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Clathrin is a cytosolic protein involved in the intracellular trafficking of a wide range of cargo.
It is composed of three heavy chains and three light chains that together form a triskelion,
the subunit that polymerizes to form a clathrin coated vesicle. In addition to its role in
membrane trafficking, clathrin is also involved in various cellular and biological processes
such as chromosomal segregation during mitosis and organelle biogenesis. Although the
role of the heavy chains in regulating important physiological processes has been well
documented, we still lack a complete understanding of how clathrin light chains regulate
membrane traffic and cell signaling. This review highlights the importance and
contributions of clathrin light chains in regulating clathrin assembly, vesicle formation,
endocytosis of selective receptors and physiological and developmental processes.
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INTRODUCTION

Endocytosis is a process carried out by eukaryotic cells to internalize extracellular molecules, plasma
membrane proteins and lipids (Doherty and McMahon, 2009). While several other pathways for
endocytosis such as caveolin-mediated endocytosis, phagocytosis and macropinocytosis have been
described, clathrin mediated endocytosis (CME) remains the major route for internalization of many
membrane lipids and proteins (Kaksonen and Roux, 2018).

CME was first observed by Roth and Porter in 1964 where they found uptake of yolk-containing
bristled-coated pits in the mosquito oocyte (Roth and Porter, 1964). Later these bristled-coated
structures isolated from pig brain were identified as coat proteins and named ‘Clathrin’ by Barbara
Pearse (1975, 1976). Since then, this process has been extensively studied and although we have a
fairly good understanding of the process itself, many unanswered questions still remain about how
over 50 molecules that take part in this molecular process (Haucke and Kozlov, 2018), come together
in a highly coordinated manner.

CME is characterized by the recruitment of clathrin and its associated molecules to the plasma
membrane allowing the formation of clathrin-coated vesicles (CCVs). The formation of CCVs
involves the polymerization of ‘clathrin triskelia’, which are the basic building blocks of the clathrin
coats (Kaksonen and Roux, 2018). A triskelion is composed of three clathrin heavy chains (CHC)
(∼190 kDa) each of which is associated with a smaller clathrin light chain (CLC) (∼25 kDa). While
the major role of the clathrin heavy chain is in intracellular trafficking, it is also involved in several
other processes including chromosomal segregation during mitosis (Royle et al., 2005), regulation of
basal NF-κB activity in epithelial cells (Kim et al., 2011), control of neuropeptide degradation and
secretion during neuronal development (Nahorski et al., 2018), and maintenance of mouse
embryonic stem cell pluripotency (Narayana et al., 2019; Mote et al., 2020).

Variations in the clathrin heavy and light chains alter the biophysical properties of the clathrin
lattice, in turn affecting trafficking of receptors and thereby several physiological functions of the cell.
The heavy chain is essential for triskelion assembly and for all clathrin-dependent endocytic events,
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with a number of excellent reviews highlighting the function of
this protein (Kirchhausen, 2000; Brodsky, 2012; Kirchhausen
et al., 2014; Brodsky, 2016; Kaksonen and Roux, 2018; Briant
et al., 2020). In contrast, the role of the clathrin light chains
remains relatively under-explored. In this review, we look at how
the clathrin light chains affect clathrin polymerization, vesicle
formation, receptor trafficking and cell signaling.

CLATHRIN GENES AND PROTEINS

In metazoans, the clathrin heavy chain protein is encoded by a
single gene, Cltc. In humans, due to large-scale gene duplications
during chordate evolution, there are two CHC paralogs, CHC17
(encoded by Cltc) and CHC22 (encoded by Cltcl1) based on their
location on chromosome 17 and 22, respectively. Although Cltcl1
is found in several other vertebrate species, it is functional only in
humans. In mice, only a pseudogene for CHC22 is present
(Wakeham et al., 2005). In yeast and invertebrates such as
Drosophila and Caenorhabditis elegans, the CHC protein is
encoded by a single gene. Plants have two genes for the
clathrin heavy chain, CHC1 and CHC2 (Baisa et al., 2013).

In invertebrates, the clathrin light chain is encoded by a single
gene. However, as a result of local gene duplication, higher
eukaryotes have two light chains, CLCa and CLCb encoded by
the genes Clta andCltb, respectively (Wakeham et al., 2005). They
both share 60% homology in their amino acid sequence but are
expressed at different levels in various vertebrate tissues (Wu
et al., 2016). Despite having considerable divergence in sequence,
the single light chain from yeast shares various physical
properties with mammalian light chains (Silveira et al., 1990).
In plants, the three clathrin light chain genes CLC1, CLC2 and
CLC3 (Scheele and Holstein, 2002; Baisa et al., 2013) share at least
30% sequence homology with mammalian CLCs (Wang et al.,
2013).

CLATHRIN LIGHT CHAIN DOMAIN
ORGANIZATION AND FUNCTION

Vertebrate CLCs contain a consensus region of 22 amino acids
shared by both CLCa and CLCb. Additionally, they also include

distinct domains for binding to calcium, clathrin heavy chain,
calmodulin and a neuron-specific insertion sequence (Brodsky,
2012). CLCa contains a unique Hsc70 binding region (DeLuca-
Flaherty et al., 1990). However, functions have been attributed to
only some of these domains. A detailed representation of CLC
domain organization can be found in Figure 1.

In mammals, at the N-terminus, a 22 amino acid conserved
sequence is shared by CLCa (residues 28–49) and CLCb (residues
20–41) with the negatively charged residues, EED responsible for
CLC binding to the CHC knee (Brodsky, 2012). This conserved
sequence is also the binding site for the Huntington interacting
protein (HIP) family (Chen and Brodsky, 2005), and plays a role
in regulating clathrin self-assembly (Legendre-Guillemin et al.,
2005; Ybe et al., 2007a).

CLCa has an Hsc70 binding sequence that was shown to
stimulate uncoating in vitro (DeLuca-Flaherty et al., 1990).
However later studies suggested that uncoating of vesicles could
also be done in the absence of CLCs in vitro (Ungewickell et al.,
1995) Both the light chains also have a calcium binding region
(Nathke et al., 1990) and calmodulin binding domain (Pley et al.,
1995) present at the centre and C-terminal, respectively. While
these domains have been found to play a role in in vitro studies, no
function has been attributed to them in vivo.

In Dictyostelium, overexpression of the C-terminal fragment
of CLCa in clc null cells produced dynamic punctae distribution
along the plasma membrane and within the cytoplasm, similar to
full-length CLCa (Wang et al., 2006), indicating that its function
can be attributed almost entirely to the C-terminal domain.

In vitro assembly of the clathrin hub, and CHC trimer stability is
enhanced by the C-terminal domain of the light chain (Ybe et al.,
2007b). Co-expressing the trimer-defective hub heavy chain mutant
C1573A, along with the light chain C-terminal domain construct
could achieve approximately 67% of wild-type clathrin assembly.

SPLICE VARIANTS AND INSERTION
SEQUENCES IN LIGHT CHAINS

CLCs undergo alternate mRNA splicing in vertebrates, giving rise
to four isoforms for CLCa and two for CLCb (Blue et al., 2018a).
Exons 5 and 6, encoding 18 and 12 amino acids respectively, in
the Clta gene are alternatively spliced resulting in four isoforms.

FIGURE 1 | CLC protein domains: Domain maps of the vertebrate CLCs, CLCa and CLCb. Common functional domains indicated include the consensus
sequence (CON) shared by all vertebrate CLCs, the calcium-binding sequence (Ca++), the heavy chain-binding region (HC), the neuronal inserts of 18(N-18) and 12(N-
12) residues, and the calmodulin-binding domain (CBD). Unique to CLCa is a region that can stimulate the uncoating ATPase, HSC70, in vitro.
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These are: 1) neuronal CLCa (nCLCa) containing both 18 and 12
amino acid residue insertions; 2) a splice variant containing only
the 18 residue-insertion found only in brain; 3) a splice variant
containing only the 12 residue-insertion found in brain, heart and
skeletal muscle; and 4) a splice variant without either insertion.

In vertebrates, the two splice variants for CLCb include an
isoform having an insert of 18 residues present in neurons
(nCLCb) and another that lacks the insert in non-neuronal
tissues (Wong et al., 1990; Blue et al., 2018a). In rats, the
CLCb gene contains six exons. The isoform containing all
exons is brain-specific (LCB2), while the isoform lacking exon
5 (LCB3) is present in other tissues. LCB2 is predominantly
present in primary rat neuronal cultures, whereas LCB3 is present
in primary rat glial cultures (Stamm et al., 1992).

Due to the insertions mentioned above, neuronal splice variants
have a higher molecular mass than CLCs in other cell types. Under
oxidizing conditions, CLC isoforms can form internal disulfide
bonds. Both brain-specific CLCa isoforms, contain the 12 residue
insert in exon 5, allowing the formation of internal disulfide bonds
between two cysteine residues in vitro, while the smallest CLCa
isoform only has a single cysteine residue. Both CLCb isoforms have
two cysteine residues present at the C-terminal. In vitro purification
of CLCs in the presence or absence of thiols or alkylating agents
caused an alteration in electrophoretic mobility depending on the
formation of disulfide bonds (Parham et al., 1989). The
electrophoretic mobility change of CLCs was also found to be
species- and tissue-specific. This could be due to the presence of
different isoforms (Ungewickell, 1983), disulfide bond formation
(Parham et al., 1989), or other post-translational modifications such
as phosphorylation (Ferreira et al., 2012).

At all developmental stages, the Clta transcript in the mouse
heart does not include exon 5. However, due to alternative
splicing, Clta exon 6 is included at a low level at birth with its
inclusion increasing in adulthood (Giudice et al., 2014; Blue et al.,
2018b). This suggests that expression of CLC splice variants is
variable and can change with the stage of development, and in a
tissue-specific manner.

Both the CLCs are developmentally and tissue-specifically
regulated by alternative splicing but the physiological and
functional implications of different splice variants of CLCs still
remain unexplored. Although we still lack complete
understanding of tissue-specific expression patterns of
alternatively spliced variants of CLCs, one can speculate that
the presence or absence of particular exons may lead to a change
in interacting partners thereby influencing function.

Despite having 60% sequence similarity, the two light chains
are diverse in nature due to alternative splicing, internal disulfide
bond formation and tissue specific expression patterns, allowing
speculation that their ability to perform distinct physiological and
functional roles could be attributed to such differences.

PHOSPHORYLATION OF CLATHRIN LIGHT
CHAINS

The phosphorylation of clathrin light chains was initially
identified in vitro in coated vesicles isolated from bovine

brains (Usami et al., 1985). Using rat reticulocytes, Bar-Zvi
et al. (1998), then demonstrated that unassembled pools of
CLCb were highly phosphorylated. Further investigations
revealed that CLCb underwent phosphorylation mediated by
Casein Kinase 2 at the N-terminal serine residues at positions
11 and 13. These residues are unique to CLCb and absent in CLCa
(Hill et al., 1988). However both CLCa and CLCb contain the
phosphorylation site for G-Protein coupled receptor kinase 2
(GRK2) at Ser204. Mutation of all phosphorylation sites in CLCb
impeded internalization of purinergic GPCRs, P2Y1 and P2Y12,
with phosphorylation of Ser204 being specific for P2Y12 uptake
(Ferreira et al., 2012). Phosphorylation of CLCb at Ser204 was
also required for lattice rearrangement and curvature generation
by regulating clathrin exchange in a cargo-dependent manner
(Maib et al., 2018). Together these findings indicate a role for
phosphorylated forms of clathrin light chains in regulating the
uptake of specific membrane-resident proteins.

INTERACTION WITH THE CLATHRIN
HEAVY CHAIN

Both CLCs can bind and regulate CHC17, but do not functionally
interact with CHC22 (Towler et al., 2004). Previous studies have
shown that CLCs bind to the proximal leg of the heavy chain via
their central region (Kirchhausen et al., 1983; Brodsky et al., 1987;
Jackson et al., 1987; Nathke et al., 1992; Liu et al., 1995). Using a
yeast-two hybrid system it was shown that the core interaction
occurs between CHC residues 1,267–1,522, and CLCb residues
90–157 (Chen et al., 2002). Mutations in the central region
(residues 90–157) of CLCb disrupt the alpha-helical structure
suggesting that this region is crucial for interaction with CHC.
Cryo-EM based structural analysis revealed that two tryptophan
residues (W105 and W127) were required for light chain binding
to the heavy chain. Mutation ofW105 to arginine disrupted CLC-
CHC binding, but could be rescued by mutation of lysine to
glutamate at residue position 1,326 of the heavy chain.
Additionally, two helices present in the CLC trimerization
domain (TxD) tended to form stable association with two
heavy chain TxDs in trans conformation, connecting adjacent
legs and forming the triskelion vertex (Morris et al., 2019).

ROLE OF LIGHT CHAINS IN CLATHRIN
ASSEMBLY AND DISASSEMBLY
Assembly and Stabilization of the Clathrin
Triskelion
Studies done in yeast suggest that light chains affect the
trimerization and stability of the heavy chain (Silveira et al.,
1990; Huang et al., 1997). The amount of heavy chain in light
chain-deficient strains is reduced to 20–25% of their wild-type
counterparts, most of which are not trimerized (Huang et al.,
1997). CLC-deficient strains have also been known to show a
slow-growth phenotype, similar to CHC deficient strains (Silveira
et al., 1990), indicative of the fact that the light chain in yeast is
essential for heavy chain trimerization and stability. In
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Dictyostelium however, the light chains do not contribute to
heavy chain trimerization or stability, but affect the assembly
of triskelia onto intracellular membranes (Wang et al., 2003). This
indicates a species-specific role for light chains in conferring
stability to triskelia. The reason behind this is not completely
understood as the domain structure of CLCs across species
remains conserved, despite having little similarity in amino
acid sequence (Wang et al., 2003).

CLCs stabilize the triskelion via their C-terminal region which
interacts with the vertex and reduces the flexibility of the legs to
produce triskelia with uniform vertex geometry (Ybe et al.,
2007b). In the absence of light chains, the legs can adopt
various geometries due to increased flexibility at the vertex
(Ybe et al., 2007b). These changes in triskelion structure can
affect cage and lattice forming properties of clathrin, which is
discussed in the next section.

Assembly of Clathrin Cages and Lattices
The role of clathrin light chains in cage assembly and disassembly
has been studied extensively since their identification in 1981.
Early studies reported that treatment of clathrin with elastase,
which selectively digests the light chains, renders the triskelion
incapable of correctly assembling and forming cages
(Kirchhausen and Harrison, 1981; Schmid et al., 1982).
However, it was later shown that heavy chain trimers can
reassemble into polygonal cages even in the absence of light
chains (Winkler and Stanley, 1983). We now know that the light
chains function as negative regulators of cage assembly, as shown
by the following studies.

In vitro studies using recombinant hubs (trimeric clathrin
heavy chain structures without the distal domain and the
N-terminal region) have shown that while hubs lacking light
chains can self-assemble reversibly at a physiological pH, they can
self-assemble only at a pH below 6.5 in the presence of light
chains (Liu et al., 1995). They also require the presence of adaptor
proteins such as AP-1, AP-2 or the neuron-specific AP-180 to
assemble at physiological pH (Ahle and Ungewickell, 1986; Keen,
1990; Pearse and Robinson, 1990; Lindner and Ungewickell,
1992). These reports show that light chains regulate cage
assembly by preventing unnecessary polymerization of clathrin
triskelia and allowing regulated assembly by adaptor molecules.

Light chains have a negatively charged EED domain which can
bind to the positively charged KR loop present in the crease of the
heavy chain (Wilbur et al., 2010). As mentioned earlier, this
interaction influences the flexibility at the knee, which affects
lattice assembly. If CLC is bound, the knee is straight and the
triskelion is more rigid. Such a conformation inhibits cage
assembly. The retraction of light chain produces more
compact and flexible triskelia and allows the triskelia to form
clathrin cages (Wilbur et al., 2010).

Adaptors can overcome the effect of light chains by
introducing competing positively charged residues that can
free up the heavy chain to polymerize (Greene et al., 2000).
AP-2 can directly bind to the clathrin heavy chain (Owen et al.,
2000). By aligning the distal regions of the heavy chain with the
proximal hub segments it provides the competing residues
required to reverse the effect of light chains (Greene et al.,

2000). It has recently been shown that these interactions
between adaptors and the clathrin coat also regulate cargo
binding and coat curvature, by reconfiguring low-affinity,
high-avidity interactions (Kovtun et al., 2020).

The presence of light chains also increases the stiffness of
clathrin lattices which increases the ability of clathrin to deform
liposomal membranes into buds (Dannhauser et al., 2015).
Budding efficiency has also been shown to vary with different
CLC isoforms. Lattices containing neuronal isoforms of the light
chains exhibit a poorer lattice quality and a lower budding
efficiency compared to lattices with non-neuronal isoforms
(Redlingshöfer et al., 2020).

Disassembly of the Clathrin Cage
Hsc70, like most chaperone proteins, requires cofactors to recruit
the chaperone to the target site (Böcking et al., 2011). Auxilin 1
and GAK (also known as Auxilin 2) are two cofactors of Hsc70
belonging to the DnaJ family of chaperones (Jiang et al., 1997;
Umeda et al., 2000).While Auxilin 1 is expressed only in the brain
(Böcking et al., 2011), GAK is expressed in several other tissues
(Kanaoka et al., 1997; Kimura et al., 1997). Whether the light
chains directly affect Auxilin and GAKmediated uncoating is still
unclear. According to Ungewickell et al. (1995), CLCs are
dispensable for Auxilin-mediated uncoating of clathrin-coated
vesicles. Later studies suggest that although the light chains are
not essential for uncoating, their removal significantly reduces the
efficiency with which Auxilin facilitates disassembly (Young et al.,
2013). A study by Ferreira et al. (2012) suggests that clathrin light
chain B can modulate the interaction between auxilin and
clathrin heavy chain, thereby regulating the process of vesicle
uncoating.

REGULATION OF RECEPTOR
TRAFFICKING BY CLATHRIN LIGHT
CHAINS
The physiological importance of light chains has mostly been
studied using knockdown or knockouts of the light chains, or
through the use of mutant forms to study receptor trafficking
(Huang et al., 2004; Poupon et al., 2008; Majeed et al., 2014; Wu
et al., 2016; Redlingshöfer et al., 2020). Knockout of CLCa in mice
hampered the internalization of Transforming growth factor β
receptor2 (TGFβR2), affecting antibody isotype switching in B
lymphocytes (Wu et al., 2016). Knockdown of both light chains in
mammalian HeLa cells did not affect the internalization of β1
integrin but disrupted its recycling back to the plasma membrane
(Majeed et al., 2014). CLC knockdown (KD) also altered the
targeting of cation-independent mannose-6 phosphate receptor
(CI-MPR) to the endosome, resulting in clustering of the receptor
near the trans-Golgi network, leading to a delay in processing of
the lysosomal hydrolase cathepsin D in HeLa and Cos7 cells
(Poupon et al., 2008).

Internalization of GPCRs was also shown to be dependent
on CLCb phosphorylation (Ferreira et al., 2012).
Internalization of P2Y12 receptor, a member of a family of
purinergic GPCRs, in 1321N1 astrocytoma cells is regulated
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by phosphorylation of CLCb. Trafficking of low-density
lipoprotein on the other hand, is not affected by the
removal of light chains (Poupon et al., 2008).
Furthermore, internalization of EGFR was also not affected
by siRNA-mediated knockdown of both the light chains in
HeLa cells (Huang et al., 2004). However, a study using single
light chain-expressing H1299 cells, a non-small cell lung
cancer cell line, showed accelerated internalization of
EGFR in cells that expressed only CLCb in contrast to
wild type and CLCa-only expressing cells (Chen et al.,
2017). Similar observations have been made with respect
to internalization of transferrin receptor (Tfr) (Huang
et al., 2004; Chen et al., 2017). Tfr internalization can also
be dependent on the phosphorylation status of CLCb. When
transferrin receptor is clustered with other cargo, its uptake
can become sensitive to the status of CLCb phosphorylation.
In 1321N1 human astrocytoma cells, packaging of Tfr with
P2Y12 receptor resulted in delayed internalization of Tfr in
presence of a phosphorylation-deficient mutant of CLCb
(Maib et al., 2018), with similar results also observed in
HeLa cells. Knockdown of both the light chains attenuated
Tfr recycling in HeLa cells (Majeed et al., 2014), which

remains unaffected in single light chain expressing H1299
cells (Chen et al., 2017).

From these studies one can infer that i) dependence of receptor
trafficking on light chains is influenced by other factors such as
the cell type and presence of other cargo; ii) CLCa and CLCb can
differentially affect cargo uptake; and iii) phosphorylation status
of CLCb can potentially be a method of regulating receptor
trafficking.

PHYSIOLOGICAL SIGNIFICANCE OF
CLATHRIN LIGHT CHAINS

Altered trafficking of receptors can compromise cell signaling,
which is an important regulator of several physiological
functions. The sections below discuss how light chains regulate
important biological functions and pathological conditions.
These are also summarized in Table 1.

Development
Mammalian development is dependent on the presence and
action of light chains, especially in the context of B-cell

TABLE 1 | Table showing the role of clathrin light chains in various physiological processes.

Physiological process Cell type/Model
organism

Method of study Observations/Inference References

Development Mice CLCa Knockout CLCa is essential for B-cell development and
antibody production

Wu et al. (2016)

Drosophila
melanogaster

CLC Knockdown with overexpression of
Rac1

CLCs present on the endosomes bind LRRK2 to
inhibit Rac1 activation. This interaction is
necessary for Drosophila eye development

Schreij et al. (2015)

Arabidopsis thaliana T-DNA insertion lines for CLC1, CLC2 and
CLC3. CLC2 and CL3 double mutant line

CLC2 and CLC3 are necessary for auxin
regulation of plant development. CLC1 is essential
to maintain gamete viability

Wang et al. (2013)

Dictyostelium CLC knockout CLC is required for formation of fruiting bodies Wang et al. (2003)

Cell spreading and
migration

HeLa and H1299
cells

CLCa and CLCb knockdown CLCs are required for β1 integrin dependant cell
migration

Majeed et al. (2014)

HeLa, H1299 and
HEK293T cells

CLCa and CLCb knockdown CLCa and not CLCb is required for Focal adhesion
maturation, and consequently cell spreading and
migration

Tsygankova and
Keen (2019)

U373 astrocytes Overexpression of a dominant negative
CLCb

CLCb is involved in motility of astrocytes Saffarian et al.
(2009)

HEK293T cells Deletion of CLCa and CLCb CLCs are required for invadopodia formation Mukenhirn et al.
(2021)

Neuronal function and
neurodegeneration

Drosophila
melanogaster

Photo-inactivation of the dmCLC CLC is required for synaptic vesicle re-formation Heerssen et al.
(2008)

Mice CLCa and CLCb knockout CLCs have distinct roles in synaptic vesicle
recycling

Redlingshöfer et al.
(2020)

Patients with
Alzheimer’s disease

IHC studies in hippocampal tissues of
patients with AD

Decrease in levels of CLCb at the synapse in AD
patients indicating hampered clathrin transport

Nakamura et al.
(1994a)

Patients with Pick’s
disease

IHC Studies in hippocampal tissues of
patients with Pick’s disease

Abnormal levels of CLCs in neuronal perikarya of
Pick’s disease patients

Nakamura et al.
(1994b)

Alzheimer’s disease
mice models

Proteomic analysis of the hippocampus of
the Alzheimer’s disease mice models

Upregulated CLCb levels in the hippocampus of
AD mice

Takano et al. (2013)

Cell division Arabidopsis thaliana Overexpression of CLC Fused to mGFP5,
mOrange or enhanced cyan fluorescent
protein (eCFP)

CLC associates with the distal plasma membrane
of expanding root hairs

Konopka et al.
(2008)

U2OS cells Overexpression of GFP-Clta and mRFP-
MAD2B

CLC associates with MAD2B at the mitotic spindle
during mitosis

Medendorp et al.
(2010)
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development (Wu et al., 2016). The lymphoid tissue shows an
almost exclusive expression of CLCa. Germinal centres in CLCa
knockout mice have fewer B cells, which predominantly produce
IgA antibodies. This increased IgA production is attributed to
enhanced signaling by the TGFβR2 receptor due to its defective
endocytosis (Wu et al., 2016).

Normal eye development in Drosophila is dependent on
clathrin light chains (Schreij et al., 2015). LRRK2, a high
molecular weight Ras GTPase, directly binds to light chains
present on the endosomes. CLC and LRRK2 interact to inhibit
Rac1 activation, with disruption in this pathway resulting in
altered eye development in Drosophila (Schreij et al., 2015).

Clathrin light chains also play an important role in plant
development. The loss of light chains, CLC2 and CLC3 affect
auxin-regulated endocytosis, resulting in multiple developmental
defects in Arabidopsis thaliana (Wang et al., 2013). Additionally
CLC1 mutant pollen also display reduced viability (Wang et al.,
2013), suggesting that the three light chains have specific and
independent roles in gamete formation and development, and
that the loss of a single light chain may not be compensated for by
the presence of the other two.

Dictyostelium CLC null-mutants show defects in development
as demonstrated by their inability to form fruiting bodies (Wang
et al., 2003). Overexpression of the C-terminal domain of CLC
rescues this phenotype with robust fruiting body formation
indistinguishable from wild type fruiting bodies (Wang et al.,
2006). Loss of CLC results in larger vacuoles in Dictyostelium,
indicative of disruption of osmoregulation (Stavrou and
O’Halloran, 2006). Together, these studies from different
species indicate that clathrin light chains perform distinct and
diverse functions during development.

Cell Spreading and Migration
As mentioned above, depletion of both the light chains reduced
the surface expression of β1 integrin due to altered recycling,
which decreased cell migration in both HeLa and H1299 cells
(Majeed et al., 2014). Migratory displacement of HeLa cells was
reduced by 22% in contrast to H1299 cells whose displacement
was reduced by 41% upon loss of light chains (Majeed et al.,
2014). Non-small cell lung cancers expressed elevated levels of
CLCb resulting in increased activation of Dynamin1 via a
pathway involving Akt/GSK3β phosphorylation. This resulted
in abnormal EGFR trafficking and signaling, leading to increased
migration and metastasis (Chen et al., 2017). Another recent
study showed that CLCa and not CLCb was important for focal
adhesion (FA) maturation, cell spreading and migration, with
CLCa targeting FAKs to nascent FAs. In the absence of CLCa
these transient nascent structures were unable to mature to
radially elongated FAs due to reduction in integrin-mediated
activation of Src and Rac (Tsygankova and Keen, 2019).

In U373 astrocytes, overexpression of a dominant negative
CLCb mutant which could bind to the heavy chain but not to
Hip1/R, resulted in increased motility due to reduction in plaque
formation (Saffarian et al., 2009).

Recently, it has also been shown that light chains are involved
in invadopodia formation in HEK293T cells (Mukenhirn et al.,
2021). Deletion of both light chains resulted in increased

recycling of MMP14, a matrix metalloproteinase protein
whose increased surface expression has been known to
coincide with malignant cancer progression. Furthermore, loss
of the light chains caused actin to polymerize and form patches on
the plasma membrane. These actin structures along with MMP14
clusters on the plasma membrane formed mature invadopodia.
Invadopodia are important for embryonic development, bone
remodeling and cancer metastasis (Mukenhirn et al., 2021).
Altered invadopodia formation could possibly affect these
important physiological processes.

Together these studies demonstrate that individual clathrin
light chains regulate migration and invasion differentially
depending on the cell type. Additionally, these phenotypes
may also be a reflection of their interaction with specific
proteins that are also expressed in a cell-type dependent manner.

Neuronal Function and Neurodegeneration
Besides playing an important role in cell-signaling by regulating
receptor trafficking, clathrin also plays an important role in
neuron-specific functions such as synaptic vesicle recycling
and neurotransmitter receptor trafficking. Photo-inactivation
of the clathrin light chain in Drosophila at neuromuscular
junctions (NMJ) resulted in a block in synaptic vesicle re-
formation. Although clathrin-independent mechanisms of
membrane internalization do exist at the Drosophila NMJ,
these were unable to generate fusion-competent vesicles,
indicating a specificity for the light chain in this context
(Heerssen et al., 2008). A similar phenotype was also seen in
CLCa and CLCb knockout mice. Knockout of individual light
chains in mice showed electrophysiological defects, indicative of
impaired synaptic vesicle recycling (Redlingshöfer et al., 2020).
Interestingly, CLCa and CLCb knockout mice exhibited different
phenotypes. In the synapses of cerebellar neurons, CLCa
knockout mice showed reduced number of synaptic vesicles
whereas CLCb knockout mice did not show any decrease
compared to wild type mice. However, in hippocampal
neurons, CLCa knockout mice showed a decrease in the
number of synaptic vesicles, while CLCb knockout mice
showed almost twice the number of vesicles relative to wild
type mice. CLCa knockout mice also showed defects in motor
function (Redlingshöfer et al., 2020). This highlights the fact that
CLCa and CLCb have distinct roles in synaptic vesicle recycling
and also indicates that the same paralog can differentially affect
function in neurons from different regions of the brain.

Altered endocytosis is also associated with several
neurodegenerative disorders. Immunohistochemical analysis of
the hippocampus from individuals with Alzheimer’s disease
show an abnormal distribution of clathrin light chains, with a
high concentration of CLCb detected in neurofibrillary tangles
(Nakamura et al., 1994a). Under normal circumstances, clathrin is
concentrated at the synaptic terminals. However, in patients with
Alzheimer’s disease, CLCb is reduced at the synapse indicating that
the normal transport of clathrin from the neuronal perikarya to the
axon terminals is hampered (Nakamura et al., 1994a). The
implications, if any, of this abnormal distribution of light chains
are still not understood. Proteomic analysis of the hippocampus of
the Alzheimer’s disease mice models showed that CLCb and
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Dynamin 1 were upregulated in diseased mice compared to wild
type mice. Interestingly, no significant difference was observed in
the expression of CLCa (Takano et al., 2013). Abnormal
distribution of clathrin light chains was also observed in the
brains of patients with Pick’s disease. Immunohistochemical
analysis showed a high concentration of light chains in Pick’s
bodies. In neurons of the dentate gyrus of Pick’s disease patients,
light chains were also found in increased amounts in the neuronal
perikarya compared to healthy individuals (Nakamura et al.,
1994b). While the cause and implications of the increase in
CLCs are still not understood, one can speculate that the altered
expression and localization may contribute to the disease
phenotype.

Cell Division
Clathrin-mediated endocytosis is a continuous event in non-
dividing cells. However, in cells undergoing mitosis, endocytic
events stop (Fielding et al., 2012), and clathrin accumulates at the
spindle apparatus carrying out an important function,
independent of trafficking (Royle, 2012). It functions by
crosslinking the microtubules of the kinetochore to stabilize
the mitotic spindle (Royle et al., 2005). CHC also promotes
centrosome maturation by stabilizing the microtubule-binding
protein ch-TOG (colonic, hepatic tumor overexpressed gene)
(Foraker et al., 2012).

A study in Arabidopsis thaliana has shown that CLCs
accumulate at the mitotic spindle during cell division. GFP-
tagged CLC has been shown to be associated with the distal
plasma membrane in expanding root hairs, and at the cell plate in
dividing root cells (Konopka et al., 2008).

In Dictyostelium, CLC null mutants display a defect in
cytokinesis, which can be rescued by overexpression of the
C-terminal domain-containing CLC construct (residues
124–194) (Wang et al., 2006).

Another important protein involved in mitosis is the
mitotic arrest deficient protein, MAD2B which binds to,
and inhibits the anaphase promoting complex (APC)
(Chen and Fang, 2001). Depletion of MAD2B in renal
carcinoma cells caused a significant increase in the number
of misaligned chromosomes. MAD2B interacts with the
C-terminus of CLCa during the G2/M phase of the cell
cycle, with knockdown of MAD2B resulting in
redistribution of CLCa away from the mitotic spindle
(Medendorp et al., 2010). The functional relevance of this
interaction is as yet unexplored. It should also be noted that
heavy chain distribution remained unaffected upon depletion
of MAD2B (Medendorp et al., 2010).

CLATHRIN LIGHT CHAINS: CONNECTING
THE ENDOCYTIC MACHINERY TO THE
ACTIN CYTOSKELETON
The role of actin in endocytosis is well established. Actin is
recruited to sites of endocytosis and helps the membrane to
invaginate and form coated pits (Engqvist-Goldstein and
Drubin, 2003; Mooren et al., 2012). Clathrin light chains

can bind to Hip1/R proteins through a conserved domain
present at their N-terminus, which in turn binds to actin (Chen
and Brodsky, 2005). The light chains therefore act as a
connecting link between the endocytic machinery and the
cytoskeleton.

Hip1/R proteins can bind to actin through their THATCH
domain independent of CLCs. Binding of the light chains to the
coiled-coil domains of Hip1 and Hip1R reduce their actin-binding
activity. This suggests that Hip proteins do not interact with actin
while incorporated into the clathrin coat. Instead Hip proteins
interact with actin at the neck of the budding vesicle or edge of
the clathrin coat, promoting development of a budding vesicle
(Wilbur et al., 2008; Boettner et al., 2011). Hip1 binding to CLC
is necessary for its targeting to clathrin-coated pits (Legendre-
Guillemin et al., 2005) and loss of CLCs result in mislocalization
of Hip1R and overassembly of actin patches (Poupon et al., 2008),
further emphasizing the point that light chains are essential for
recruiting actin to sites of endocytosis by interacting with Hip1/R
proteins.

In yeast, all clathrin-dependent endocytic events are actin-
dependent and therefore, light chain-dependent (Chu et al.,
1996). In mammalian cells however, the light chains and actin
are not essential for CME to occur.

In what context is an endocytic event light chain-
dependent or -independent? The factor that dictates the
requirement of light chains is the amount of force that is
required for the membrane to invaginate. Membrane tension
opposes membrane deformation. Invagination of membranes
with high tension require greater force. Boulant et al. (2011)
showed that actin was recruited by the light chains to
counteract membrane tension in polarized MDCK cells. It
is plausible that in instances where clathrin polymerization
does not produce enough energy to bend the membrane, the
light chains recruit actin, which polymerizes and provides
energy for membrane invagination. Membrane tension may
differ between cell types. This explains why the uptake of the
same receptor may be light chain dependent in one type of
cell, and independent in another. Another factor that opposes
membrane budding is turgor pressure. Turgor pressure of
yeast is higher than that of mammalian cells
(Aghamohammadzadeh and Ayscough, 2009), which may
explain why all clathrin-dependent endocytic events in
yeast are light chain and actin-dependent (Goode et al.,
2015). It is important to note however, that in plants,
which have a similarly high turgor pressure as yeast, actin
is not required for endocytosis (Baisa et al., 2013), allowing
speculation that other proteins may be involved in this
process.

Recruiting actin to provide energy for membrane
invagination is not the only way light chains help in vesicle
formation. As mentioned above, light chains are also involved in
lattice rearrangement which introduces membrane curvature in
flat clathrin lattices as they transform into shallow pits (Maib
et al., 2018). However, clathrin does not always assemble as a flat
lattice first. This happens only when the constant area model of
membrane invagination is followed. According to this model the
clathrin coat assembles into a flat lattice of a given area. The
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lattice is then remodeled by inserting pentagons to introduce
curvature without changing the area. Another proposed model
is the constant curvature model for membrane invagination
according to which clathrin assembles directly into a bud of
constant curvature. As a spherical vesicle is formed from a
shallow pit, the clathrin coated area increases (Figure 2). Both
these models have been shown to exist in vitro (Scott et al.,
2018). An increase in membrane tension also increases the
number of flat clathrin lattices (Bucher et al., 2018). Based
on these studies, Maib et al. (2018) hypothesized that in cases
where the polymerization energy of the clathrin triskelia is not
sufficient to deform the membrane directly, it will initially
assemble as a flat lattice, whereas membranes that are easier
to deform might follow the path of constant curvature, directly
polymerizing into spherical vesicles.

To summarize, when there is low membrane tension,
clathrin may directly polymerize onto the budding surface
and light chains will not be required to rearrange the lattice
and recruit actin. When there is high membrane tension
clathrin may first assemble as a flat lattice which can then
be rearranged with the help of light chains and actin to
provide energy for membrane invagination.

This ability of the light chains to bind to Hip1/R protein and
recruit actin is often exploited by bacteria and viruses to facilitate
their entry into cells. Listeria monocytogenes for example, binds to
cadherin through internalin, a protein which induces
phosphorylation of the heavy chain. This phosphorylation
recruits actin through the Hip1/R binding domain of the light

chains to surround clathrin at the membrane and facilitate the
entry of the pathogen into the cell (Bonazzi et al., 2011).

CONCLUSIONS AND FUTURE SCOPE

Five decades of research has provided a huge amount of insight
into the complex process of CME (Kaksonen and Roux, 2018;
Briant et al., 2020). While studies reveal the role of clathrin light
chains in regulating clathrin assembly and several physiological
processes, a number of open questions remain unanswered. For
example, the specific roles of CLCa and CLCb and their splice
variants are not completely understood. While recent studies have
shed some light on their specific functions (Wu et al., 2016; Maib
et al., 2018; Tsygankova andKeen, 2019; Redlingshöfer et al., 2020),
we are only beginning to appreciate the role of each paralog. Apart
from this, there is little clarity on why the requirement for light
chains is different between different species and cell types. Other
questions that need to be answered include the role of light chains
in auxilin and GAK-mediated uncoating, mitosis, cell migration
and neurodegeneration.

The molecular complexity and dynamic nature of
endocytosis make it a difficult process to study. The presence
of two paralogs further complicates the problem of elucidating
the role of light chains. Small interfering RNA (siRNA)-
mediated knockdown of CLCb is often compensated by
increased expression of CLCa, whereas knockdown of CLCa
is often accompanied by decrease in CHC expression (Majeed

FIGURE 2 | Interaction of clathrin light chains with actin: When forces opposing membrane invagination (such as membrane tension and membrane rigidity) are
high, clathrin first assembles as a flat lattice, and light chain-dependent rearrangement takes place to introduce curvature (constant area model). Since the polymerization
energy of clathrin is insufficient to deform the membrane, the actin cytoskeleton is recruited by light chains to further counteract these opposing forces. On the other
hand, when forces opposing membrane invagination are low, the polymerization energy of clathrin is sufficient to deform the membrane. Clathrin directly
polymerizes onto the budding membrane (constant curvature model) and clathrin light chains and the actin cytoskeleton are not required.
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et al., 2014). This can lead to inconclusive and confounding
results. Use of molecular techniques such as CRISPR-Cas9
genome editing can help overcome these problems by
generating single isoform expressing cells. Spatio-temporal
deletion of CLCs can further be instrumental in
understanding their function in regulating physiological
processes.
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