
Published online 11 June 2020 Nucleic Acids Research, 2020, Vol. 48, No. 14 e83
doi: 10.1093/nar/gkaa498

NAguideR: performing and prioritizing missing value
imputations for consistent bottom-up proteomic
analyses
Shisheng Wang1, Wenxue Li2, Liqiang Hu1, Jingqiu Cheng1, Hao Yang1,* and
Yansheng Liu 2,3,*

1West China-Washington Mitochondria and Metabolism Research Center; Key Lab of Transplant Engineering and
Immunology, MOH, Regenerative Medicine Research Center, West China Hospital, Sichuan University,
Chengdu 610041, China, 2Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA and
3Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA

Received February 18, 2020; Revised April 20, 2020; Editorial Decision May 31, 2020; Accepted June 08, 2020

ABSTRACT

Mass spectrometry (MS)-based quantitative pro-
teomics experiments frequently generate data with
missing values, which may profoundly affect down-
stream analyses. A wide variety of imputation meth-
ods have been established to deal with the missing-
value issue. To date, however, there is a scarcity of ef-
ficient, systematic, and easy-to-handle tools that are
tailored for proteomics community. Herein, we devel-
oped a user-friendly and powerful stand-alone soft-
ware, NAguideR, to enable implementation and eval-
uation of different missing value methods offered by
23 widely used missing-value imputation algorithms.
NAguideR further evaluates data imputation results
through classic computational criteria and, unprece-
dentedly, proteomic empirical criteria, such as quan-
titative consistency between different charge-states
of the same peptide, different peptides belonging
to the same proteins, and individual proteins par-
ticipating protein complexes and functional inter-
actions. We applied NAguideR into three label-free
proteomic datasets featuring peptide-level, protein-
level, and phosphoproteomic variables respectively,
all generated by data independent acquisition mass
spectrometry (DIA-MS) with substantial biological
replicates. The results indicate that NAguideR is
able to discriminate the optimal imputation meth-
ods that are facilitating DIA-MS experiments over
those sub-optimal and low-performance algorithms.
NAguideR further provides downloadable tables and
figures supporting flexible data analysis and inter-
pretation. NAguideR is freely available at http://www.

omicsolution.org/wukong/NAguideR/ and the source
code: https://github.com/wangshisheng/NAguideR/.

INTRODUCTION

Mass spectrometry (MS)-based quantitative proteomics
provides a versatile approach for profiling thousands of
peptides, proteins and proteoforms between different exper-
imental conditions and disease specimens (1–3). The suc-
cessful applications of quantitative proteomics, however,
has been entangled with the lack of high reproducibility
and consistency, which is often manifested as data miss-
ing values being generated between different technical repli-
cates, experimental batches, biological replicates, and re-
search groups. These missing values [or, not available (NA)
data points] also frequently and negatively affect the subse-
quent analysis of proteomic data (4,5), such as hypothesis
testing, principal component analysis and hierarchical clus-
tering analysis, which routinely require complete data ma-
trix as input.

The missing values in proteomic datasets (6) were pre-
viously discussed and ascribed to three types of causality:
missing completely at random (MCAR), missing at random
(MAR) and missing not at random (MNAR), based on NA
frequency and signal-to-noise patterns (7,8). The missing
value issue can be profound, especially in traditional shot-
gun proteomics where only a fraction of ionized peptides
is selected for identification (9–11). Nevertheless, in the last
few years, quantitative proteomics underwent a remarkable
evolution, yielding a significant increase of protein detec-
tion consistency (12,13). This is due to the development
of new MS methods and workflows, such as large-scale
SRM/PRM measurement (14,15), retention time or spec-
tral library-based MS1 alignment (16–20), multiplexed tan-
dem mass tag labeling (e.g. TMT) (21), and more recently,
data independent acquisition mass spectrometry (DIA-MS)
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exemplified by SWATH-MS (22). For example, researchers
have shown consistent detection of thousands of proteins
between multiple clinical samples using TMT (1,2), and
samples in even larger cohort sizes (i.e. >100–1000s) us-
ing library-based MS1 alignment (23) and DIA-MS (24,25).
The increased consistency of sensitivity essentially trans-
lates to much fewer missing values in the resultant sam-
ple vs. protein (or peptide) data matrix, reducing not only
MCAR, MAR, but also certain MNAR occurrences.

Although the protein-level missing values has been signif-
icantly reduced with the state-of-the-art methodological de-
velopments such as DIA-MS approach, NAs are not elim-
inated in the data. The reasons include, e.g. (a) the scor-
ing of peptide identification in DIA do not always reach
statistical significance in every sample (even if the peptide
peak group is present) (26), (b) the retention time alignment
between a large number of samples might fail due to the
LC variations, spray instability, etc. (27,28) and (c) protein
false discovery rate (FDR) becomes much more challenging
to be controlled when multiple samples are combined (29).
(d) Furthermore, post-translational modifications (PTM)
oriented proteomic datasets normally feature much more
prevalent missing values than the bulk-protein quantifica-
tion due to additional analytical difficulties. Taking phos-
phoproteomics as an example, phosphorylated proteins are
often low abundant, biologically dynamic, and their quan-
titative changes are frequently subtle and site specific. No-
tably, the localization of phosphosite in a peptide sequence
requires fragment ions carrying the particular PTM site to
be detected, scored and confidently assigned, which is even
more challenging for multiple samples. Therefore, missing
value imputation is still indispensable for handling pro-
teomics and phosphoproteomic datasets, even if they are
generated by DIA-MS. Unfortunately, studies addressing
NA imputation for such DIA datasets are currently lack-
ing.

Herein, we aim to provide an efficient, systematic, and
easy-to-handle tool that is tailored for quantitative pro-
teomics to deal with NA imputation. Many imputation
methods have been developed for omics datasets (30), such
as the global approach (e.g. singular value decomposi-
tion based imputation (SVD) (31)), local approach (e.g. k-
nearest neighbours imputation (KNN) (31)), hybrid (e.g.
LinCmb (5)) and knowledge assisted approach (32). Fur-
thermore, relevant software packages such as MSnbase
(33), IMDE (34), missMS (35), ANPELA (36,37) have been
available. These options being available, the bottom-up pro-
teomic quantification is nevertheless based on the measure-
ment of ionized peptide precursors and their fragments de-
rived from a given protein in a biological sample where the
proteins are functionally connected. However, none of the
available tools have made the usage of such empirical, uni-
form principle of proteomics to guide the method selection
for NA imputation. Other limitations of these tools may
include, e.g. the lack of graphic user-friendly interface, the
lack of multiple evaluation criteria for the imputed results
(38), and the lack of flexibility of handle data structure of
proteomics.

In this study, we present an online tool, NAguideR, which
integrates up to 23 commonly used missing value imputa-
tion methods, namely, zero (8), minimum (3,19), column

median (39), row median (39), BPCA (38), SVD (31), KNN
(31), Seq-KNN (40), trKNN (41), Mice-norm (42), Mice-
cart (42), MLE (43), QR (44), Mindet (45), Minprob (45),
LLS (46), Impseq (47), Impseqrob (48), IRM (49), RF (50),
PI (51), GRR (52), GMS (53) (see Methods and Supple-
mentary Table S1). Most importantly, NAguideR provides
two categories of evaluation criteria (four classic compu-
tational criteria and four empirical proteomics criteria) to
assess the imputation performance of various methods. We
processed three DIA-MS datasets extensively as examples
to exhibit the originality and utility of this software in ana-
lyzing phosphoproteomic, peptide and protein level results.
Furthermore, we include sufficient biological replicates (N
= 10 for each study), so that NA evaluation can be per-
formed by referring to the full datasets, benchmarking the
robustness of the imputation results in those stimulated
datasets with a limited number of replicates (e.g. N = 3).
Altogether, we found that NAguideR recognizes the uniform
knowledge in bottom-up proteomics and is helpful in guid-
ing missing value imputation, filling a gap in the pipeline for
automated analysis of massive proteomic datasets.

MATERIALS AND METHODS

Data collection and acquisition

Three case-study datasets acquired by DIA-MS (or
SWATH-MS) (12,22) were included for testing the availabil-
ity and capability of NAguideR. All the three datasets fol-
lowed an experimental sampling schema of 10 versus 10 bi-
ological replicates. This number of replicates is much more
than those in a routine proteomic experiment (e.g. N = 3),
enabling the estimation reference for experiments with a
much smaller number of replicates.

Dataset 1. Phosphoproteomic DIA-MS quantitative
dataset for nocodazole treated cells (or ‘PhosDIA’ in
short). The MS samples injected in a previous study (54)
for developing the IPF, an algorithm for identifying post-
translationally modified peptides, were herein re-measured
by a new, powerful Orbitrap Lumos DIA platform (55) for
this study. Briefly, for the experimental condition, U2OS
cells (about 3–4 million cells per plate) were treated with
nocodazole (Sigma-Aldrich), an anti-mitotic drug, at a
final concentration of 100 ng/ml for 18 h, which inhibits
microtubule dynamics and thus arrests the cell cycle at
G2/M phase. Treated and untreated samples (N = 10
replicates, respectively) were collected and processed for
protein digestion (54). Phosphopeptide enrichment was
performed by using TiO2 resin (GL Sciences). The final
phosphopeptides were desalted using C18 ultramicrospin
columns (Nest). Phosphopeptide mixture originating from
∼10% of the starting cell materials per culturing dish was
injected for DIA-MS.

The DIA-MS measurements were performed on an es-
tablished system (55). Briefly, the peptide separation was
performed on EASY-nLC 1200 systems (Thermo Scientific)
using a self-packed analytical PicoFrit column (New Ob-
jective) (75 �m × 30 cm length). The Orbitrap Fusion Lu-
mos Tribrid mass spectrometer (Thermo Scientific) with
a NanoFlex ion source was coupled to the LC platform.
Spray voltage was set to be 2000 V and heating capillary
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was kept at 275◦C. Using the Xcalibur 4.2.47 (Thermo Sci-
entific), the DIA-MS method consisted of a MS1 survey
scan and 40 MS2 scans of variable windows. The MS1 scan
range was 350–1650 m/z and the MS1 resolution was set
to be 120k. The MS1 full scan AGC target value was set to
be 2.0E5 and the maximum injection time was 100 ms, The
MS2 resolution was set to 30 000 at m/z 200. The MS2 range
was set to be 200–1800 m/z and normalized HCD collision
energy was 28%. The MS2 AGC was set to be 5.0E5 and
the maximum injection time was 50 ms. The default pep-
tide charge state was set to 2. The same samples were also
measured by a shotgun analysis following a previously doc-
umented method (56).

To analyze the DIA-MS results of ‘PhosDIA’, Spectro-
naut software (57,58) was used to generate a spectral library
from both shotgun proteomic and DIA acquisitions mea-
suring phosphoproteomic samples. The data was reported
by Spectronaut with default settings and a Q value cut-
off of 1% at both peptide and protein levels. In particular,
the PTM localization score were strictly kept at above 0.75
(59) to ensure the phosphosites are localized with a cer-
tainty similar to Class I confidence (59–61). The averaged
phosphopeptide enrichment efficiency were determined to
be 65.07 ± 5.32% among 20 samples. All the peptide level
data were quantified by Spectronaut with default settings
and were subjected for NA imputation analysis.

Dataset 2. Protein-level SWATH-MS quantitative dataset
for formaldehyde (FA) treated cells (or ‘ProtSWATH’ in
short). This dataset was published in a previous study
in which HeLa Kyoto cells were treated with or without
200 �M FA for 5 h (62). The SWATH-MS measurement
was performed on a SCIEX 5600 plus TripleTOF instru-
ment. The proteome changes induced by FA treatment
was demonstrated to be minimal and specific, with <1%
of the detected proteins showed statistically significant re-
ductions (P < 0.05, Benjamini–Hochberg adjusted), pre-
senting a challenging case for relative label free quantifica-
tion at the protein level, for which the proteomic analysis
has been already matured (26). To analyze ‘ProtSWATH’
dataset, a spectral library containing mass spectrometric
assays for 10 000 human proteins (63) and 1% peptide
and 1% protein-FDR (29) were applied to Spectronaut
based analysis (57,58). In particular, the MS2 peak area
of the top3 most abundant peptides were averaged and
summarized for protein quantification. No PTM score was
needed.

Dataset 3. Peptide-level SWATH-MS quantitative dataset
for formaldehyde (FA) treated cells (or, ‘pepSWATH’ in
short). This dataset is identical to ‘ProtSWATH’ but were
summarized at the peptide precursor level with 1% FDR.
However, to compare the imputed missing values by algo-
rithms of NAguideR to imputation from the ‘Requantifica-
tion’ option in OpenSWATH (27,64), the peptide precur-
sor level quantities were reported after OpenSWATH anal-
ysis with ‘Requantification’ enabled, which infers the peak
boundaries from the closest neighboring run after retention
time alignment and quantify the fragment-ion signal within
those boundaries (27), as reported before (62).

Missing value imputation methods

To embrace multiple choices for users, a total of 23 pub-
lished methods for NA imputation were integrated in
NAguideR. Based on the implementation algorithm of these
methods, they can be classified into three types (8,45): (i)
single value methods (SV methods), including zero, mini-
mum, column median, row median, Mindet, Minprob, PI,
which features replacing missing values by a constant or a
randomly selected value; (ii) global structure methods (GS
methods), including SVD, BPCA, MLE, Impseq, Impse-
qrob, which decompose the data matrix or minimize the de-
terminant of the covariance and then iteratively reconstruct
the missing values; (iii) local similarity methods (LS meth-
ods), including KNN, Seq-KNN, trKNN, LLS, QR, IRM,
GRR, GMS, Mice-norm, Mice-cart, RF, which exploit lo-
cal similarity structure based on the expression profiles of
those objects (etc. peptides, proteins) in the data. Addition-
ally, to facilitate the selection, these methods can be also
classified into fast (zero, minimum, column median, row
median, Mindet, Minprob, PI, SVD, MLE, Impseq, Impse-
qrob, KNN, Seq-KNN, LLS, QR, GRR) and slow ones
(BPCA, trKNN, IRM, GMS, Mice-norm, Mice-cart, RF),
based on the calculation of their practical time cost (Supple-
mentary Figure S1). Detailed descriptions about all these
23 algorithms and their implementation of can be found in
Supplementary Table S1.

Evaluation Criteria

Four classic criteria and four empirical proteomic criteria
are available for evaluating the performance of every im-
putation method that are implemented independently in
NAguideR.

Four classic criteria

(a1) Normalized root mean square error (NRMSE) (38).
This criterion can evaluate the differences between original
values and imputed values and calculated using the follow-
ing formula:

NRMSE =
√

mean(yo − yi )
2

variance (yo)
(1)

where yo means original values and yi means imputed val-
ues. The smaller NRMSE value indicates that the method
has better performance for imputation.

(a2) NRMSE based sum of ranks (SOR) (44,52). This cri-
terion is a robust nonparametric measurement, which calcu-
lates the rank of NRMSE to compare different imputation
methods:

SOR =
n∑

i=1

Ranki (NRMSE) (2)

where Ranki (NRMSE) indicates the NRMSE ranks of
different imputation methods in ith missing variable, n
means the total number of missing variables.

(a3) Average correlation coefficient between the original
and imputed values (ACC/ACC OI) (30). By default, the
Pearson correlation coefficient is calculated for measuring
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how strong a relationship is between the original and im-
puted values.

(a4) Procrustes statistical shape analysis (PSS) (52,65).
This criterion is typically used to assess the similarity of two
input matrix through the sum of squared differences. Herein
the principal component matrix is extracted from principal
component analysis (PCA) as the unsupervised input ma-
trix for evaluating the space alteration of the original sam-
ple distribution and the imputed sample distribution.

Four proteomic criteria

(b1) Average correlation coefficient within the different
charge states of each peptide (ACC Charge) (66). This cri-
terion can be deduced by:

Peptidek =
∑m

i=1, j=2,i �= j cor
(
Chargei , Charge j

)
m

(3)

ACC Charge =
∑n

k=1 Peptidek

n
(4)

where the kth peptide has m charge states (m > 1), then we
calculate the average correlation between every two charge
states (Chargei , Charge j ) of the kth peptide, n means the
total number of peptides with multiple charges.

(b2) Average correlation coefficient within the different
peptides of each protein (ACC PepProt) (67). This criterion
can be calculated as below:

Proteink =
∑m

i=1, j=2,i �= j cor
(
Peptidei , Peptide j

)
m

(5)

ACC PepProt =
∑n

k=1 Proteink

n
(6)

where the kth protein has m peptides (m > 1), then we
calculate the average correlation between every two peptides
(Peptidei , Peptide j ) of the kth protein, n means the total
number of proteins with multiple peptides.

(b3) Average correlation coefficient within every pro-
tein complex based on CORUM database (ACC CORUM)
(68). This criterion can be calculated as below:

Complexk =
∑m

i=1, j=2,i �= j cor
(
Proteini , Protein j

)
m

(7)

ACC CORUM =
∑n

k=1 Complexk

n
(8)

where the kth protein complex has m proteins (m > 1),
then we calculate the average correlation between every two
proteins (Proteini , Protein j ) of the kth protein complex, n
means the total number of complexes with multiple proteins
that can be matched in users’ proteomics data.

(b4) Average correlation coefficient within each cluster
of protein-protein interaction network based on hu.MAP
database (ACC PPI) (69). This criterion can be calculated
by:

Clusterk =
∑m

i=1, j=2,i �= j cor
(
Proteini , Protein j

)
m

(9)

ACC PPI =
∑n

k=1 Clusterk

n
(10)

where the kth cluster has m proteins (m > 1), then we
calculate the average correlation between every two pro-
teins (Proteini , Protein j ) of the kth cluster, n means the
total number of clusters with multiple proteins that can be
matched in users’ proteomics data.

All correlation coefficients in the proteomic criteria were
calculated with Pearson method by default. And a larger
value, in general, indicates that the imputation method un-
der evaluation has a better performance. After obtaining all
values based on each criterion, we divided them by corre-
sponding maximum value and returned their ranks respec-
tively. Four classic criteria can be enabled for different data
types (e.g. genomics data, proteomics data, metabolomics
data, etc.), while the four proteomic criteria can be particu-
larly applied for proteomics data. Every criterion processes
its own distinctive performance evaluation of various im-
putation methods. Moreover, all imputation results, assess-
ment results and figures are interactively displayed on the
web panel, and downloadable for end users. More detailed
information can be found in Supplementary Notes.

Tool Implementation

All functions in NAguideR were compiled in R (Version
3.6.1, https://www.r-project.org/) (70), and the graphical
user interface (GUI) was developed in Shiny (Version 1.2.0,
https://github.com/rstudio/shiny). The web tool was de-
ployed on a server with 64GB RAM and Genuine Intel(R)
CPU E2687WV running the CentOS Linux release 7.6.1810
(Core) operating system. Users can access and process their
own data freely in NAguideR without any login require-
ment through some popular web browsers, such as Google
Chrome, Mozilla Firefox, Safari (Supplementary Table S2).
In addition, the source codes of NAguideR are available on
the GitHub repository: https://github.com/wangshisheng/
NAguideR/ under the MIT license. Users can choose to op-
erate this tool on their own computers, where the local GUI
is working exactly the same as the online version. The de-
tailed installation and operation manual can be found in
Supplementary Notes.

Differential expression data stimulation and analysis

Differential expression analysis of two sample groups in
each dataset was performed using full datasets or randomly
selected observations: (i) We used the full data (10 biolog-
ical replicates in each group) to construct ‘Gold Standard’
of differentially expressed proteins/peptides. Furthermore,
we randomly selected (ii) five biological replicates (‘Ran-
dom 5’) and (iii) three biological replicates (‘Random 3’) in
each group to implement differential expression, and then
repeated this process 100 times. Then, the total 100 results
for every protein/peptide in the (ii) and (iii) situations were
used to infer the biological data fidelity after NA imputa-
tion, by comparing to ‘Gold Standard’ results. To generate
volcano plots we used the median values of these 100 re-
sults. The statistical significance was tested by two-tailed
Student’s t-test and the P values were corrected for mul-
tiple testing with the Benjamini–Hochberg (BH) method

https://www.r-project.org/
https://github.com/rstudio/shiny
https://github.com/wangshisheng/NAguideR/
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(71). Proteins/peptides with BH-adjusted P < 0.05 and
the absolute value of logarithmic fold changes with base
2 (|Log2(FCs)|) > 0.585 (i.e. a relative fold change of 1.5
folds) were considered to be differentially expressed. The
PTM motif enrichment analysis of differentially regulated
phosphosites was performed with motifeR (72), using the
comparison between first three samples (according their ac-
tual acquisition time which is random in each group) and
the ‘Gold Standard’ result.

Data availability

The new mass spectrometry data of PhosDIA for this study
(40 raw files) and all the spectral libraries used have been
deposited to the ProteomeXchange Consortium via the
PRIDE (73) partner repository with the dataset identifier
PXD017476.

RESULTS

Overview of data analysis procedure of NAguideR

Basically, there are four main steps in the data analysis
process of NAguideR (Figure 1 and Supplementary Fig-
ure S2): (i) Data upload. In this step, users should upload
the original intensity data matrix with NAs (peptides, pep-
tides with certain PTMs, or protein identities in the rows,
and sample names in the columns, Figure 1A). (ii) Initial
data filtration (optional). Based on the user’s choice, these
proteins/peptides with excessively high proportion of NA
and large coefficient of variation (CV) can be discarded in
this step (Figure 1B, and see Supplementary Figure S3 for
all the three example datasets). Note these criteria can be
optimized iteratively upon the user’s trial with NAguideR
so that satisfactory results can be achieved. Here NAguideR
also provides a summary note of input data quality re-
garding completeness before and after the filtration step
(Supplementary Notes 3.3). (iii) Missing value imputation.
Users can execute and obtain the matrix results of 23 impu-
tation methods from this step (Figure 1C) with a few clicks
and minimal parameter selections (Supplementary Notes
4). (iv) Result evaluation. The classic criteria and proteomic
empirical criteria (see below) are applied to evaluate ev-
ery result from step 3. Two comprehensive evaluation tables
with ranks of each imputation method are provided to help
users select suitable algorithm for their own data. More-
over, for this step, NAguideR implements three additional
optional functions that are all at user’s discretion (Supple-
mentary Notes 5): (a) it enables users to customize the crite-
ria and set relative weightings for specific experimental de-
signs (e.g., if a mixture of protein standards is measured in
which no in-vivo protein complex formation or interactions
are expected); (b) it provides warning messages for users to
review if the final imputation results end up with indiscrim-
inate scores across each imputation method following clas-
sic or proteomic criteria (as a ‘Final check’ report); and (c)
it allows users to directly visualize the results of a particu-
lar peptide or protein item (i.e. spiked-in standard peptides,
proteins, or known housekeeping proteins like beta-actin,
etc.) before and after imputation (as a ‘Targeted check’ op-
tion, Supplementary Notes 5). All results and figures in all
above steps can be downloaded in the format of csv or pdf.

Detailed descriptions of each step are shown in Supplemen-
tary Figure S2 and Supplementary Notes.

Display of data completeness in three DIA datasets

To gauge the frequency of NA in DIA-MS dataset, we vi-
sualized the number of peptides/proteins quantified and
missing values in each dataset using plots generated by
NAguideR (Supplementary Figure S3). Collectively, >50
000 phosphopeptides and peptides were profiled among
20 samples in the two peptide precursor-level datasets
(i.e. PhosDIA and PepSWATH) and ∼5000 proteins in
ProtSWATH dataset, respectively (Supplementary Table
S3). However, both of PhosDIA and PepSWATH had a
large proportion of peptides with missing value in at least
one sample (76.3% in PhosDIA and 55.1% in PepSWATH).
The reason for high missing values in PepSWATH might
be stemmed from the large, human proteome-wide assay li-
brary being used for peptide identification (63). The high-
est prevalence of NAs in PhosDIA could be ascribed to
the significantly rewired phosphoproteome after nocoda-
zole treatment (54) as well as the extra scoring step of phos-
phosite localization after peptide identification (59), pre-
senting a most challenging case for NA imputation among
the three DIA-MS datasets. In the protein-level example
dataset (i.e. ProtSWATH), 4797 proteins were detected and
quantified in any of the 20 samples, of which 20.4% con-
tained at least one missing value, suggesting that the miss-
ing value problem is partially compromised by protein as-
signment process (e.g. Top3 summarization, see Methods),
Altogether, these results from biological replicates demon-
strate a pressing need for missing value imputation for pro-
teomic experiments, even when DIA-MS is used.

Evaluation of imputation methods by correlation-centric
analysis

According to our test runs on ProtSWATH dataset, we es-
timated the time consumption of each NA method and
thus chose 16 out of 23 methods that requires less compu-
tational procession as default methods in NAguideR. The
seven methods left, namely BPCA, trKNN, IRM, Mice-
norm, Mice-cart, GMS and RF, can be enabled upon the
small lists and fast internet speed (Supplementary Figure
S1, and Supplementary Notes).

To assess the NA imputation result following each
method, for each of the three datasets, we firstly only ex-
tracted the complete data matrix from the original datasets
and generated random missing values on it with a sim-
ilar proportion of missing values existed in the origi-
nal data matrix. This strategy ensured that every im-
puted data point will have a real reference (i.e. the orig-
inal value), facilitating the comparison between imputa-
tion methods as well as the comparison between evalua-
tion standards. All 23 imputation methods (Supplementary
Table S1) were conducted on all datasets. After imputa-
tions, we compared the original values and imputed values
with Pearson correlation analysis and density plots (Fig-
ure 2A and Supplementary Figure S4 for PhosDIA data,
Supplementary Figure S5A for PepSWATH data, Supple-
mentary Figure S6A for ProtSWATH data). We found that
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Figure 1. The overall workflow of NAguideR. (A) Uploading of original proteomics data with missing values (NAs). (B) Optional data quality control step
for removing proteins/peptides with high proportion of NAs or large CV. (C) Missing value imputation based on the embedded methods. (D) Performance
evaluation by multiple criteria (four classic criteria and four proteomic criteria). (E) The selection of well-performed imputation methods guided by the
classic criteria and proteomic criteria.
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Figure 2. Systematic evaluation analysis of PhosDIA dataset. (A) Pearson correlation analysis of the original intensities and imputed intensities based on
23 methods. Density plots illustrate the correlation in detail between the original values and imputed values from minimum, SVD, and Impseq respectively
as examples. NA in the correlation matrix means ‘No Result’ because the standard deviations of imputed values from zero and minimum method are equal
to 0, and hence the cor function returns NA. (B) Comparison of the distribution of the correlation coefficient among original values and 23 imputation
methods under the four proteomic criteria. The comprehensive scores distribution of 23 imputation methods under the four classic criteria (C) and four
proteomic criteria (D). ‘Normalized values’ here means every score is divided by the corresponding maximum value.

certain imputation algorithms (e.g. Impseq, BPCA, Seq-
KNN and GRR) could obtain higher correlation coeffi-
cients than others (e.g. Minprob, minimum, zero and PI)
across all three datasets, suggesting that certain NA meth-
ods maybe preferable for proteomic datasets, based on the
classic correlation profiling between original and imputed
values.

Empirical proteomic principles facilitate the selection of NA
algorithm

Following, we asked if the empirical bottom-up proteomic
principles can be employed to inspect the imputation out-
come. We extracted and tested correlations between pep-
tide or protein entries based on quantitative consistency
between different charge-states of the same peptide, dif-

ferent peptides belonging to the same proteins, and indi-
vidual proteins participating functional complexes and in-
teractions (see the example of correlation between charge
states in Supplementary Figure S7 and Methods). Similar
but more discriminative results compared to the correlation
matrix above were obtained, which was based on the corre-
lation coefficient distribution following proteomic criteria,
supporting that the distributions from such as GRR, Seq-
KNN, Impseq, BPCA were more similar to the original re-
sults (Figure 2B for PhosDIA data, Supplementary Figure
S5B for PepSWATH data and Supplementary Figure S6B
for ProtSWATH data). We then compared the proteomic
criteria to the four classic computational criteria for NA
imputation, namely NRMSE, SOR, ACC OI and PSS, us-
ing the ranked normalized scores for each method (Figure
2C, D for PhosDIA data, Supplementary Figure S5C-S5D
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for PepSWATH data, and Supplementary Figure S6C, D
for ProtSWATH data). Table 1 lists the corresponding rank-
ing results in all three datasets, showing a consistent result
that Impseq, Impseqrob, BPCA, trKNN, Seq-KNN and
GRR were top-ranked. Interestingly, although both criteria
were able to recognize a few favorable NA imputation algo-
rithms in each dataset, the proteomic criteria based on var-
ied mass spectrometric or biological rules generated more
consistent evaluation between criteria than the classic crite-
ria metrics. Considering the additional benefits of applying
proteomic criteria, such as direct application, easy biolog-
ical interpretation, and the facilitated communication be-
tween researchers, we deem the proteomic criteria efficiently
help the user to select NA imputation method. Therefore,
we have included both classic criteria and the above four
proteomic criteria results in NAguideR.

Furthermore, we assessed the robustness of proteomic
criteria in evaluating the outcome of NA imputation. To
do this, we randomly produced missing values on the three
datasets from the proportion of 5–70% at the whole data
matrix level, and in step of 5%. At each step, we repeated
the imputation and evaluation process. The results (Supple-
mentary Figure S8A) suggested that the top-ranked meth-
ods performed well and consistently across all varying miss-
ing proportions in PhosDIA data, and that the differences
of scores resulted from different methods under the four
proteomic criteria became larger as missing proportions in-
creased. Similar results were obtained from PepSWATH
(Supplementary Figure S8B) and ProtSWATH datasets
(Supplementary Figure S8C), which are both deemed less
challenging than PhosDIA dataset considering their NA
prevalence (Supplementary Figure S3). Thus, proteomic
criteria are robust to datasets with different extent of NA
prevalence.

In a typical proteomic experimental design, a limited
number of biological replicates such as N = 3 is frequently
used. Hence, in all three datasets, we evaluated the robust-
ness of NAguideR results by simply using the first three sam-
ples of each group (injected with a random order, thus pre-
senting a stopping point for a routine N = 3 proteomic in-
vestigation). As shown in Figure 3, we found the four pro-
teomic criteria used in NAguideR can provide a discriminant
score estimation for each imputation method in the ‘3 versus
3’ datasets. And the resultant score distribution between dif-
ferent NA methods largely agrees to the results from ‘10 ver-
sus 10’ datasets. Additionally, both classic and proteomic
criteria yielded similar ranking results (Table 1, Supplemen-
tary Figure S9). Altogether, these results support the feasi-
bility of NAguideR and its proteomic criteria in dealing with
experiments with limited biological replicates.

In summary, we introduced effective, proteomic
principle-derived criteria for estimating the performance of
different NA imputation methods, which shows robustness
in datasets of varied NA prevalence and limited biological
replicates.

Direct application of NAguideR facilitates relative proteomic
quantification

The above analysis based on referencing the in-silico deleted
original values demonstrated the usage of NAguideR and its

proteomic criteria, paving the way to address technical and
biological questions in label-free quantification. Previously,
the ‘Requantification’ step from OpenSWATH (27,64) and
TRIC algorithms was used to impute the missing data at
MS2 level for DIA-MS. ‘Requantification’ essentially in-
fers the MS2 peak boundaries from the closest neighbor-
ing run after retention time alignment and quantifies the
fragment-ion signal within those boundaries (27). We there-
fore compared ‘Requantification’ to the 23 NA imputation
methods supported in NAguideR. To survey whether the
imputed data points added more variation to the quan-
tification, we plotted intra charge-state correlation of a
given peptide precursor quantified across samples before
and after NA imputation, following the direct application
of different imputation methods including ‘Requantifica-
tion’ (Figure 4). This across sample correlation can be also
assessed by its average variability for all peptides (Supple-
mentary Figure S10). The results interestingly indicate that
the ‘Requantification’ method only ranked in the middle
among the established 23 imputation methods (Figure 4 and
Supplementary Figure S10). Thus, alternative NA imputa-
tion algorithms should be considered for DIA-MS, such
as those provided by NAguideR under the four proteomic
criteria.

We next address how different imputation methods im-
pact differential expression analysis. Applying NAguideR on
all three DIA-MS datasets, we obtained completed data ma-
trixes which can be then analyzed by the standard student
t-tests between experimental and control groups. Herein we
focused on the PhosDIA dataset, which profiled the phos-
phoproteome following the cell cycle arrest that was well-
studied (54,74). Volcano plots in Figure 5A–F and Supple-
mentary Figure S11 illustrated that, the P-values between
groups for the same original dataset (i.e. PhosDIA) but im-
puted by different methods can be distinctive. Accordingly,
the volcano shapes derived from top-ranked imputation
methods (e.g. Impseq, Seq-KNN) were similar to that from
‘Gold Standard’ (i.e. the original full dataset without NA
imputed). In stark contrast, the shapes from low-ranked
methods (e.g. minimum) revealed significantly skewed P-
values and therefore reduced efficiency in determining dif-
ferential expression. Subsequently, from N = 10 replicates
per group in PhosDIA, we randomly selected five or three
observations by 100 times per group (i.e. ‘Random 5’ and
‘Random 3’) and performed the same statistical test. As ex-
pected, less-individuals per group reduce statistical signifi-
cance (Figure 5A–F, median from 100 selections). We no-
ticed that the worst NA imputations (such as minimum) of-
ten presented bifurcate and applanate volcano patterns. To
further depict the differences in the number of differentially
expressed peptides we stimulated the differential phospho-
peptide lists based on all ‘Random 5’ and ‘Random 3’ se-
lections respectively (Figure 5G). The results intriguingly
indicate (a) both the inefficient NA imputation methods
and the low biological replicates could weaken the capacity
and power of detecting differential expression peptides; (b)
the non-suitable imputation methods can significantly im-
pair the differential expression analysis, even with N = 10
replicates (e.g. by reporting <15% significant phosphopep-
tide identities between groups). (c) With an ideal NA im-
putation, five biological replicates (N = 5 per group) may
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Table 1. Evaluation ranks of 23 imputation methods on the basis of the classic criteria and the proteomic criteria applied to the three example datasets
(i.e. PhosDIA, PepSWATH, and ProtSWATH)

be already sufficient in this PhosDIA dataset tested, be-
cause the N = 5 comparison reported similar number of
significant identities compared to the N = 10 scenario. Fi-
nally, because of the extensively investigated phosphopro-
teomic change following nocodazole treatment, we com-
pared the motif enriched in the lists of differential phospho-
peptides. Similar motifs to a previous study (74) were identi-
fied. Herein, this motif enrichment analysis is helpful to dis-
cern if those best NA methods are too aggressive in report-
ing regulated phosphopeptides. We found that ‘Seq-KNN’
(an example of the best NA methods) essentially identified

1494 (i.e. >35%) more phosphopeptide as the significantly
regulated hits than ‘zero’ identified (an example of the worst
NA methods), if we use the data of first three biological
replicate samples based on MS injection time for both meth-
ods. Nevertheless, the separated motif analysis of these ad-
ditional 35% phosphospeptides by ‘Seq-KNN’ yielded 13
motifs, 12 of which can be identified by N = 10 replicates
in ‘Golden standard’ dataset (Supplementary Figure S12).
This result thus suggests that those better NA methods sup-
ported by NAguideR can efficiently facilitate differential ex-
pression analysis and biological research.
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Figure 3. The score distribution of every imputation method based on the proteomic criteria in the three proteomics datasets with different biological repli-
cates. Left panel: PhosDIA, middle: PepSWATH, right: ProtSWATH. ‘Normalized values’ denotes that every score is divided by corresponding maximum
value. ’10 versus 10’ means that there are 10 replicates in each group (marked with darkblue color), and ‘3 versus 3’ means that there are three replicates in
each group (marked with red color).

In summary, the direct application of NAguideR pro-
motes prioritizing both NA imputation method (such as
‘Requantification’) and protein/peptide candidates with
real biological regulations.

DISCUSSION

Reproducibility is a cornerstone for scientific research. The
MS-based proteomics, however, often generates missing-
value datasets between samples and conditions. Despite of
the recent technical developments such as DIA-MS, miss-
ing values still present a major problem especially in MS
datasets profiling protein PTMs. To date, efficient tools that
are tailored for proteomics community are rather limited
in this regard. In this study, we developed an open source
and user-friendly toolkit, NAguideR, which implemented 23
missing value imputation methods that are frequently used
and eight evaluation criteria, aiming to help scientists se-
lect the most appropriate imputation methods during data
analysis. We made NAguideR to be conveniently accessed
through both web tool and stand-alone software version,
depending on the data size and internet speed.

There are two main aspects that we consider when choos-
ing these imputation methods: First, all methods should be
commonly applied and implemented in many peer-reviewed
packages, e.g. MSnbase (33), impute (31), GMSimpute (53);
second, as the missing values in proteomics data are gener-
ated following different complex mechanisms, these meth-
ods should include various families of imputation proce-

dures, which can be potentially used for diverse types of
missing values. For example, kNN (40), MLE (43) were pro-
posed to be functional in imputing MCAR/MAR values;
MinDet (45) and MinProb (45) were designed initially for
handling MNAR values, while GMS (53) does not require
specific designation of missing values pattern. In addition,
different methods may have their advantages and disadvan-
tages. For example, SV methods are relatively simple and
fast for large-cohort experiments, but they may introduce
severe bias in data and fail to meet certain hypotheses of sta-
tistical tests. On the other hand, GS methods and LS meth-
ods generally perform better, but GS methods assume the ex-
istence of a global covariance structure among all samples
or objects (i.e. proteins/peptides/genes) and LS methods as-
sume that a strong local correlation exists between objects
in the expression matrix. Thus, when the assumptions are
not appropriate, their imputation may become less accurate
(Supplementary Table S1). Users of NAguideR can adjust
the method selection based on these advantages and disad-
vantages. Of note, the practical proteomic datasets could be
highly heterogenous between users due to the different sam-
ple types, quality, experimental designs, mass spectrometers
used and etc. There is unlikely a one-fits-all solution for im-
puting NAs in all variable datasets. Thus, besides a simple
‘Input data check’ of data quality such as NA prevalence
and data variation as well as a ‘Final check’ about result
heterogeneity, NAguideR implements the 23 NA imputa-
tion methods without preference. Users can therefore com-
pare the imputation results of different algorithm through
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Figure 4. Across sample, quantitative correlation coefficients obtained by different NA imputation methods. Comparisons of original values and imputed
values of the quantitative correlation coefficients are shown which are derived under ACC Charge criterion by the 23 imputation methods and ‘Requantifi-
cation’ method for the pepSWATH dataset. The adjusted R squared (R2) of each result was also obtained by ‘lm’ function and shown for every imputation
method.‘Requant’ denotes ‘Requantification’ method in OpenSWATH software.

global correlation scores as well as individual data inspec-
tion (e.g. through ‘Targeted check’ option) for selecting a
method preferable to their own data.

Besides algorithm integration and flexible implementa-
tion, the evaluation step of NAguideR is a significant added
value compared other solutions such as the individual R-
packages, because this step uniquely guides users to select
NA imputation method using common rules of bottom-
up proteomics by visualizing their own data before and af-
ter imputation. The four proteomic criteria were found to
generate moderate correlation coefficients that are poten-
tially more discriminative than the extremely skewed cor-
relations between original and imputed results (e.g. those
in Figure 2A). The four proteomic criteria can be directly
applied and inspected to an entire dataset, avoiding the po-
tential bias of those computational evaluations focusing on
those peptide/protein entries (with no NAs at all) whose
concentrations tend to be more abundant in the human
proteome. Moreover, two peptide-level criteria (i.e. corre-
lation between different charge-states of the same peptide
and between different peptides belonging to the same pro-

teins) generated quite consistent results to the two protein-
level metrics (i.e., correlation coefficient within each pro-
tein complex and within cluster of protein–protein interac-
tion network) in our tested datasets, suggesting NAguideR
could generate reliable results in selecting NA methods for
both peptide- and protein-level data (Table 1). In addi-
tion, the usage of NAguideR was evaluated to be robust in
data with high NA prevalence and with limited numbers of
biological replicates (Figure 3 and Supplementary Figure
S8), and may facilitate the biological investigation involv-
ing differential proteomic and phosphoproteomic measure-
ments (Figure 5G and Supplementary Figure S12). Interest-
ingly, several NA imputation methods such as Seq-KNN,
Impseqrob, and Impseq offered better results than those
sub-optimal and low-performance algorithms in all DIA
datasets (including the simulated datasets with limited bi-
ological replicates), underscoring their value in future pro-
teomic analysis. It should be stressed that, because of the
multiple NA method integration, NAguideR provides the
opportunity to reveal if there are certain methods that are
mutually comparable, but significantly better than others.
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Figure 5. Differential expression and simulation analysis of PhosDIA dataset. Volcano plots of original full data (labelled as ‘Gold Standard’) (A), imputed
data from Impseq method (B), Seq-KNN method (C), minimum method (D), imputed data of randomly selected five biological replicates (labelled as ‘Ran-
dom 5’) (E) and 3 biological replicates (labeled as ‘Random 3’) (F) in each group from Impseq method. (‘Down’ means down-regulated phosphopeptides,
‘Up’ means up-regulated phosphopeptides). (G) Cloud-rain plots indicating the number of differentially expressed peptides for the 100 randomly selected
datasets by ‘Random 5’ and ‘Random 3’. Solid pink line means the number of differentially expressed peptides from gold standard samples. Dashed lines
of red, blue and yellow indicate the distribution of the numbers of differentially expressed peptides from each imputation method with all, Random 5 and
Random 3 samples, respectively.
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This might implicate a fact that applying one of these fa-
vorable NA methods could be sufficient for many datasets.
Finally, NAguideR reserves the potential of updating cur-
rent methods, integrating additional methods and assess-
ment criteria in the future, and can be useful in aiding the
bioinformatic efforts developing new NA algorithms.

We anticipate that NAguideR could greatly facilitate the
multi-omics studies especially the proteomic research in
dealing with NA issue and assist biologists or clinicians with
less computational background in analyzing samples at a
high throughput.

DATA AVAILABILITY

NAguideR is an open source platform, which initiative avail-
able from: https://github.com/wangshisheng/NAguideR
under the MIT license. The detailed tutorial about this tool
can also be found here: https://github.com/wangshisheng/
NAguideR/blob/master/NAguideR Manual.pdf.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We gratefully thank Dr Chengpin Shen for configuring the
network server and Dr Hongwen Zhu for feedback on the
manuscript and helpful discussions.

FUNDING

National Natural Science Foundation of China [81871475
to H.Y.]; 1.3.5 project for disciplines of excellence,
West China Hospital, Sichuan University [ZYGD18014],
Sichuan, China; Y.L. was supported by a pilot grant from
Cancer Systems Biology@Yale (CaSB@Yale) and a pilot
grant from Yale Cancer Center in the Yale University, CT,
USA. Funding for open access charge: Yale University.
Conflict of interest statement. None declared.

REFERENCES
1. Clark,D.J., Dhanasekaran,S.M., Petralia,F., Pan,J., Song,X., Hu,Y.,

da Veiga Leprevost,F., Reva,B., Lih,T.M., Chang,H.Y. et al. (2019)
Integrated proteogenomic characterization of clear cell renal cell
carcinoma. Cell, 179, 964–983.

2. Gao,Q., Zhu,H., Dong,L., Shi,W., Chen,R., Song,Z., Huang,C., Li,J.,
Dong,X., Zhou,Y. et al. (2019) Integrated proteogenomic
characterization of HBV-related hepatocellular carcinoma. Cell, 179,
561–577.

3. Jiang,Y., Sun,A., Zhao,Y., Ying,W., Sun,H., Yang,X., Xing,B.,
Sun,W., Ren,L., Hu,B. et al. (2019) Proteomics identifies new
therapeutic targets of early-stage hepatocellular carcinoma. Nature,
567, 257–261.

4. Moorthy,K., Saberi Mohamad,M. and Deris,S. (2014) A review on
missing value imputation algorithms for microarray gene expression
data. Curr. Bioinformatics, 9, 18–22.

5. Jornsten,R., Wang,H.Y., Welsh,W.J. and Ouyang,M. (2005) DNA
microarray data imputation and significance analysis of differential
expression. Bioinformatics, 21, 4155–4161.

6. Stead,D.A., Paton,N.W., Missier,P., Embury,S.M., Hedeler,C., Jin,B.,
Brown,A.J. and Preece,A. (2008) Information quality in proteomics.
Brief Bioinform., 9, 174–188.

7. Karpievitch,Y.V., Dabney,A.R. and Smith,R.D. (2012)
Normalization and missing value imputation for label-free LC-MS
analysis. BMC Bioinformatics, 13(Suppl.16), S5.

8. Lazar,C., Gatto,L., Ferro,M., Bruley,C. and Burger,T. (2016)
Accounting for the multiple natures of missing values in label-free
quantitative proteomics data sets to compare imputation strategies. J.
Proteome Res., 15, 1116–1125.

9. Aebersold,R. and Mann,M. (2003) Mass spectrometry-based
proteomics. Nature, 422, 198–207.

10. Bell,A.W., Deutsch,E.W., Au,C.E., Kearney,R.E., Beavis,R., Sechi,S.,
Nilsson,T., Bergeron,J.J. and Group,H.T.S.W. (2009) A HUPO test
sample study reveals common problems in mass spectrometry-based
proteomics. Nat. Methods, 6, 423–430.

11. Domon,B. and Aebersold,R. (2010) Options and considerations
when selecting a quantitative proteomics strategy. Nat. Biotechnol.,
28, 710–721.

12. Aebersold,R. and Mann,M. (2016) Mass-spectrometric exploration
of proteome structure and function. Nature, 537, 347–355.

13. Collins,B.C., Hunter,C.L., Liu,Y., Schilling,B., Rosenberger,G.,
Bader,S.L., Chan,D.W., Gibson,B.W., Gingras,A.C., Held,J.M. et al.
(2017) Multi-laboratory assessment of reproducibility, qualitative and
quantitative performance of SWATH-mass spectrometry. Nat.
Commun., 8, 291.

14. Picotti,P. and Aebersold,R. (2012) Selected reaction
monitoring-based proteomics: workflows, potential, pitfalls and
future directions. Nat. Methods, 9, 555–566.

15. Kusebauch,U., Campbell,D.S., Deutsch,E.W., Chu,C.S., Spicer,D.A.,
Brusniak,M.Y., Slagel,J., Sun,Z., Stevens,J., Grimes,B. et al. (2016)
Human SRMAtlas: a resource of targeted assays to quantify the
complete human proteome. Cell, 166, 766–778.

16. Meier,F., Geyer,P.E., Virreira Winter,S., Cox,J. and Mann,M. (2018)
BoxCar acquisition method enables single-shot proteomics at a depth
of 10,000 proteins in 100 minutes. Nat. Methods, 15, 440–448.

17. Shen,X., Shen,S., Li,J., Hu,Q., Nie,L., Tu,C., Wang,X., Poulsen,D.J.,
Orsburn,B.C., Wang,J. et al. (2018) IonStar enables high-precision,
low-missing-data proteomics quantification in large biological
cohorts. PNAS, 115, E4767–E4776.

18. Cox,J., Hein,M.Y., Luber,C.A., Paron,I., Nagaraj,N. and Mann,M.
(2014) Accurate proteome-wide label-free quantification by delayed
normalization and maximal peptide ratio extraction, termed
MaxLFQ. Mol. Cell. Proteomics, 13, 2513–2526.

19. Johansson,A., Enroth,S., Palmblad,M., Deelder,A.M., Bergquist,J.
and Gyllensten,U. (2013) Identification of genetic variants
influencing the human plasma proteome. PNAS, 110, 4673–4678.

20. Pasa-Tolic,L., Masselon,C., Barry,R.C., Shen,Y. and Smith,R.D.
(2004) Proteomic analyses using an accurate mass and time tag
strategy. BioTechniques, 37, 621–624.

21. Thompson,A., Schafer,J., Kuhn,K., Kienle,S., Schwarz,J.,
Schmidt,G., Neumann,T., Johnstone,R., Mohammed,A.K. and
Hamon,C. (2003) Tandem mass tags: a novel quantification strategy
for comparative analysis of complex protein mixtures by MS/MS.
Anal. Chem., 75, 1895–1904.

22. Gillet,L.C., Navarro,P., Tate,S., Rost,H., Selevsek,N., Reiter,L.,
Bonner,R. and Aebersold,R. (2012) Targeted data extraction of the
MS/MS spectra generated by data-independent acquisition: a new
concept for consistent and accurate proteome analysis. Mol. Cell
Proteomics, 11, O111.016717.

23. Niu,L., Geyer,P.E., Wewer Albrechtsen,N.J., Gluud,L.L., Santos,A.,
Doll,S., Treit,P.V., Holst,J.J., Knop,F.K., Vilsboll,T. et al. (2019)
Plasma proteome profiling discovers novel proteins associated with
non-alcoholic fatty liver disease. Mol. Syst. Biol., 15, e8793.

24. Bruderer,R., Muntel,J., Muller,S., Bernhardt,O.M., Gandhi,T.,
Cominetti,O., Macron,C., Carayol,J., Rinner,O., Astrup,A. et al.
(2019) Analysis of 1508 plasma samples by capillary flow
data-independent acquisition profiles proteomics of weight loss and
maintenance. Mol. Cell Proteomics, 18, 1242–1254.

25. Liu,Y., Buil,A., Collins,B.C., Gillet,L.C., Blum,L.C., Cheng,L.Y.,
Vitek,O., Mouritsen,J., Lachance,G., Spector,T.D. et al. (2015)
Quantitative variability of 342 plasma proteins in a human twin
population. Mol. Syst. Biol., 11, 786.

26. Navarro,P., Kuharev,J., Gillet,L.C., Bernhardt,O.M., MacLean,B.,
Rost,H.L., Tate,S.A., Tsou,C.C., Reiter,L., Distler,U. et al. (2016) A
multicenter study benchmarks software tools for label-free proteome
quantification. Nat. Biotechnol., 34, 1130–1136.

https://github.com/wangshisheng/NAguideR
https://github.com/wangshisheng/NAguideR/blob/master/NAguideR_Manual.pdf
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaa498#supplementary-data


e83 Nucleic Acids Research, 2020, Vol. 48, No. 14 PAGE 14 OF 15

27. Rost,H.L., Liu,Y., D’Agostino,G., Zanella,M., Navarro,P.,
Rosenberger,G., Collins,B.C., Gillet,L., Testa,G., Malmstrom,L.
et al. (2016) TRIC: an automated alignment strategy for reproducible
protein quantification in targeted proteomics. Nat. Methods, 13, 777.

28. Gupta,S., Ahadi,S., Zhou,W. and Rost,H. (2019) DIAlignR provides
precise retention time alignment across distant runs in DIA and
targeted proteomics. Mol. Cell. Proteomics, 18, 806–817.

29. Rosenberger,G., Bludau,I., Schmitt,U., Heusel,M., Hunter,C.L.,
Liu,Y., MacCoss,M.J., MacLean,B.X., Nesvizhskii,A.I.,
Pedrioli,P.G.A. et al. (2017) Statistical control of peptide and protein
error rates in large-scale targeted data-independent acquisition
analyses. Nat. Methods, 14, 921–927.

30. Liew,A.W., Law,N.F. and Yan,H. (2011) Missing value imputation for
gene expression data: computational techniques to recover missing
data from available information. Brief Bioinform, 12, 498–513.

31. Troyanskaya,O., Cantor,M., Sherlock,G., Brown,P., Hastie,T.,
Tibshirani,R., Botstein,D. and Altman,R.B. (2001) Missing value
estimation methods for DNA microarrays. Bioinformatics, 17,
520–525.

32. Xiang,Q., Dai,X., Deng,Y., He,C., Wang,J., Feng,J. and Dai,Z. (2008)
Missing value imputation for microarray gene expression data using
histone acetylation information. BMC Bioinformatics, 9, 252.

33. Gatto,L. and Lilley,K.S. (2012) MSnbase-an R/Bioconductor
package for isobaric tagged mass spectrometry data visualization,
processing and quantitation. Bioinformatics, 28, 288–289.

34. Chiu,C.-C. and Wu,W.-S. (2014) In: 11th IEEE International
Conference on Control & Automation (ICCA). IEEE, pp. 511–514.

35. O’Brien,J.J., Gunawardena,H.P., Paulo,J.A., Chen,X., Ibrahim,J.G.,
Gygi,S.P. and Qaqish,B.F. (2018) The effects of nonignorable missing
data on label-free mass spectrometry proteomics experiments. Ann.
Appl. Stat., 12, 2075.

36. Tang,J., Fu,J., Wang,Y., Luo,Y., Yang,Q., Li,B., Tu,G., Hong,J.,
Cui,X. and Chen,Y. (2019) Simultaneous improvement in the
precision, accuracy and robustness of label-free proteome
quantification by optimizing data manipulation chains. Mol. Cell
Proteomics, RA118, 001169.

37. Tang,J., Fu,J., Wang,Y., Li,B., Li,Y., Yang,Q., Cui,X., Hong,J., Li,X.
and Chen,Y. (2020) ANPELA: analysis and performance assessment
of the label-free quantification workflow for metaproteomic studies.
Brief Bioinform, 21,621–636.

38. Oba,S., Sato,M.-a., Takemasa,I., Monden,M., Matsubara,K.-i. and
Ishii,S. (2003) A Bayesian missing value estimation method for gene
expression profile data. Bioinformatics, 19, 2088–2096.

39. Dimitriadou,E., Hornik,K., Leisch,F., Meyer,D. and Weingessel,A.
(2008) Misc functions of the Department of Statistics (e1071), TU
Wien. R Package, 1, 5–24.

40. Kim,K.-Y., Kim,B.-J. and Yi,G.-S. (2004) Reuse of imputed data in
microarray analysis increases imputation efficiency. BMC
Bioinformatics, 5, 160.

41. Shah,J.S., Rai,S.N., DeFilippis,A.P., Hill,B.G., Bhatnagar,A. and
Brock,G.N. (2017) Distribution based nearest neighbor imputation
for truncated high dimensional data with applications to pre-clinical
and clinical metabolomics studies. BMC Bioinformatics, 18, 114.

42. Buuren,S.v. and Groothuis-Oudshoorn,K. (2010) mice: multivariate
imputation by chained equations in R. J. Stat. Softw., 45,
doi:10.18637/jss.v045.i03.

43. Ibrahim,J.G., Chen,M.-H., Lipsitz,S.R. and Herring,A.H. (2005)
Missing-data methods for generalized linear models: a comparative
review. J. Am. Statist. Assoc., 100, 332–346.

44. Wei,R., Wang,J., Su,M., Jia,E., Chen,S., Chen,T. and Ni,Y. (2018)
Missing value imputation approach for mass spectrometry-based
metabolomics data. Sci. Rep., 8, 663.

45. Webb-Robertson,B.-J.M., Wiberg,H.K., Matzke,M.M., Brown,J.N.,
Wang,J., McDermott,J.E., Smith,R.D., Rodland,K.D., Metz,T.O. and
Pounds,J.G. (2015) Review, evaluation, and discussion of the
challenges of missing value imputation for mass spectrometry-based
label-free global proteomics. J. Proteome Res., 14, 1993–2001.

46. Kim,H., Golub,G.H. and Park,H. (2004) Missing value estimation
for DNA microarray gene expression data: local least squares
imputation. Bioinformatics, 21, 187–198.

47. Verboven,S., Branden,K.V. and Goos,P. (2007) Sequential imputation
for missing values. Comput. Biol. Chem., 31, 320–327.

48. Branden,K.V. and Verboven,S. (2009) Robust data imputation.
Comput. Biol. Chem., 33, 7–13.

49. Templ,M., Kowarik,A. and Filzmoser,P. (2011) Iterative stepwise
regression imputation using standard and robust methods. Comput.
Stat. Data Anal., 55, 2793–2806.

50. Kokla,M., Virtanen,J., Kolehmainen,M., Paananen,J. and
Hanhineva,K. (2019) Random forest-based imputation outperforms
other methods for imputing LC-MS metabolomics data: a
comparative study. BMC Bioinformatics, 20, 492.

51. Tyanova,S., Temu,T., Sinitcyn,P., Carlson,A., Hein,M.Y., Geiger,T.,
Mann,M. and Cox,J. (2016) The Perseus computational platform for
comprehensive analysis of (prote)omics data. Nat. Methods, 13,
731–740.

52. Wei,R., Wang,J., Jia,E., Chen,T., Ni,Y. and Jia,W. (2018) GSimp: a
Gibbs sampler based left-censored missing value imputation
approach for metabolomics studies. PLoS Comput. Biol., 14,
e1005973.

53. Li,Q., Fisher,K., Meng,W., Fang,B., Welsh,E., Haura,E.B.,
Koomen,J.M., Eschrich,S.A., Fridley,B.L. and Chen,Y.A. (2020)
GMSimpute: a generalized two-step Lasso approach to impute
missing values in label-free mass spectrum analysis. Bioinformatics,
36, 257–263.

54. Rosenberger,G., Liu,Y., Rost,H.L., Ludwig,C., Buil,A., Bensimon,A.,
Soste,M., Spector,T.D., Dermitzakis,E.T., Collins,B.C. et al. (2017)
Inference and quantification of peptidoforms in large sample cohorts
by SWATH-MS. Nat. Biotechnol., 35, 781–788.

55. Mehnert,M., Li,W., Wu,C., Salovska,B. and Liu,Y. (2019) Combining
rapid data independent acquisition and CRISPR gene deletion for
studying potential protein functions: a case of HMGN1. Proteomics,
19, 1800438.

56. Li,W., Chi,H., Salovska,B., Wu,C., Sun,L., Rosenberger,G. and
Liu,Y. (2019) Assessing the relationship between mass window width
and retention time scheduling on protein coverage for
data-independent acquisition. J. Am. Soc. Mass. Spectrom., 30,
1396–1405.

57. Bruderer,R., Bernhardt,O.M., Gandhi,T., Miladinovic,S.M.,
Cheng,L.Y., Messner,S., Ehrenberger,T., Zanotelli,V., Butscheid,Y.,
Escher,C. et al. (2015) Extending the limits of quantitative proteome
profiling with data-independent acquisition and application to
acetaminophen-treated three-dimensional liver microtissues. Mol.
Cell. Proteomics, 14, 1400–1410.

58. Bruderer,R., Bernhardt,O.M., Gandhi,T., Xuan,Y., Sondermann,J.,
Schmidt,M., Gomez-Varela,D. and Reiter,L. (2017) Optimization of
experimental parameters in data-independent mass spectrometry
significantly increases depth and reproducibility of results. Mol. Cell.
Proteomics, 16, 2296–2309.

59. Bekker-Jensen,D.B., Bernhardt,O.M., Hogrebe,A., Martinez-Val,A.,
Verbeke,L., Gandhi,T., Kelstrup,C.D., Reiter,L. and Olsen,J.V. (2020)
Rapid and site-specific deep phosphoproteome profiling by
data-independent acquisition without the need for spectral libraries.
Nat. Commun., 11, 787.

60. Cox,J. and Mann,M. (2008) MaxQuant enables high peptide
identification rates, individualized p.p.b.-range mass accuracies and
proteome-wide protein quantification. Nat. Biotechnol., 26,
1367–1372.

61. Olsen,J.V., Blagoev,B., Gnad,F., Macek,B., Kumar,C., Mortensen,P.
and Mann,M. (2006) Global, in vivo, and site-specific
phosphorylation dynamics in signaling networks. Cell, 127, 635–648.

62. Tan,S.L.W., Chadha,S., Liu,Y., Gabasova,E., Perera,D., Ahmed,K.,
Constantinou,S., Renaudin,X., Lee,M., Aebersold,R. et al. (2017) A
class of environmental and endogenous toxins induces BRCA2
haploinsufficiency and genome instability. Cell, 169, 1105–1118.

63. Rosenberger,G., Koh,C.C., Guo,T., Rost,H.L., Kouvonen,P.,
Collins,B.C., Heusel,M., Liu,Y., Caron,E., Vichalkovski,A. et al.
(2014) A repository of assays to quantify 10,000 human proteins by
SWATH-MS. Sci. Data, 1, 140031.

64. Rost,H.L., Rosenberger,G., Navarro,P., Gillet,L., Miladinovic,S.M.,
Schubert,O.T., Wolski,W., Collins,B.C., Malmstrom,J.,
Malmstrom,L. et al. (2014) OpenSWATH enables automated,
targeted analysis of data-independent acquisition MS data. Nat.
Biotech, 32, 219–223.

65. Peres-Neto,P.R. and Jackson,D.A. (2001) How well do multivariate
data sets match? The advantages of a Procrustean superimposition
approach over the Mantel test. Oecologia, 129, 169–178.



PAGE 15 OF 15 Nucleic Acids Research, 2020, Vol. 48, No. 14 e83

66. Li,S., Arnold,R.J., Tang,H. and Radivojac,P. (2011) On the accuracy
and limits of peptide fragmentation spectrum prediction. Anal.
Chem., 83, 790–796.

67. Schwarz,E., Levin,Y., Wang,L., Leweke,F.M. and Bahn,S. (2007)
Peptide correlation: a means to identify high quality quantitative
information in large-scale proteomic studies. J. Sep. Sci., 30,
2190–2197.

68. Ruepp,A., Brauner,B., Dunger-Kaltenbach,I., Frishman,G.,
Montrone,C., Stransky,M., Waegele,B., Schmidt,T., Doudieu,O.N.,
Stumpflen,V. et al. (2008) CORUM: the comprehensive resource of
mammalian protein complexes. Nucleic Acids Res., 36, D646–D650.

69. Drew,K., Lee,C., Huizar,R.L., Tu,F., Borgeson,B., McWhite,C.D.,
Ma,Y., Wallingford,J.B. and Marcotte,E.M. (2017) Integration of
over 9,000 mass spectrometry experiments builds a global map of
human protein complexes. Mol. Syst. Biol., 13, 932.

70. Ihaka,R. and Gentleman,R. (1996) R: a language for data analysis
and graphics. J. Comput. Graph. Statist., 5, 299–314.

71. Benjamini,Y. and Hochberg,Y. (1995) Controlling the false discovery
rate - a practical and powerful approach to multiple testing. J. Roy.
Stat. Soc. B. Met., 57, 289–300.

72. Wang,S., Cai,Y., Cheng,J., Li,W., Liu,Y. and Yang,H. (2019) motifeR:
an integrated web software for identification and visualization of
protein post-translational modification motifs. Proteomics, 1900245.

73. Perez-Riverol,Y., Csordas,A., Bai,J., Bernal-Llinares,M.,
Hewapathirana,S., Kundu,D.J., Inuganti,A., Griss,J., Mayer,G.,
Eisenacher,M. et al. (2019) The PRIDE database and related tools
and resources in 2019: improving support for quantification data.
Nucleic Acids Res., 47, D442–D450.

74. Dephoure,N., Zhou,C., Villen,J., Beausoleil,S.A., Bakalarski,C.E.,
Elledge,S.J. and Gygi,S.P. (2008) A quantitative atlas of mitotic
phosphorylation. PNAS, 105, 10762–10767.


