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Abstract: Upland cotton is the most economically important fibre crop. The human-mediated selection
has resulted in modern upland cultivars with higher yield and better fibre quality. However, changes
in genome structure resulted from human-mediated selection are poorly understood. Comparative
population genomics offers us tools to dissect the genetic history of domestication and helps to
understand the genome-wide effects of human-mediated selection. Hereby, we report a comprehensive
assessment of Gossypium hirsutum landraces, obsolete cultivars and modern cultivars based on high
throughput genome-wide sequencing of the core set of genotypes. As a result of the genome-wide
scan, we identified 93 differential regions and 311 selection sweeps associated with domestication
and improvement. Furthermore, we performed genome-wide association studies to identify traits
associated with the differential regions and selection sweeps. Our study provides a genetic basis to
understand the domestication process in Chinese cotton cultivars. It also provides a comprehensive
insight into changes in genome structure due to selection and improvement during the last century.
We also identified multiple genome-wide associations (GWAS associations) for fibre yield, quality
and other morphological characteristics.

Keywords: upland cotton; phylogeny; domestication; selection sweeps

1. Introduction

Cotton (Gossypium hirsutum) is a major source of fibre for the textile industry, especially tetraploid
cotton which covers 95% of the worldwide cotton production. Selection has been carried out in cotton
to improve production and adaptation to the local environment, reduced growth period, and its
defence against biotic and abiotic factors. Due to continuous selection pressure, the cotton crop
is facing a narrowed genetic base in terms of diversity [1–4]. Therefore, insight into the genomic
structure and changes occurring in genomic structure due to continuous selection and improvement
can yield interesting information resulting in a better understanding of the process of domestication
and improvement.
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Cotton has been grown in China for centuries. However, the introduction of upland cotton
cultivars throughout the world has changed the production scenario of the cotton crop worldwide
since upland cotton is occupying most of the production area of cotton. Prior to the introduction of
upland cotton in China, a diploid species Gossypium arboreum was mainly grown in China. The earliest
reported evidence suggested that the first introduction of tetraploid cotton into China was during the
French colonist era [5,6]. The Second introduction of tetraploid cotton into China was at the beginning
of the 20th century when upland cotton was systematically introduced into China. During these years,
cotton was mainly distributed in the Yangtze River region and the Yellow River region in China [7].

In China, cotton has been produced in three main regions; Yellow River Valley (YeRV): Hebei,
Shandong and Henan, northwestern China: Xinjiang province, The Yangtze River Valley (YaRV):
Hubei, Hunan, Jiangsu, Anhui [8]. During recent years, cotton production has been mainly shifted to
Xinjiang province. Prior to the introduction and implementation of Seed Law (SL) and Plant Variety
Protection Act (PVPA) in China [8], most of the southwest varieties (introduced in early 20th century
from the United States of America in the Yangtze River region and Yellow River region in China [7])
were maintained by farmers over the years. From this diverse southern gene pool, which is not only
from different ecosystems but also has lower human intervention, useful information can be excavated
to study the diversity of cotton crop in China through the evaluation of current Chinese varieties and
their genetic background with reference to southern varieties and landraces from Central America.

Improvements in genomic studies and resequencing technologies have established the tools
to dissect the genetic basis of elite cultivars. Different techniques have been used to understand
genetic diversity in upland cotton [2,9–14], i.e., pedigree breeding, morphological and biochemical
markers, and molecular markers. In recent years, genome-wide association studies (GWAS) have
proven to be a remarkable tool to dissect genetic diversity among cultivars to understand the genetic
mechanism behind diseases and associations of putative candidate genes for morphological traits.
GWAS have been widely implemented in maize, rice, Arabidopsis and legumes. In addition, single
nucleotide polymorphism (SNP) genotyping techniques, third-generation sequencing has facilitated
GWAS to provide better association results for morphological traits with their genetic background.
In cotton, GWAS have been used to dissect genetic mechanisms underlying fibre quality traits [15–18],
diseases [19] and verticillium wilt [20,21]. However, despite all the technological breakthroughs in
genomics, contribution towards finding new genetic sources in crop plants has been limited.

Though multiple studies have been conducted to understand the genomic basis of domestication
in different crops [22–24], there are very few studies addressing the domestication of the cotton crop
with reference to high-density genomic data. Our study aims to provide a better insight into the changes
in genomic structure due to human-mediated selection and improvement. It is worth mentioning that
three distinct groups of genotypes viz. (i) Modern cultivars (mainly cultivated in YeRV and Xingjiang
province), (ii) Obsolete cultivars previously grown in South China for more than 50 years without
management, (iii) other identified Gossypium hirsutum landraces collected from North America, used in
this study are the representation of the breeding history of cotton crop in China over the decades since
the introduction of upland cotton in China. This study will provide insight into the differences between
the genetic profile of current varieties, accessions collected from southwest China and geographical
landraces of G. hirsutum, which could be further utilised in breeding to expand the narrowed genetic
base of upland cotton.

2. Results

2.1. Population Classification and Structure Variations

We exploited the genetic relationship among all accessions using principle component analysis
(PCA) and performed phylogenetic analysis to construct a phylogenetic tree using 4,329,838 single
nucleotide polymorphisms (SNPs). The inference drawn from phylogenetic analysis, structure and
PCA supported the classification into three groups (Figure 1). Group 1 comprised modern cultivars
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(MCl), while group 2 and group 3 were biased towards obsolete cultivars from South China (OCl) and
geographical landraces of G. hirsutum (GHL), respectively. Some accessions showed admixed ancestry
suggesting the presence of introgression or gene flow during the breeding process (Supplementary
Table S2). Phylogenetic tree complimented breeding history of G. hirsutum in China. In addition,
linkage disequilibrium (LD) decay was measured as the physical distance on the chromosome (kb)
when LD decreased to half of its maximum value. Linkage disequilibrium is critical in understanding
and determining the location of causal loci through GWAS [25]. Furthermore, patterns of LD decay
between different populations can present with the information regarding selective sweeps and selective
pressure [26]. LD decay was observed at 357 kb (physical distance between SNPs) for MCl, while it
was lower at 0.2 kb and 0.05 kb for OCl and GHL, respectively. These results indicated the linkage
decay in the subpopulations of obsolete cultivars (OCl) and landraces of G. hirsutum (GHL) declined
dramatically compared with that in modern cultivar (MCl) populations, which are in agreement with
previously published statistics [27]. Furthermore, the extent of LD decay was higher in the cultivated
group than in obsolete accessions and landraces, signifying the potential role of selection pressure,
geneflow and nonrandom mating in shaping modern cultivars.
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Figure 1. Population stratification. (a) Principal component analysis (PCA) plot of the first two PCAs,
i.e., PCA1 (21.898%) and PCA2 (2.988%), for all accessions. Dot colour scheme is as G1-MCl = Modern
cultivars G2-OCl = Obsolete Cultivars collected from south china, G3-GHL = Geographical landraces
of G. hirsutum, (b) Phylogenetic tree constructed using whole-genome data, distributing genotypes into
three clades as per original classification, (c) Pairwise linkage disequilibrium (LD) decay in each group,
(d) Structure results for k-3.
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2.2. Differentiation and Selection Signals between MCl and OCl Group

Modern upland cultivars have been developed from limited resources [18] and are spread
worldwide in cotton-growing countries. Obsolete cultivars collected from Southwest China refer to the
first systematic introduction of upland cotton in china. This distinct gene-pool, adapted to the local
ecosystem, was mainly maintained by farmers without any organised breeding techniques. At the
beginning of the 21st century, modern upland cultivars were systematically introduced worldwide,
including China. As a result of rigorous selection, these cultivars referred to high yield and good
quality. To understand this selection procedure and changes in genome structure due to continuous
selection, we identified selection sweeps regions by comparing the genetic background of OCl, MCl and
GHL. Our results pointed out differential selection patterns between different sub-populations,
i.e., from landraces to OCl and from OCl to MCl.

First, the genetic differentiation between modern cultivars (MCl) and obsolete cultivars (OCl) was
estimated (Figures 2a and 3a). Population fixation statistics (Fst) estimates resulted in understanding the
differentiation between two groups of cultivars. Comparatively higher differentiation was associated
with chromosomes A06, A08, A09 and A11 on sub-genome At (Figure 1a), while relatively high
differentiation was estimated for D-genome on chromosomes D03, D04, D06, D07, D08, D10 and D11.
Furthermore, we selected the top 5% threshold to select highly differentiated regions between the two
groups of cultivars. With the threshold of Fst > 0.2975, we identified 193 highly differentiated regions.
Among these regions, 103 reside on At sub-genome, and 90 reside on Dt sub-genome (Supplementary
Table S3). Selection bottlenecks resulted in the loss of genetic diversity and depletion of elite alleles
conferring favourable phenotypes in crop plants. To identify regions potentially associated with
selection pressure for improvement, we scanned genomic regions with the highest reduction in diversity
in modern cultivars and obsolete accessions. Furthermore, we selected a genome-wide top 1% threshold
of reduction of diversity (ROD) πOCl/πMCl > 10.425 and categorise these regions as selection signals
(Supplementary Table S4). A total of 311 improvement signals were identified, while 235 regions were
located on At sub-genome, and the remaining 76 were located on the Dt sub-genome (Supplementary
Table S4). The identified selection signals were compared with previously published reports. Some of
the signals overlapped with previously reported QTLs for fibre yield and fibre quality. Contrary to
previous reports, we found multiple hotspots for selection pressure on chromosome A02, A06, A11 on
At sub-genome (Figure 2), D02, D10, D11, D12 and D13 on Dt sub-genome (Figure 3). Besides, we
mapped the GWAS results of multiple traits with selection signals (Figures 2c and 3c).

2.3. Differentiation and Domestication between G. hirsutum Landraces and Cultivar Groups

To understand the differentiation and domestication between G. hirsutum landraces and cultivar
groups, we compared the landraces of G. hirsutum with modern cultivars and obsolete accessions.
Genome-wide population fixation statistics (Fst) suggested a wide range of genetic differentiation
among these groups. G. hirsutum landraces showed significantly higher differentiation than modern
cultivars and other obsolete accession collected from Southwest China, which is consistent with the
breeding history of cotton (Figure 4). At sub-genome showed relatively higher differentiation as
compare to Dt sub-genome (Figure 4a,d). Chromosome A03, A04, A12, A08, D05 and D08 showed
less differentiation when compared with GHL, suggesting the conserved nature of these regions
on the respective chromosomes. Furthermore, chromosomes A01, A02, A05, A06, A07, A10, D03,
D04, D09, D10 and D11 depicted higher differentiation, suggesting the accumulation of changes
due to adaptation, selection and improvement during the past few decades. We also investigated
the diversity ratio to understand the genome-wide selection during domestication from landraces
to modern cultivars. A large number of selection signals were identified genome-wide. Modern
cultivars (MCl), as compared to Obsolete accessions from Southwest China (OCl) showed higher peaks
representing selection sweeps, which is consistent with the breeding history of cotton in China and
also emphasises the fact that modern cultivars are the result of rigorous selection over the period of
time. Chromosome A06 showed significant selection signals, while the same region on chromosome
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A06 showed a comparative differentiation among three groups; these results emphasised on change in
genomic structure due to selection and improvement. A similar pattern of variation was observed in
chromosome A13. Dt sub-genome also showed considerable selection sweep signals genome-wide.
A similar pattern of selection sweeps was observed in At sub-genome, where modern cultivars showed
higher selection peaks than obsolete cultivars.
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Figure 2. Genetic differentiation and identification of selection sweeps between OCl and MCl on At
sub-genome (a) Population fixation statistics (Fst) for At sub-genome (Chr A01–A13). A threshold of
top 1% is selected as highly differentiated regions, (b) CLR (Composite likelihood ratio) score as an
estimate of genome-wide selection sweeps, (c) πOCl/πMCl values (genetic diversity in the cultivated
group as compared to obsolete cultivars from Southwest China) for A genome (Chr A01–A13).
π ratio was calculated using whole-genome data with a 100 kb sliding window. The horizontal
dotted line represents the threshold of 1% values, whereas the threshold is represented with green
columns. The annotations represent as FQ = Fibre quality [28–32], FY = Fibre yield [30] and
EM = Early maturity [31,33,34] which donates to previously identified hotspots/quantitative trait
loci (QTLs) on the corresponding location, (d) Genome-wide association studies’ (GWAS) results
as Manhattan plots of multiple traits where purple horizontal line represents suggestive significant
threshold with −log10(1 × 10−5), and the red horizontal line represents genome-wide significant
threshold with −log10(5 × 10−8). FE = Fibre elongation, BoD = Boll opening Days, LY = Lint yield,
LP = Lint percentage, FU = Fibre length uniformity, FL = Fibre length, LPub = Leaf pubescence,
SPub = Stem pubescence, FS = Fibre strength. ANY = Anyang, Henan Province, CS = Changsha,
Hunan Province, SJZ = Shijiazhuang, Hebei Province.
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Figure 3. Genetic differentiation and identification of selection sweeps between OCl and MCl on
Dt sub-genome (a) Population divergence (Fst) for Dt sub-genome (Chr D01–D13). A threshold of
top 1% is selected as highly differentiated regions, (b) CLR (Composite likelihood ratio) score as an
estimate of genome-wide selection sweeps, (c) πOCl/πMCl values (genetic diversity in the cultivated
group as compare to obsolete cultivars from Southwest China) for D genome (Chr D01–D13). π ratio
was calculated using whole-genome data with a 100 kb sliding window. The horizontal dotted line
represents the threshold of top 1% values, whereas the threshold is represented with green columns.
The annotations represent FQ = Fibre quality [28–32], FY = Fibre yield [30], SBN = Sympodial branch
node and EM = Early maturity [31,33,34] which donates to previously identified hotspots/QTLs on the
corresponding location, (d) GWAS results as Manhattan plots of multiple traits. LBS = Leaf base spot,
BW = Boll weight, FMic = Fibre micronair, FE = Fibre elongation, LY = Lint yield, LP = Lint percentage,
FU = Fibre length uniformity, FL = Fibre length, LPub = Leaf pubescence. ANY = Anyang, Henan
Province, CS = Changsha, Hunan Province, SJZ = Shijiazhuang, Hebei Province, XJ3 = Shihezi,
Xinjiang Province.
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Figure 4. Genetic differentiation and selection signals among G. hirsutum landraces (GHL), modern
cultivars (MCl) and Obsolete cultivars (OCl) (a) Population divergence (Fst) for At sub-genome
(Chr A01–A13), (b)πGHl/πMCl (Purple columns) andπGHl/πOCl (Green columns) values (genetic diversity
in G. hirsutum landraces (GHL) as compared to MCl and OCl for At sub-genome (Chr A01–A13),
(c) Population divergence (Fst) for Dt sub-genome (Chr D01–D13), (d) πGHl/πMCl (Purple columns) and
πGHl/πOCl (Green columns) values (genetic diversity in G. hirsutum landraces (GHL) as compare to MCl
and OCl for Dt sub-genome (Chr D01–D13).

2.4. GWAS

Early maturity and improvement in fibre quality have been major objectives of breeding projects
during the last century. To identify putative candidate genes for fibre yield, fibre quality and flowering
time, we conducted a genome-wide association study (GWAS) using phenotypic data collected in 2017
and 2018. We selected 4,329,838 high-quality SNPs with minor allele frequency >0.05. The high-density
map was found to be superior to previous reports [19,27]. A total of 25 association signals were identified
with p < 4.9 × 10−7 by using efficient mixed-model association expedited (EMMAX) (Supplementary
Figure S1a–d). Very few of these associations have been previously characterised. We identified
significant GWAS signals for fibre yield on chromosomes A05, D06, D08 and D09. These GWAS signals
are also associated with significant improvement signals present on the respective chromosomes.
We also identified 16 significant GWAS associations for fibre quality traits viz. fibre length (FL),
fibre elongation (FE), fibre length uniformity (FU), fibre strength (FS) and fibre micronair (FMic).
These signals were present of chromosome A01(FE), A05 (lint percentage (LP), FU, FL), A06 (FL),
A07 (FS), A08 (FS), A09 (FL) on At sub-genome, while D06 (FL), D11 (FMic, FE, FU and FL) on Dt
sub-genome. These identified signals, key SNPs, and their corresponding annotation have been
presented in supplementary Table S5.

3. Discussion

The Gossypium genus includes 50 species distributed worldwide in tropical and subtropical regions.
Gossypium hirsutum is the most important species among all due to its high yield and spinnable fibre
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quality for industrial use [35]. Upland cotton, a type of G. hirsutum, dominates worldwide and has been
the primary source of fibre production, as it has been growing on more than 90% of cotton-growing
areas. Upland cotton originated in Mesoamerica, from where it spread worldwide through trade
routes during the 18th century. In the early 20th-century, upland cotton was systematically introduced
to cotton-growing countries worldwide, including China, India and Australia, which lead to the
development of the modern cotton industry. Since upland cotton was developed from limited
resources [36,37], it is considered that subsequent introduction and spread of upland cotton worldwide
has reduced its genetic diversity. Reduction in diversity can negatively influence the development of
superior crop varieties [38,39]. A comparison of two periods of the introduction of upland cotton in
China can provide insight into the process of domestication and improvement in cultivars and changes
in genomic structure. Thus, we evaluated three groups of genotypes, including modern cultivars,
obsolete accessions collected from Southwest China and geographical landraces of G. hirsutum.

Phylogenetic, principal component and structure analyses indicated the divergent behaviour
of modern cultivars with comparison to OCL and GHL, which were in agreement with genetic
differentiation analysis. The divergent trends of landraces compared to modern cultivars are also
in agreement with previous studies [18,27,38,40–42]. In support of previously published works,
which have suggested narrowed genetic diversity among studied cultivars of upland cotton and
also in other crops [9,27,43], our results also emphasised reduced differentiation on a genetic level
corresponding to modern cultivars. Chen et al. [37] reported genetic diversity in source germplasm
comprising of 43 upland cotton accession using simple sequence repeats (SSR) markers and concluded
a decrease in genetic diversity in modern cultivars. Genetic bottlenecks in crop domestication
may have resulted in the loss of genetic diversity and elite alleles in modern cultivars [44,45].
However, wild progenitors and landraces are excellent sources for developing desirable variations in
current cultivars [46].

Furthermore, Obsolete accessions collected from southwest China are a rich source of genetic
information for comparison of genetic variation in modern cultivars because of domestication and
improvement. These genotypes comprised a distinct gene-pool, which is not only from a different
ecosystem but also with less systematic selection. A comparison of these accessions with modern
cultivars can provide insight into changes in genomic structure due to human-mediated selection.
Therefore, we analysed these accessions and compared them with MCl and GHL. Our results suggested
a marked differentiation between OCl, MCl and GHL. A comparison of GHL with OCl showed
lower differentiation as compare to MCl. The divergent behaviour of geographical landraces of
G. hirsutum was in accordance with the genetic differentiation analyses. This divergent trend of
landraces compared to modern cultivars and obsolete accessions was also found in agreement with
previous studies [18,27,38,40–42]. Furthermore, selection pressure as improvement/selection signals in
obsolete cultivars (OCl) was lower than modern cultivars (MCl). These results are consistent with the
breeding history of upland cotton in China [37].

Besides, we identified a large number of selection sweeps, suggesting the domestication bottlenecks.
Some of the identified selection sweeps overlapped with highly differentiated regions on respective
chromosomes, i.e., A06, A08, A09, A10, A11, D02, D04, D10, D12 and D13. This overlapping pattern
suggests the occurrence of differentiation due to human-mediated selection. Further, to understand
the genetic basis of domestication and improvement in fibre yield, fibre quality, maturity and other
morphological traits, we compared the location of selection sweeps with the significant loci of GWAS
analysis and narrowed down selection sweeps into corresponding small regions which will be helpful
for future studies to determine and characterise new genes concerning domestication and selection in
upland cotton. Some of the selection sweeps we identified have been previously reported for fibre
yield [30], fibre quality [28–32] and maturity [31,33,34]. Fang et al. [18] performed a comprehensive
experiment for identification of selection signature in 318 upland cotton accession and consequently
identified 15 regions associated with improvement through comparison of whole-genome diversity
between modern cultivars and landraces. However, with improved sequencing technology, our study
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resulted in a better understanding of selection/improvement signals. Improvement signals (πOCl/πMCl)
were lower than selection signals (πGHl/πMCl), suggesting a weaker selection pattern during modern
genetic improvement than earlier selection [47,48]. These results can lead us to understand the changes
at the genomic level caused by domestication, selection and improvement of upland cotton cultivars.
Modern sequencing technology and GWAS has enabled us to better understand the genetic mechanisms
behind the evolution of a specific trait, as previously described in different crops [40,49,50]. In this
study, we identified multiple GWAS signals significantly associated with different traits, including
fibre yield and quality. Moreover, loci associated with fibre yield (chromosome A05, D06 and D08),
fibre quality (chromosome A01, A05, A07, A08, A11, D01, D07, D08 and D11) and other morphological
traits (chromosome A01, A06, D02, D05 and D11) fall within the selection sweeps, and these loci have
not been previously reported. Genotyping for these traits and identification of candidate genes and
their functional analysis can reveal the potential impact of genes related to traits.

4. Materials and Methods

4.1. Plant Material

A total of 357 upland cotton accessions obtained from the gene bank of the Cotton Research Institute
of the Chinese Academy of Agricultural Sciences (CRI-CAAS) with diverse genetic backgrounds were
used for phenotyping. These accessions comprised three groups, i.e., group 1 belonged to modern
cultivars (235) currently being cultivated, group two comprised 91 obsolete cultivars collected from
southwest China and group 3 (31) comprised seven reported geographical landraces of G. hirsutum,
i.e., Yucatanese, richmondi, morrilli, Marie-Galante, palmeri, punctatum and latifolium (Group 3 was
not included in phenotyping as these landraces cannot flower in the test locations due to photoperiod
sensitivity) (Supplementary Table S1). Two replications were planted in five agro-ecologically different
environments viz. Shijiazhuang (SJZ) in Hebei Province, Changsha (CS) in Hunan province, Anyang
(AY) in Henan Province (Yellow River region), Alaer and Shihezi in the Xinjiang (XJ) autonomous
region (Northwest Inland), for two consecutive seasons 2017 and 2018. Two sets of genotypes were
used for phenotyping Set 1 comprised 169 accessions whose phenotypic data was collected from SJZ,
CS, AY, XJ2 and XJ3, Set 2 comprised 324 accessions whose phenotypic data was collected from AY.
Some of the genotypes in both sets overlapped to give a proper representation of two groups viz.
G1-MCl = Modern cultivars G2-OCl = Obsolete Cultivars. All standard field management practices
were applied, including irrigation, pest management and fertilisation, following the usual local
management practices in each test location. The cotton was sown in mid- to late-April and was
harvested in mid- to late-October at all locations.

In all test locations, phenotypic traits were recorded following the same scoring standard.
We characterised lint yield (LY), lint percentage (LP), fibre quality (fibre length (FL, mm), fibre length
uniformity (FLU, %), fibre micronair (FMic), fibre strength (FS), fibre elongation (FE, %)), flowering
time (DF, days), boll opening days (BoD, days), leaf pubescence (LPub) and stem pubescence (SPub).
Fibre quality was tested using twenty naturally opened balls from each accession. A High-volume
instrument (HFT9000) was used for characterizing fibre quality parameters at the Cotton Quality
Testing Center in Anyang, China. Flowering time was observed daily, and days to flowering (DF) were
calculated from the sowing day to the day that the first flowers appeared in 50% of the plants. All samples
were subjected to the High-volume instrument (HFT9000) for the estimation of quality parameters.

4.2. DNA Extraction, Sequencing, Alignment and SNP Detection

Total genomic DNA was extracted from the seedlings of five cultured seeds of each accession in
a growth chamber. After three weeks of sowing, at the true leaf stage, young leaves were collected,
and a Plant DNA Mini Kit (Aidlab Biotech, Beijing, China) was used to extract total genomic DNA.
Three hundred and fifty base pair whole-genome libraries were constructed for each accession according
to the manufacturer’s specifications (Novogene Bioinformatics technology company, Beijing, China).
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Subsequently, we used Illumina HiSeq X10 by a commercial service “Novogene” platform to generate
6.45-Tb raw sequences with 150-bp read length. Following alignment of high-quality reads with the
genome of G. hirsutum, GATK (Genome Analysis Toolkit, version v3.1) was used for SNP calling.
Sequencing data for G4; GHL was obtained from published data [18].

4.3. Population Genetic Analyses

Population structure was studied using ADMIXTURE [51], which utilises a clustering method
(mode-based) to draw population structure assuming different numbers of clusters (K). A total
of 431,985 SNPs without missing genotypes were used. SNPhylo software was used to prune
SNPs, which reduces SNP redundancy by linkage disequilibrium (LD). SNPs in the same LD
block provide redundant lineage information. SNPhylo keeps only one informative SNP in a
LD block, and subsequently, a relatively small number of SNPs (9.97%) were used for structure and
phylogenetic analysis.

Principal component analysis was performed using the EIGENSOFT package with an embedded
SMARTPCA program [52] using 4,329,838 SNPs without missing genotypes.

Phylogenetic analysis was performed to understand phylogenetic relationships among genotypes
by constructing a phylogenetic tree using SNPs of all genotypes. SNPs were filtered with minor allele
frequency, MAF = 0.05. Subsequently, a neighbour-joining tree was constructed using the maximum
likelihood method with SNPhylo software [53]. To visualise the phylogenetic tree, we used Dendroscope.

4.4. Identification of Selection/Improvement Signals

The fixation index (Fst) is a measure of population differentiation as it provides insight into the
genome-wide differentiation among different groups. Thus, we calculated population fixation statistics
(Fst) using vcftools with a sliding window of 100 kb and step size of 20 kb (–fst-window-size 100,000
–fst-window-step 20,000). The average Fst of all sliding windows was considered as the value at the
whole genome level among different groups.

Highly diverged regions were selected by merging fragments with a distance of less than 50 kb
after the initial selection of the top 1% π values. To identify the putative regions under selective
pressure between landraces and cultivars, the nonsynonymous SNPs with the top 1% of Fst values
were selected.

Nucleotide diversity (π) is an estimate of the degree of variability within population and
species [54]. Nucleotide diversity was calculated using vcftools with a 100 kb sliding window
based on genotypes in different groups separately. Furthermore, genetic diversity ratios between
different groups were calculated to estimate selection/improvement regions. πOCl/πMCl was used as
an estimate of improvement signals, while πGHL/πMCl and πGHL/πOCl were used as an estimate of
selection signals. The top 1% threshold was used to identify significant selection/improvement signals.
Composite likelihood ratio (CLR) was calculated as an alternative estimate for selection/improvement
signals, using SweeD. Diversity ratios and CLR scores were compared for better assessment of
selection/improvement signals.

4.5. GWAS Analysis

For GWAS analysis, we categorised genotypes into two sets. Set 1 comprised 169 accessions whose
phenotypic data were collected from SJZ, CS, AY, XJ2 and XJ3, Set 2 comprised 324 accessions whose
phenotypic data were collected from AY. A total of 4,329,838 high-quality SNPs were subjected to filtering
with MAF >0.05, missing rate <20% and 1,604,221, and 1,506,091 SNPs were kept in set 1 and set 2,
respectively, and subsequently, GWAS was performed on both sets of genotypes separately. Accessions
with missing SNPs data were excluded from analyses. We performed GWAS for multiple traits in
efficient mixed-model association expedited (EMMAX) software [55,56]. Population stratification
and hidden relatedness were modelled with a kinship (K) matrix in the emmax-kin-intel package
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of EMMAX. The significant threshold for GWAS was kept constant with the suggestive significant
threshold at −log10(1 × 10−5) and the genome-wide significant threshold at −log10(5 × 10−8).

5. Conclusions

Our study provides a genetic basis to understand the domestication process in upland cotton
cultivars. It also provides a comprehensive insight into changes in genome structure due to selection
and improvement during the last century. We also identified multiple GWAS associations for fibre
yield, quality and other morphological characteristics. Further study is required to explore these
novel loci associated with different traits to uncover causal genes related to these traits. Our study
provides a comprehensive insight into the differentiation between modern cultivars, OCl and GHL,
which can be a useful tool for the cotton breeders to understand changes accumulated due to selection
and improvement breeding strategies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/6/711/s1,
Figure S1 (a) Manhattan plots for GWAS results, (b) Manhattan plots for GWAS results, (c) Manhattan plots for
GWAS results, (d) Manhattan plots for GWAS results; Table S1 list of accessions, cultivars and landraces used
in this study; Table S2 Structure results and corresponding grouping for all accessions and landraces used in
this study; Table S3 List of highly differentiated regions and genes located in the highly differentiated regions
identified through pairwise Fst estimates (top 1% threshold); Table S4 Improvement signals, Top 1% threshold
of πOCl/πMCl; Table S5 Key SNPs identified for flowering time, fibre quality and anther colour, and their
corresponding annotations.
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