody, as a negative control). Sections were

then washed in PBS (3 × 5 minutes) and incubated with anti‐mouse

IgG secondary antibody (X0931; Dako) for 1 hour at room tempera-

ture, followed by incubation with streptavidin‐HRP (1 hour; Dako)

and visualized using diaminobenzidene (Dako). Slides were counter-

stained with haematoxylin, dehydrated and cover slipped. Sections

were examined using an Olympus BX61 upright, motorized micro-

scope coupled with an Olympus DP72 digital camera (Olympus,

Tokyo, Japan) at 20X magnification.

2.6 | Statistical analysis

Prism software (GraphPad Software Inc., San Diego, CA, USA) ver-

sion 5.0 was used for statistical analysis. Analysis included the Kol-

mogorov‐Smirnov normality test followed by an unpaired Student's‐t
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test or the non‐parametric Mann‐Whitney test. A 5% FDR was

applied to the array data to correct for multiple comparisons. The

data displayed refers to the adjusted P‐value after FDR correction.

Specific statistical analysis and the number of samples used are

described in the legend of respective figures. Results are expressed

as mean ± SEM. Differences were considered significant when P was

<0.05.

3 | RESULTS

3.1 | Time‐dependent gene expression of ABC
transporters in the human placenta

We observed a dramatic difference in gene expression between first

trimester and term placentae, clearly visible in the heatmap (Fig-

ure 1) and detailed in Table 1. Healthy placental development was

associated with downregulation of 18, and upregulation of 11 ABC

transporters (Table 1). ABCA13, ABCB4, ABCB9, ABCB11, ABCC2,

and ABCG4 were the most decreased, while ABCA6, ABCA8, ABCA9,

ABCA10, ABCC3, and ABCG1 are the most increased ABC genes

(Table 1). As previously observed,31 expression of ABCG5 and

ABCG8 was below detection limit and, therefore, not included in the

analysis. ABCB5, ABCC8, ABCC12, and ABCC13 transcripts exhibited

inconsistent amplification results likely because of very low levels of

expression, and were not evaluated. Based on their potential

physiological relevance and mRNA abundance (baseline mRNA

expression), seven ABC transporter genes were selected for valida-

tion using individual qPCR. We confirmed the same pattern previ-

ously observed in the array, i.e., significantly increased expression of

ABCA1 (P < 0.01), ABCA6 (P < 0.001), ABCA9 (P < 0.001) and

ABCC3 (P < 0.001), no difference in ABCB1 and significantly

decreased expression of ABCB11 (P < 0.001) and ABCG4 (P < 0.01),

in first trimester compared to term placentae (Figure 2).

3.2 | ABCA6 placental protein expression increases
at term and is localized to the syncytiotrophoblast

We next evaluated whether protein levels of a specific ABC trans-

porter, would follow the same pattern as for gene expression. We

selected an as yet uncharacterized ABC transporter, the ABCA6 lipid

tranporter for analysis, based on its degree of change (fold change:

2.63, P < 0.001) and potential physiological relevance for the pla-

centa. As shown in Figure 3A, ABCA6 exhibited increased (P < 0.05)

total protein expression at term, demonstrating correspondence

between increased transcription and translation of this tranporter

with advancing gestation. Immunohistochemical analysis indicated

that ABCA6 protein was highly localized to the cytoplasm of the

syncytiotrophoblast. Variable ABCA6 immunoreactivity in the

microvillous membrane of the syncytiotrophoblast was also detected,

though at a much lower level compared to the cytoplasmic staining.

Additionally, some cells of interstitial villi of both first trimester and

term placentae were also positive for ABCA6 (Figure 3B,C).

4 | DISCUSSION

In the current study, we show for the first time, a gestational‐age
specific pattern of expression of 30 ABC transporters in the healthy

human placenta, highlighting a potential role for these transporters

in regulating placental development, metabolism, and intrauterine

disposition of specific substrates throughout pregnancy. Importantly,

the lipid transporter ABCA6 exhibited increased placental mRNA and

protein expression towards term and was highly localized to the syn-

cytiotrophoblast in first trimester and term placentae, suggesting

that ABCA6 may have a relevant role supporting placental lipid

metabolism and transport, particularly in late pregnancy, when pro-

tein levels are at their highest.

Among all the regulated ABC genes, the ABCA subset exhibited

the greatest degree of upregulation across pregnancy, particularly for

ABCA6, ABCA8, ABCA9, and ABCA10. This is perhaps unsurprising,

considering that this subfamily of transporters comprises the major

lipid transporters responsible for lipid homeostasis,34-36 lipid translo-

cation and cell signalling.37-40 In fact, ABCA transporters are of pri-

mary importance for cholesterol transport, which is paramount for

normal fetal brain and overall body development.41-48 Cholesterol is

also the precursor of lipid metabolites such as oxysterols and steroid

hormones.49-52 Given that the human placenta lacks the cellular

machinery required for cholesterol synthesis,53 and the fact that

F IGURE 1 Heatmap indicating the time‐dependent expression of
the 30 ATP‐binding cassette (ABC) genes that exhibited
developmentally regulated expression in healthy human placentae.
Relative quantities (Rq) of the ABC genes obtained from the Human
ABC Transporters Taqman® Array, comparing first trimester (n = 8)
and term (n = 12) human placentae. Red represents increased
expression, green indicates reduced expression
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TABLE 1 Fold‐change in mRNA expression of the ATP‐binding cassette (ABC) transporters, obtained from the Human ABC Transporters
Taqman® Array, comparing term (n = 12) to first trimester (n = 8) human placentae

Name Fold‐change Name Fold‐change Name Fold‐change Name Fold‐change

ABCA1 2.14*** ABCA12 0.56* ABCB11 0.16*** ABCD1 1.18

ABCA2 0.62** ABCA13 0.42* ABCC1 1.06 ABCD2 1.60

ABCA3 2.38** ABCB1 0.73 ABCC2 0.48*** ABCD3 0.62***

ABCA4 0.68 ABCB2 0.59** ABCC3 4.13*** ABCD4 0.92

ABCA5 1.73** ABCB3 0.92 ABCC4 0.55*** ABCE1 0.64***

ABCA6 2.63*** ABCB4 0.28*** ABCC5 1.12 ABCF1 0.76**

ABCA7 1.25 ABCB6 0.69** ABCC6 1.29 ABCF2 0.64***

ABCA8 3.74** ABCB7 0.65*** ABCC7 1.42 ABCF3 0.74***

ABCA9 3.02*** ABCB8 0.83* ABCC9 0.77 ABCG1 2.73***

ABCA10 4.45*** ABCB9 0.33*** ABCC10 1.07 ABCG2 0.80

ABCA11 1.64* ABCB10 0.58** ABCC11 1.83* ABCG4 0.47**

Fold‐change was calculated as the ratio between term and first trimester expression. Fold‐change >1 indicates increased expression; <1 indicates

decreased expression.

*P < 0.05, **P < 0.01 and ***P < 0.001.

F IGURE 2 Validation of selected ABC
genes by qPCR. (A) ABCA1; (B) ABCA6; (C)
ABCA9; (D) ABCB1 (E); ABCB11; (F) ABCC3;
and (G) ABCG4 mRNA expression,
comparing first trimester (n = 8) and term
(n = 12) placentae. Statistical analyses:
non‐parametric Mann‐Whitney test. Data
are presented as mean ± SEM. **P < 0.01
and ***P < 0.001

A B C

D E

F IGURE 3 Human placental ABCA6 protein expression and immunolocalization towards term. (A) Representative ABCA6 (180 kDa) and
ERK (42 kDa) immunoblots, comparing first trimester (n = 5; open bar) and term (n = 5; solid bar) human placentae, as well as placental ABCA6
expression normalized to ERK (loading control). (B and C) Representative images of ABCA6 localization in first trimester and term placentae,
respectively. (D and E) Negative controls for the respective gestational age. Statistical analyses: unpaired t‐test. Data are presented as mean ±
SEM *P < 0.05, arrows indicate the syncytium, scale bar: 55 μm
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cholesterol can originate from both fetal and maternal compart-

ments,54,55 the presence of developmentally‐regulated cholesterol

transporters in trophoblast cells is likely essential for placental biol-

ogy. Interestingly, we detected a 2.14‐fold increased expression in

ABCA1 mRNA at term compared to first trimester. This finding con-

trasts with previous published data demonstrating no changes in pla-

cental ABCA1 mRNA levels comparing early vs. late pregnancy

placentae.20 These differences may be due to patient selection crite-

ria and or differing sensitivity of the techniques undertaken in both

studies.

We selected the ABCA6 lipid transporter for further protein

analysis. ABCA6 exhibited a marked gestational time‐dependent reg-

ulation and to the best of our knowledge, has never been previously

characterized in the placenta. Placental ABCA6 protein levels

increased with advancing gestation, which paralleled increases in

mRNA levels detected by the microfluid array and individual qPCR.

Furthermore, ABCA6 was highly localized to the syncytiotrophoblast

cytoplasm regardless of the gestational age. Some sections exhibited

variable localization in the microvillous membrane of the syncytiotro-

phoblast and in interstitial villi cells in both first trimester and term

placentae. Considering that ABCA6 is expressed at Golgi com-

plexes,40 our results suggest that ABCA6 may contribute to lipid

homeostasis in the syncytiotrophoblast, probably by transferring

cholesterol and oxysterols across the Golgi complex membrane. Fur-

thermore, the variable presence of ABCA6 in the microvillous mem-

brane of the syncytiotrophoblast suggests that it may also contribute

to lipid transport in the placental barrier across pregnancy. However,

these hypotheses require further investigation.

Levels of mRNA expression of ABCG genes involved in lipid

transport and homeostasis were also developmentally regulated. Of

importance, ABCG1 was highly upregulated in term placentae.

ABCG1 has been demonstrated to synergize with ABCA1—which

also exhibited higher gene transcript levels in term placentae, to

efflux cholesterol and generate HDL particles.56

In contrast to the ABCA subset of transporters, the ABCB trans-

porters exhibited the greatest decreases of mRNA throughout preg-

nancy. Nine out 11 ABCB transporters were decreased at term, in

particular, ABCB2, ABCB4, and ABCB9 mRNA. The ABCB subset

comprise transporters known to elicit multidrug resistance to neo-

plastic cells.57 In the placenta, ABCB transporters confer embryo/fe-

tal protection against xenobiotics and environmental toxins that may

present in the maternal circulation.5,14 The best well‐characterized
placental ABCB transporters are ABCB1, which encodes P‐gp and

ABCB4, the MRP‐3 encoding gene.5 Previously, we have demon-

strated a distinct pattern of time‐dependent expression of P‐gp/
ABCB1 in the human placenta. P‐gp is highly expressed in the human

placenta and is primarily localized to the apical membrane of the

syncytiotrophoblast. P‐gp functions as a major efflux transporter that

protects the fetus from accumulation of several obstetric‐relevant
drugs and environmental toxins5 and is an important transporter that

modulates extravillous trophoblast invasion in early pregnancy.58 In

our previous studies, syncytiotrophoblast P‐gp staining and placental

ABCB1 expression decreased towards term, suggesting a higher

protection of the fetus from exposure to P‐gp substrates in the first

trimester, a period in which the developing conceptus is most vul-

nerable to teratogenicity.23,59 Our present findings did not recapitu-

late the previous observed reduced placental ABCB1 expression

towards term. This result from several factors, including patient

selection criteria, different specificity of qPCR techniques under-

taken, different reference genes used (POLR2a, TBP and B2M vs.

YWHAZ, HPRT and SDHA), the evaluation of distinct ABCB1 tran-

scripts: according to Ensembl Genome Database Project (http://

www.ensembl.org/), the human ABCB1 gene has 11 transcripts

(splice variants), with four of them being protein coding, which may

have led to the evaluation of different ABCB1 transcripts in these

studies. Nevertheless, reduced expression of nine ABCB trans-

porters’ genes supports the notion that placental‐mediated fetal pro-

tection to certain substrates declines in late gestation. In parallel

with these decreases in the placenta, there is a dramatic increase in

P‐gp in the developing fetal blood‐brain barrier which confers pro-

tection of the brain during the fetal to neonatal transition.5,60,61

ABCB4 (MDR3), along with the other downregulated ABC

transporters including the bile salt export pump ABCB11 (BSEP),

ABCC2 (MRP2) and ABCC4 (MRP4), are components of the hepa-

tobiliary‐like excretory system.62-64 These transporters provide an

important route of elimination of toxic compounds produced by

fetal metabolism, such as bile acids,63,65 that otherwise due to the

immaturity of the fetal liver would accumulate and harm the

fetus.66 Similarly, placental expression of the peroxisomal trans-

porter ABCD3, which is involved in fatty acids oxidation and bile

acids synthesis67 was decreased at term compared to first trime-

ster. Our current results support a previous study,62 that sug-

gested placental excretory activity is gradually replaced by fetal

hepatic performance with the development and maturation of the

fetal liver. This highlights the potential importance of ABC trans-

porters for the clearance control of bile acids and conjugates of

bilirubin, bile salts and xenobiotics,5,68-73 particularly in earlier

stages of pregnancy.

Gene expression of the intracellular ABC proteins, ABCE1 and

ABCF1‐3, was also decreased in term placentae. While their placen-

tal function are not known, our data provide evidence these ABC

genes may developmentally regulate intracellular processes in tro-

phoblast cells, which may include ribosomal cycling and protein syn-

thesis74 and inflammatory responses to cytosolic DNA (DNA

sensing)75 and chorioamnionitis.31

ABCG2, which encodes the multidrug resistance transporter

BCRP, did not show changes in gene expression throughout preg-

nancy. Like P‐gp, BCRP is highly expressed in the apical membrane

of the syncytiotrophoblast barrier to confer fetal protection against

harmful substances present in the maternal blood; but with an addi-

tional role, to regulate cytotrophoblast fusion into syncytiotro-

phoblasts.76 Stable levels of ABCG2 across pregnancy are consistent

with our previous studies.23,27 BCRP staining however, is increased

in the syncytiotrophoblast towards the end of pregnancy, indicating

an increment of fetal protection against BCRP substrates as gesta-

tion proceeds.23,27
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In conclusion, placental development is associated with a very

specific expression pattern of 30 ABC transporter genes. We have

also demonstrated a gestational age‐dependent pattern of ABCA6

mRNA and protein expression and its abundant localization to the

syncytiotrophoblast. Our findings suggest that ABCA6 is likely to

exert yet unexplored gestational‐age dependent actions in placental

lipid homeostasis and transport. Our data also highlight the need for

further studies exploring the role of other yet uncharacterized devel-

opmentally‐regulated ABC transporters in the placenta, which likely

exert important actions throughout pregnancy. Considering their cru-

cial role in regulating steroidogenesis, placental nutrient transfer, bar-

rier efficiency and integrity, as well as diverse intracellular processes,

the ABC transporters in the placenta likely play critical roles in nor-

mal, and pathological pregnancies. This represents a critical area for

future research.
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