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Abstract

Motivation: Nowadays, knowledge extraction methods from Next Generation Sequencing data are

highly requested. In this work, we focus on RNA-seq gene expression analysis and specifically on

case–control studies with rule-based supervised classification algorithms that build a model able to

discriminate cases from controls. State of the art algorithms compute a single classification model

that contains few features (genes). On the contrary, our goal is to elicit a higher amount of know-

ledge by computing many classification models, and therefore to identify most of the genes related

to the predicted class.

Results: We propose CAMUR, a new method that extracts multiple and equivalent classification

models. CAMUR iteratively computes a rule-based classification model, calculates the power set of

the genes present in the rules, iteratively eliminates those combinations from the data set, and per-

forms again the classification procedure until a stopping criterion is verified. CAMUR includes an

ad-hoc knowledge repository (database) and a querying tool.

We analyze three different types of RNA-seq data sets (Breast, Head and Neck, and Stomach

Cancer) from The Cancer Genome Atlas (TCGA) and we validate CAMUR and its models also on non-

TCGA data. Our experimental results show the efficacy of CAMUR: we obtain several reliable equiva-

lent classification models, from which the most frequent genes, their relationships, and the relation

with a particular cancer are deduced.

Availability and implementation: dmb.iasi.cnr.it/camur.php

Contact: emanuel@iasi.cnr.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Among next generation sequencing experiments, RNA-seq gene

expression profiling stands out as the process of quantifying the

transcriptome abundance by counting the RNA fragments (reads)

that are aligned on a reference genome (Wang et al., 2009).

In this work, we propose a new method for classifying RNA-seq

case–control samples, which is able to compute multiple human

readable classification models. We call this method and its software

implementation CAMUR – Classifier with Alternative and MUltiple

Rule-based models. Although RNA-seq data analysis tools (Howe
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et al., 2011; Kuehn et al., 2008) are widely used in case–control

studies, the novelty of CAMUR consists in the extraction of several al-

ternative and equivalent rule-based models, which represent relevant

sets of genes related to the case and control samples. CAMUR extracts

multiple classification models by adopting a feature elimination

technique and by iterating the classification procedure.

CAMUR is based on the supervised learning approach (also called

classification (Mehta et al., 1996)), the task of inferring a function

from labeled training data (Tan et al., 2005b). Two data sets are

required: (i) the training set, which consists of a group of training

labeled samples, and hence each sample is a pair consisting of an in-

put object – that can be a vector of features (attributes) – and its

associated class label; (ii) the test set, which is used to classify new

samples, after the inferred function is built; the test data may con-

sists of a set of samples, whose class is known, but hidden and used

only for verification purpose. Starting from the training set, a

supervised machine learning algorithm builds the classification

model based on the general hypotheses inferred from the features.

Then, through this model, the classifier is able either to evaluate the

model reliability on the test set, or to make predictions on new

data. In other words, we can describe the classification problem as

the process through which a system learns a mapping function (also

called model) that assigns a sample to a class (Tan et al., 2005b). A

classifier is the output of a supervised machine learning algorithm.

There are many different state of the art classification algorithms:

decision trees (Quinlan, 1993), rule-based (Boros et al., 2005;

Cohen, 1995; Felici and Truemper, 2002; Frank and Witten, 1998;

Gaines and Compton, 1995), ensembles (Bagging, Boosting,

Random forest) (Dietterich, 2000), k-Nearest Neighbour

(Dasarathy, 1990), linear regression (Seber and Lee, 2012), Naive

Bayes (McCallum et al., 1998), neural networks (Haykin et al.,

2009), Perceptrons (Riedmiller, 1994), Support Vector Machines

(SVM) (Vapnik, 1998) and Relevance Vector Machine (RVM)

(Tipping, 2001). For further details about the supervised learning

paradigm and the algorithms the reader may refer to (Weitschek et

al., 2014). Classification algorithms are frequently used in gene ex-

pression profiles analysis (Golub et al., 1999; Li et al., 2004;

Nogueira et al., 2003; Park et al., 2014; Pirooznia et al., 2008;

Shaik and Ramakrishna, 2014; Shipp et al., 2002; Tan and Gilbert,

2003; Tothill et al., 2015), in particular for experimental samples

classification, i.e. the automatic assignment of each sample to its

belonging class (e.g. case–control) after examining its profile. Rule-

based classification algorithms are widespread for analyzing gene

expression profiles (Dennis and Muthukrishnan, 2014; Geman et

al., 2004; Hvidsten et al., 2003; Tan et al., 2005a; Weitschek et al.,

2015; Zhou et al., 2003). These types of algorithms produce a

classification model composed of logic formulas that provide an im-

mediate relationship between the class and one or more fea-

tures (genes). The assignment of a given class to each sample is

performed by taking into account the satisfiability of the rules. In

particular, the classifier uses logic propositional formulas in dis-

junctive (or conjunctive) normal form (‘if then rules’) for classifying

the given records. Each classification rule (r) can be represented as:

ri: Antecedent!Consequent (e.g. feature1 > 0:7 ^ feature2 < 0:4

_ feature3 > 0:9) control). The antecedent contains a conjunction

of attribute tests, each one known as literal (e.g. feature1 > 0:7),

the consequent represents the covered class (e.g. control). Examples

of rule-based classifiers are RIPPER (Cohen, 1995), LSQUARE

(Felici and Truemper, 2002), LAD (Boros et al., 2005), RIDOR

(Gaines and Compton, 1995) and PART (Frank and Witten, 1998).

We chose to analyze RNA-seq data with rule-based algorithms,

because of their human readability, i.e. the investigator is provided

with a list of meaningful features (genes) that appear in the rules.

Specifically, among the state of the art classifiers we implement our

method relying on the Repeated Incremental Pruning to Produce

Error Reduction – RIPPER algorithm, because it is a robust and ef-

fective rule-based approach that provides reliable case–control mod-

els in terms of classification rates and computational performances

(Lehr et al., 2011). In RNA-seq, rule-based algorithms may provide

a low number of features (genes) into the resulting rules. For ex-

ample, in a binary classification problem the classifier can build a

model made of only two rules, with two or three features (e.g.

gene1 > 0:7 ^ gene2 < 0:4 _ gene3 > 0:9) control). Although this

fact does not affect the classification performances, many other fea-

tures that have discriminant power may not be present in the classi-

fication model. Therefore, our aim is to extract a comprehensive

amount of knowledge from the analyzed data composed of equiva-

lent and alternative classification models (i.e. rules). For example, to

maximize the knowledge extraction in RNA-seq samples classifica-

tion, we aim to detect all the genes that are implied with the ana-

lyzed disease, i.e. the discriminant genes that appear in alternative

classification models. For extracting multiple classification solu-

tions, one approach is presented in (Deb and Reddy, 2003), where

the authors found 352 different three-gene combinations providing

a 100% correct classification to the Leukemia gene expression pro-

file data available at (Golub et al., 1999), by extending a genetic al-

gorithm (Deb et al., 2002) into a multi-objectives evolutionary one

that finds multiple and multimodal solutions in one single run

(Miettinen, 1999). Those are defined as solutions that have identical

objective values, but they differ in their format. Furthermore, an-

other classification approach is presented in (Gholami et al., 2012)

and relies on a feature elimination method, which consists of choos-

ing features and then, removing those that do not match an assump-

tion criteria. The deletion is performed in order to obtain a smaller

set of features that can perform as well as the larger one, and hence

the computational overhead is reduced. However, the authors aim is

not to extract alternative and equivalent classification models.

Conversely, we aim to obtain more than one reliable classification

model by performing an iterative feature elimination without imple-

menting an optimization method.

2 Materials and methods

First, the terminology adopted in the paper is introduced. We collect

n samples, each one described by its m features (gene expression pro-

files) and labeled with a class (condition), e.g. normal – tumoral (We

adopt The Cancer Genome Atlas terminology (i.e. normal – tumoral),

where normal corresponds to a healthy sample (control) and tumoral

to a diseased one (case).). The ith sample of the data set is represented

Table 1. Example of the breast cancer RNA-seq data matrix ex-

tracted from The Cancer Genome Atlas (TCGA)

SampleID ANO8 C1orf27 TRPM6 � � � Class

A8-A09D 2.64 5.42 0.38 � � � Breast cancer

BH-A0DH 1.46 6.47 0.76 � � � Normal

GM-A2DC 2.22 22.50 0.53 � � � Breast cancer

GM-A2D9 3.13 14.21 0.61 � � � Breast cancer

� � � � � � � � � � � � � � � � � �
GM-A2DB 3.86 5.15 0.59 � � � Breast cancer

The rows correspond to the samples and the columns to their features (gene

expression profiles). The cells contain the gene expression measure Reads Per

Kilobase per Million mapped reads (RPKM) explained in Section 2.3.
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by the vector gi ¼ ðgi1; gi2; . . . ; gim; gicÞ, where gij 2 R; i ¼ 1; . . . ; n;

j ¼ 1; . . . ;m and gic 2 fnormal; tumoralg. Therefore, the vectors g1;

g2; � � � ; gn compose the data matrix, whose rows correspond to the

samples and whose columns to their features. The reader may refer

to Table 1 for an example.

2.1 CAMUR: classifier with alternative and multiple rule-

based models
In this section, we describe CAMUR, a method and a software de-

signed to find alternative and equivalent solutions for a classification

problem. CAMUR is based on:

1. a rule-based classifier (i.e. in this work RIPPER);

2. an iterative feature elimination technique;

3. a repeated classification procedure;

4. an ad-hoc storage structure for the classification rules (CAMUR

database).

In brief, the method iteratively computes a rule-based classification

model through the supervised RIPPER algorithm, calculates the

power set (or a partial combination) of the features present in the

rules, iteratively eliminates those combinations from the data set,

and performs again the classification procedure until a stopping cri-

terion is verified.

In greater details, CAMUR executes at first the RIPPER algorithm,

which extracts from a training set the classification model that con-

tains rules with a number of features (i.e. genes) and their values (i.e.

quantification levels). Accuracy and F – measure (see Eq. 1) are used

on a test set to evaluate the extracted classification model. Then,

CAMUR stores the classification model and the results into a database

and extracts the features from the generated model. We call this set

of features St (where t is the current iteration) and we define the list

where those features are memorized as FL. After that, CAMUR com-

putes the power set of the features Pt by storing all the combinations

into the main memory. In the following, we refer to the Original

Data Set of features as ODS. Starting from Pt, the software performs

a feature elimination by deleting from ODS one combination of fea-

tures at time (i.e. an item of the power set) and executes the RIPPER

classification algorithm on the new data set ðODS� ptjÞ with ptj

2 Pt (ptj is the jth element of Pt and j ¼ 1; . . . ; jPtj). All the results of

the elimination and classification steps are memorized in the CAMUR

database. These operations are iterated on the new generated data

sets ðODS� ptjÞ with ptj 6¼ pkl where k< t and l ¼ 1; . . . ; jPkj,
updating FL at each iteration. We highlight that the power set (Ptþ1)

generation on the new feature sets Stþ1 is performed by not taking

into account duplicate combinations that occurred in previous

power sets Pk with k 2 ½1; t þ 1Þ. CAMUR terminates the execution

when one of the following conditions is satisfied:

1. the reliability of the classification models is below a given thresh-

old, e.g. F – measure (see Eq. 1) lower than 0.85;

2. the list of features FL has been completely processed;

3. the maximum number of iterations has been reached.

At the end of this procedure, we have a collection of alternative clas-

sification models composed of several features that are able to dis-

tinguish the samples with high reliability. For evaluating the

classification models and consequently to terminate the procedure,

we adopt the accuracy and the F – measure (refer to Eq. 1). Given

True Positives (TP), objects of that class recognized in the same

class; False Positives (FP), objects not belonging to that class recog-

nized in that class; True Negatives (TN), objects not belonging to

that class and not recognized in that class; False Negatives (FN),

objects belonging to that class and not recognized in that class, the

measures are defined as follows:

F �measure ¼ 2P � R
PþR

; Accuracy ¼ TPþ TN

TPþ TN þ FPþ FN
(1)

where P ¼ TP
TPþFP is the Precision and R ¼ TP

TPþFN is the Recall.

In the following, we provide an execution example of the algo-

rithm. Given a data set composed of 10 features (genes) and 10 sam-

ples – 5 tumoral and 5 normal –, CAMUR extracts through the first

execution of RIPPER a classification model composed of a set of

rules (e.g. gene1 > 0:7 ^ gene2 < 0:4 _ gene3 > 0:9) normal).

The rules contain a set of three features S1 ¼ fgene1, gene2, gene3g
which is stored in the features list FL. Starting from S1 the

power set (except the empty set) P1 is computed: P1 ¼ ffgene1g;
fgene2g; fgene3g; fgene1; gene2g; fgene1; gene3g; fgene2; gene3g;
fgene1; gene2; gene3gg. The first item of the power set is elimi-

nated from the data set and the classification procedure is per-

formed, which provides a new set of features, e.g.

S2 ¼ fgene3; gene4g. The first power set P1 is completely pro-

cessed, generating a number of feature sets S, which are stored in

FL. After the processing of P1, the power set P2 from S2 is com-

puted and the classification is performed. The algorithm con-

tinues until one of the stopping criteria is verified. To speed up

the procedure, it is worth noting that the next power set is com-

puted and processed only when the current power set has been

completely examined.

The computational time depends on: (i) the size of the power sets,

which are related to the size of the feature sets Si – if the cardinality of

the feature set is equal to m (m ¼ jSij), then the power set generation

requires in the worst-case Oð2mÞ; (ii) the worst-case complexity of

RIPPER, i.e. Oðnlog2nÞ with n number of samples in the training set.

Therefore, the total complexity of CAMUR is Oð2mnlog2nÞ. We high-

light that usually the number of features present in rule-based classifi-

cation models is limited, especially when dealing with two-class

classification problems, as case–control studies.

Additionally, we investigate the possibility to iterate the feature

elimination in different ways, and hence our algorithm can be exe-

cuted as follows: loosemode; strictmode; doublemode.

In the loose feature elimination mode, the algorithm performs

a combined iterative feature elimination. As above-mentioned, this

execution mode takes the model and the results from the first

classification and builds the power set of the found features, whose

combinations are iteratively eliminated from the data set. A classifi-

cation step follows each elimination of the feature combinations.

The new extracted features that are present in the current model are

added to the features list FL and are going to be processed in the

next iterations.

In the strict feature elimination mode, the algorithm performs

a single iterative feature elimination. First, a classification with the

RIPPER algorithm is performed, the features that appear into the

rules are extracted, and then eliminated one by one. The classifica-

tion is iterated after each elimination on the resulting data set. In

contrast to the loosemode, once a feature is eliminated, it is never

inserted again into the data set. Referring to the example given

above, in the strictmode the execution is straightforward.

Starting from the above-mentioned feature set S1, CAMUR proceeds

with the elimination of gene1 from the original data set ODS and

performs the classification on the new data set, obtaining

S2 ¼ fgene3; gene4g. Then, it eliminates gene2 from ODS� fgene1g
and performs the classification again, obtaining S3. It finishes to pro-

cess S1, and then all the other ones contained in FL if a proper stop-

ping criteria is satisfied.

CAMUR 699

Deleted Text: ,
Deleted Text: .
Deleted Text:  
Deleted Text: C
Deleted Text: A
Deleted Text: R
Deleted Text:  
Deleted Text: .,
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text: .,
Deleted Text: .,
Deleted Text: equations
Deleted Text: .,
Deleted Text: j-th
Deleted Text: ).
Deleted Text:  < 
Deleted Text: ,
Deleted Text: ()
Deleted Text: .
Deleted Text:  
Deleted Text: .,
Deleted Text: equation
Deleted Text:  
Deleted Text:  
Deleted Text: equations
Deleted Text:  
Deleted Text: ., ).
Deleted Text: ,
Deleted Text: .
Deleted Text: ., .
Deleted Text:  
Deleted Text: (),
Deleted Text: ;
Deleted Text: ., 
Deleted Text: .
Deleted Text: -
Deleted Text:  
Deleted Text: . 
Deleted Text:  
Deleted Text: ,
Deleted Text: .
Deleted Text:  


The strictmode is faster than the loosemode, this can be ex-

plained by the two main differences: (i) the strictmode does not

compute the power set, so there are less classification procedures to

run; (ii) on each classification run one discriminating feature is elimi-

nated from the original data matrix. Therefore, the accuracy of the

models may decrease faster. Conversely, the loosemode extracts

more knowledge but is slower, because the computed power set has a

2m sets and for each one CAMUR runs the classification algorithm

again.

Finally, it is possible to execute both the strict and the loose

mode through the doublemode. This execution mode performs

first the strict and then the loosemode, storing all the models

and results into the CAMUR database.

2.2 The CAMUR software package
The CAMUR software package is composed of two distinct parts:

• Multiple Solutions Extractor (MSE);
• Multiple Solutions Analyzer (MSA).

The MSE corresponds to the implementation of the CAMUR algo-

rithm described in Section 2.1. In brief, it performs the iterative clas-

sification and feature elimination procedures and fills the database

with the results and models.

The MSE is organized in following modules:

• InputManager, which manages the user interactions and the

input;
• CamurLauncher, which executes the iterative CAMUR classifica-

tion algorithm;
• DataElaborator, which is responsible for the data set to clas-

sify and performs feature elimination;
• FeaturesManager, which manages the feature lists and power

sets;
• ResultsElaborator, which processes the classification results

and models;
• DataAccessObject(DAO), which has the responsibility to

communicate with the database.

The component diagram of the software is shown in Figure 1.

The workflow of the software is as follows: the InputManager

processes the user input data (data matrix) and the parameters (e.g.

maximum number of iterations, execution mode), input data are

taken by the CamurLauncher and managed through the

DataElaborator. Then, CamurLauncher performs the iterative

classification by managing the feature eliminations and combinations

through the FeaturesManager. The ResultsElaborator stores

the classification models and results in the database with the aid of

the DataAccessObject(DAO).

On the other hand, the MSA is a support tool dedicated to the

analysis and interpretation of the obtained results, it extracts know-

ledge from the database by running predefined queries. The follow-

ing queries have been included in the software:

Q1 Genes list: Which are all the genes that are able to distinguish

tumoral samples from normal ones in a given RNA-seq experi-

ment? And how many times do they occur in all the obtained

classification models?

In this query, we extract the list of genes and their occurrences

in all the extracted rule-based classification models.

Q2 Literals and conjunctions list: Which are the most relevant lit-

erals (e.g. gene1 > 0:7) and conjunctions (e.g. gene1 > 0:7^
gene2 < 0:4) and their related correctly classified instances?

Through this query, we identify the conjunctions of one or

more rule literals (e.g. gene1 > 0:7) optionally linked with a

logic ^. For each conjunction, we report: (i) the number of cor-

rectly (incorrectly) classified instances; (ii) the percentage of cor-

rectly (incorrectly) classified instances.

Q3 Rules list: Which are the classification rules and how is their

reliability?

In this query, we extract the rule disjunctions (i.e. conjunc-

tions linked with a logic _ ), their measures of reliability, i.e.

F – measure, accuracy (refer to Eq. 1 of Section 2.1).

Q4 Literals statistic: Which are the literals (e.g. gene1 > 0:7) that

more frequently occur within a specific range?

Such a query provides the gene name, the literal operator (e.g.

<, >), its minimum and maximum value, the values average (l)

and their standard deviation (r), the number of occurrences of

each literal with the same operator, and finally the coefficient of

variation measure defined as: r
l.

Q5 Gene pairs: Which are all the pairs of genes that appear within a

same rule and how many are their occurrences?

This query extracts all the couples of genes that are present in a

same rule and counts how many times these two genes appear

together.

The MSA is organized in the following modules:

• GraphicUserInterface, which is responsible for user inter-

actions and for showing the results of the queries;
• QueryManager, which executes the query and collects the

results;
• QueryBuilder, which builds a query according to the user input;
• QueryProcessor, which processes the query by retrieving all

the information from the database;
• DataAccessObjectðDAOÞ, which has the responsibility to

communicate with the database.

The MSA software is released with a graphic interface, which en-

ables to choose a predefined query and to set additional parameters.

It provides the real knowledge in terms of gene lists, gene inter-

actions, expression thresholds, classification results and models. A

screenshot of the graphic interface is depicted in Figure 2. The

CAMUR software package composed of the MSE and the MSA and

described above is implemented in JAVA for linux, windows and

mac-os operating systems under a GPL license and is available at

dmb.iasi.cnr.it/camur.php. A comprehensive user guide is provided

as supplementary data S1.

CAMUR database

CAMUR stores the classification models and the results of the proced-

ure into an ad-hoc storage structure, called CAMUR database. ItFig. 1. Component diagram of the MSE part of the CAMUR software package
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permits the execution of the MSA queries for knowledge extraction.

This database has a total of 16 relationships and 13 entities, the

main ones are described below:

• Run, which contains information about the execution of the

MSE;
• Experiment, which represents an execution of the classification

procedure and stores its results;
• Rule, which consists of the whole set of disjunctions that predict

a class;
• LiteralSet that is a set of conjunctions;
• Literal that is composed by a feature, an operator (i.e. >, <,

�; �;¼; 6¼) and a value;
• FoundFeaturesSet that represents the set of features ex-

tracted from the rules;
• RemovedFeaturesSet that is the set of features eliminated be-

fore an experiment execution.

CAMUR database is implemented with the open source software

MySql (www.mysql.com).

2.3 Experimental data
In this work, we test our method on RNA-seq experimental data ex-

tracted from The Cancer Genome Atlas (TCGA) (Weinstein et al.,

2013). Additionally, we validate our method on non-TCGA data.

The Cancer Genome Atlas is a project that aims to offer a com-

prehensive overview of genomic changes involved in human cancer.

A data portal available at www.tcga.org offers access to a large

number of genomic and clinical experiments related to more than

10 000 patients affected by 33 different tumor types. In addition, it

provides a collection of diverse metadata (e.g. clinical health

records) associated to the patients. The TCGA portal contains clin-

ical information, genomic characterization data, and high level se-

quence analysis of the tumor genomes.

We extract RNA-seq experiment data related to Breast (BRCA),

Head and Neck (HNSC) and Stomach (STAD) Cancers. The data

set characteristics are summarized in Table 2. For each data set, we

take into account the Reads Per Kilobase per Million mapped reads

(RPKM) value of each gene expression measure (Mortazavi et al.,

2008), which normalizes the gene raw counts by considering the

length of the gene and the total number of the fragments:

RPKM ¼ R

Nr � L
� 109 (2)

where R is the number of mapped reads onto the gene exons, Nr is

the total number of mapped reads, and L is the feature length that

corresponds to the number of nucleotides of the exonic region of the

gene. For each tumor, we build a unique matrix of RPKM values,

where the rows correspond to the samples, the columns to genes,

and the cells to the RPKM values. The matrix given as input to

CAMUR is similar to that one depicted in Table 1 of Section 2. An ad-

hoc software ‘Tcga2Camur’ that converts the TCGA RNA-seq data

sets into the CAMUR data matrix has been developed and is avail-

able at dmb.iasi.cnr.it/camur.php.

It is worth noting that CAMUR can be applied also to gene ex-

pression data processed by other normalization methods, such as

RSEM (RNA-seq by Expectation Maximixation) (Li and Dewey,

2011). RSEM guesses how many ambiguously mapping reads be-

long to a transcript/gene (i.e. raw count value of the TCGA data)

and estimates the frequency of the gene/transcript among the

sequenced transcripts (i.e. scaled estimate value of the TCGA

data). RSEM provides an accurate transcript quantification with-

out requiring a reference genome. In particular, we test CAMUR on

RNA-seq data of BRCA extracted from TCGA and normalized

with the RSEM method.

Moreover, we validate CAMUR on a non-TCGA data set: the

Wilms Tumor (WT) (Walz et al., 2015) among the Kidney Tumors

of the Therapeutically Applicable Research to Generate Effective

Treatments (TARGET) project.

Finally, we evaluate CAMUR classification models on non-TCGA

BRCA data sets downloaded from Gene Expression Omnibus

(GEO) with accession numbers GSE56022 and GSM1308330.

3 Results and discussion

In this section, we provide an overview of the extracted know-

ledge from the analyzed data, including statistics of the per-

formed experiments, and a more specific discussion of the

obtained results.

Fig. 2. Screenshot of the MSA part of the CAMUR software package: it displays

the initial parameters configuration available to the user

Table 2. Summary of the analyzed data sets

Cancer Tissues Tumoral Normal Genes [MB]

BRCA 884 783 101 20532 292

HNSC 295 264 31 20532 92

STAD 271 238 33 29699 56

The three data sets are extracted from The Cancer Genome Atlas. The

numbers refer to the sequenced tissues, belonging to tumoral and normal

classes (first three columns). It is worth noting that for each data set the num-

ber of analyzed samples corresponds to the number of tumoral tissues (third

column). The last two columns refer to the number of genes and the size of

the three data sets.
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We analyzed the TCGA data sets of Breast, Head and Neck, and

Stomach Cancers with both the loose and the strictmode of

CAMUR. CAMUR ran a total of 1486 classification procedures with a

percentage split sampling schema (80% training, 20% test) (Tan et

al., 2005b). The classification procedures stopped either for the

decreasing of the classification performances, or because the max-

imum number of iterations was reached. On average, the obtained

precision, recall and F – measure values are greater than 99%.

Within the generated rules CAMUR found 904 different genes, each

gene is found on average 23.34 times (the occurrences of each gene

range from 1 to 900). CAMUR computed 8182 sets of combinations

(736 in strictmode and 7446 in loosemode), each one com-

posed of 1–7 genes (average 2.57). The amount of removed sets is

1480 (364 in strictmode, 1116 in loosemode), which represent

the removed genes from a data set. The number of genes within

these sets is on average 2.025 and the values range from 1 to 6.

The CAMUR analysis (strict and loosemode) on the Breast,

the Head and Neck and the Stomach Cancer data set provides 513,

218 and 272 different genes, respectively. The corresponding gene

expressions allow the scientist to distinguish normal samples from

tumoral ones and they are potential markers for the diseases.

The total amount of gene pairs identified in all rule sets are

20139, 610 and 272, for the Breast, the Head and Neck and the

Stomach Cancer, respectively. Among those genes pairs, 2212 for

Breast, 256 for Head and Neck, 137 for Stomach Cancer have been

found into rule sets containing exactly a pair of genes.

We show the execution times of CAMUR in Table 3. It is worth not-

ing that the processing of the Breast Cancer data set requires longer

time, because of the large number of samples and of the rules size.

In the following, we report the extracted knowledge related to

the Breast cancer by discussing the obtained results of each query

described in Section 2.1. The results related to the other data sets

can be found in supplementary data S2.

With query 1 (features list), we extract 383 genes and their oc-

currences found by CAMUR during the classification experiments. We

show in Table 4 an example of the results of this query.

The extracted genes are sorted by their occurrences, which may

point to a relation with the disease. In Table 5, we provide a list of

the most frequent 12 genes extracted during the execution of

CAMUR.

With query 2 (conjunctions list), we extract 1708 conjunctions

and the values of the correctly (incorrectly) classified samples. For

example, we extracted ‘(SDPRj8436�11.6) ^ (ANXA1j301

�161.3) ) Normal’ that classified correctly all the 87 instances of

the test set. Query 3 (disjunctions list) extracts 1564 classification

rules, e.g. ‘(SPRY2j10253�14.4) ^ (C20orf160j140706�1.8) _
(COL10A1j1300�0.7) ^ (AASSj10157�1.6) ) Normal’, which

provides an accuracy of 100%. Through query 4 (literal statistics),

we extract 397 most frequent genes and we may capture if they

show comparable expression values. An interesting example for the

output interpretation of query 3 in Breast Cancer is: gene

TMEM220j388335 occurs 33 times, and its attribute value is

�2:660:007, and hence provides a strong and stable signal. Query 5

(pairs of features) displays 2212 pairs of genes and a counter of how

many times they appear together. The pairs that appear mostly are

depicted in Table 6. Additionally, it is worth noting that the user

can define personalized queries and run them directly on the

database.

Furthermore, among the gene lists extracted by CAMUR, we

found 3 genes (i.e. ACOT7j11332, ADARj103 and

GLT25D1j79709) shared by Breast, Head and Neck and Stomach

Cancer set: in panel a of Figure 3 we show all the overlaps among

the three sets of genes through an Eulero-Venn diagram. A prelim-

inary functional analysis on the human protein atlas (Uhlén et al.,

2015) confirms the relation of those genes with the three above-

mentioned cancer types.

In order to strengthen CAMUR, we performed the following tests.

Since we have not found other state of the art classification algo-

rithms that implement multiple models extraction, a direct compari-

son of our method is not feasible. Therefore, we compared CAMUR

with respect to a standard wide-spread technique that relies on the

differential expression analysis (Storey and Tibshirani, 2003)

Table 3. CAMUR execution times

Cancer Total time [h] Loose mode time [h] Strict mode time [h]

BRCA 6 h:56 m 6 h:17 m 0 h:39 m

HNSC 0 h:33 m 0 h:26 m 0 h:7 m

STAD 0 h:27 m 0 h:17 m 0 h:10 m

The execution times for Breast (BRCA), Head and Neck (HNSC), Stomach

(STAD) Cancer. Times are reported in hours.

Table 6. An example of the output for query 5

Gene 1 Gene 2 Occurrences

FIGFj2277 MMP11j4320 100

CGB7j94027 ADAMTS5j11096 73

SDPRj8436 ANXA1j301 37

EPDR1j54749 MMP11j4320 34

� � � � � � � � �

Table 4. A portion from the output results of the ‘list of attributes’

query

Gene Occurrences

ADAMTS5j11096 109

MMP11j4320 102

FIGFj2277 84

SDPRj8436 82

COL10A1j1300 51

� � � � � �

Fig. 3. Eulero-Venn diagram of the CAMUR gene lists for BRCA, HNSC and

STAD: (a) diagram of overlapped genes extracted by CAMUR; (b) diagram of

the overlapped genes between the CAMUR gene lists and the differential ex-

pressed ones

Table 5. List of the most common 12 genes (row-wise) extracted by

CAMUR

MMP11j4320 ADAMTS5j11096 SDPRj8436

FIGFj2277 CGB7j94027 COL10A1j1300

TMEM220j388335 ARHGAP20j57569 SPRY2j10253

ACSM5j54988 FXYD1j5348 EPDR1j54749
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and that provides a list of statistically significant genes related to

case–control samples, by applying Benjamini-Hochberg correction

(Benjamini and Hochberg, 1995) to estimate a False Discovery Rate

(FDR)-adjusted p-value. We extracted a list of 1851, 787, 1296

genes with a P-value �0:001 for BRCA, HNSC and STAD, respect-

ively. The above-mentioned lists were compared with those ex-

tracted by CAMUR. We found 36 for BRCA, 11 for HNSC, 99 for

STAD genes that are shared in both lists (panel b of Fig. 3). The lists

of shared genes are available as supplementary data S3. It is worth

noting that the size of the lists extracted by CAMUR is smaller, and

hence our approach allows to focus on few core genes related to the

investigated disease. Additionally, most of those genes are not se-

lected by the differential expression analysis enhancing the novelty

of our approach.

Additionally, we ran several tests to validate CAMUR, its classifi-

cation models, and its performances. The detailed results are avail-

able as supplementary data S4. First, we randomly selected ten

BRCA rules extracted by CAMUR and verified them on two external

breast cancer RNA-seq data sets of GEO (GSE56022 and

GSM1308330). Most of the rules succeed in the identification of

the diseased samples confirming the validity of our method: 9 out

of 10 correctly cover the GSM1308330 samples, 7 out of 10 the

GSE56022 ones (but we remark that 2 of the not successful rules

cannot be applied because a gene is not present in the data set).

Second, we tested CAMUR on a non-TCGA data set: the Wilms

Tumor (WT) (Walz et al., 2015) of the (TARGET) project. It con-

sists of 94 tissues (82 tumoral, 12 normal) and 58450 mRNA gene

expression values normalized with the RPKM method. CAMUR per-

formed 320 runs (212 loose and 108 in strictmode) finding

231 different genes with an average F-measure of 0.98. Third, we

validated CAMUR on RNA-seq data of BRCA normalized with the

RSEM method. CAMUR executed 2048 classification experiments

(1895 loose and 153 in strictmode) and extracted 986 differ-

ent genes with an average F-measure of 0.99. Finally, we per-

formed a comparative analysis of CAMUR with respect to the SVM

classifier by computing the same number of classification runs:

both methods reached high reliable results (average F-measure of

0.97 for SVM, 0.99 for CAMUR) on all data sets. We remark that

SVM outputs just a single classification model that cannot be easily

interpreted by human experts.

4 Conclusion

In this work, we presented CAMUR, a new method for multiple solu-

tions extraction in rule-based classification problems. We showed

that the amount of knowledge extracted by our algorithm is higher

than a standard supervised classification. We described the two

parts of CAMUR software package: MSE that performs the classifi-

cation procedure and MSA that analyzes the obtained results.

Additionally, we designed and developed a database for an effect-

ive and comprehensive knowledge extraction. We proved the effi-

cacy of our algorithm on large sets of RNA-seq data, focusing on

Breast, Head and Neck and Stomach Cancer from TCGA, and vali-

dating it on external data sets from TARGET and GEO. To con-

clude, CAMUR results as a reliable technique for solving

classification problems by extracting many alternative and equally

accurate solutions.

In future, we intend to test our method on other RNA-seq data

sets in order to build a large knowledge repository of classification

models related to a particular disease. The extracted genes may then

be analyzed by domain experts with functional and enrichment ana-

lyses (D’Andrea et al., 2013). It would be also interesting to perform

a simulation study for evaluating the performance of CAMUR under

different scenarios in a quantitative manner. Additionally, we plan

to integrate in our software other rule-based classifiers, as well as to

enrich the software with new functions and higher performances.

Finally, we plan to extend the analysis to other biological data sets

as sequences classification, e.g. DNA-Barcoding.
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