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A B S T R A C T   

The tripeptide glutathione (GSH) is instrumental to antioxidant protection and xenobiotic metabolism, and the 
ratio of its reduced and oxidized forms (GSH/GSSG) indicates the cellular redox environment and maintains key 
aspects of cellular signaling. Disruptions in GSH levels and GSH/GSSG have long been tied to various chronic 
diseases, and many studies have examined whether variant alleles in genes responsible for GSH synthesis and 
metabolism are associated with increased disease risk. However, past studies have been limited to established, 
canonical GSH genes, though emerging evidence suggests that novel loci and genes influence the GSH redox 
system in specific tissues. The present study marks the most comprehensive effort to date to directly identify 
genetic loci associated with the GSH redox system. We employed the Diversity Outbred (DO) mouse population, a 
model of human genetics, and measured GSH and the essential redox cofactor NADPH in liver, the organ with the 
highest levels of GSH in the body. Under normal physiological conditions, we observed substantial variation in 
hepatic GSH and NADPH levels and their redox balances, and discovered a novel, significant quantitative trait 
locus (QTL) on murine chromosome 16 underlying GSH/GSSG; bioinformatics analyses revealed Socs1 to be the 
most likely candidate gene. We also discovered novel QTL associated with hepatic NADP+ levels and NADP+/ 
NADPH, as well as unique candidate genes behind each trait. Overall, these findings transform our understanding 
of the GSH redox system, revealing genetic loci that govern it and proposing new candidate genes to investigate 
in future mechanistic endeavors.   

1. Introduction 

Glutathione is a ubiquitous and versatile intracellular antioxidant 
[1]. A tripeptide comprised of glycine, glutamate, and cysteine, its 
biochemical functions are mediated by a sulfhydryl group on the 
cysteine residue [2]. In the cell, glutathione mostly exists in its reduced 
thiol form (GSH), and enzymes such as glutathione peroxidase (GPx) and 
glutaredoxins convert it to the dimer glutathione disulfide (GSSG), 
which is recycled back to two molecules of GSH via NADPH-dependent 
glutathione reductase (GR) [1,3]. Though GSH and GSSG are in a con
stant state of flux, their levels – and the ratio GSH/GSSG, or 2GSH/GSSG 
– provide an informative glimpse into the redox environment of the cell 
and shifts in these values often indicate oxidative stress [1,4]. Further
more, decreases in tissue GSH levels and GSH/GSSG, and corresponding 
increases in GSSG levels, have been observed in a wide array of chronic 
diseases including liver disease [5,6], chronic kidney disease [7,8], heart 
disease [9,10], diabetes mellitus [11–13], and obesity [14]. 

Because of the close relationship between GSH and chronic diseases, 
many studies have sought to determine whether variant alleles in genes 
encoding GSH-related enzymes, including GPx and GR, predict chronic 
disease risk in human populations. GPX1 polymorphisms have been 
associated with increased risk of breast cancer [15,16], chronic kidney 
disease [17], prostate cancer [18], coronary artery disease [19], acute 
myeloid leukemia [19], and diabetes-related kidney complications [20]. 
Moreover, variants in GPX isoforms have been associated with risk for 
arterial ischemic stroke in young adults and children (GPX3) [21] and 
prepubertal childhood obesity (GPX4, 5, and 6) [22], though these 
trends have not been consistent across all populations [23–28]. Other 
studies have examined the disease relevance of polymorphisms in genes 
involved in glutathione biosynthesis, notably glutathione cysteine ligase 
(GCL) and glutathione synthetase (GS), which directly affect cellular 
GSH concentrations [29]. Polymorphisms in the catalytic subunit of GCL 
(GCLC) have been associated with cystic fibrosis [30], chronic 
obstructive pulmonary disease [31], pulmonary tuberculosis [32], drug 
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sensitivity in human tumor cell lines [33], methylmercury retention 
[34], vasomotor function and myocardial infarction [35,36]. Functional 
polymorphisms in the GCL modifier subunit (GCLM) have been linked 
with ischemic heart disease and vasomotor function [36,37], and in 
some cases, schizophrenia [38–40]. Lastly, polymorphisms in GS have 
been associated with susceptibility to lung dysfunction and lung cancer, 
as well as patient survival [41,42]. Mutations in these genes have also 
been found in patients with inborn errors in glutathione metabolism, 
though the diseases are rare [43–47]. 

While most genetics studies have focused on core genes with estab
lished functions in GSH biosynthesis and metabolism, emerging evi
dence suggests that novel loci and genes impact tissue GSH dynamics as 
well. Multiple studies have shown that GSH and GSSG levels and GSH/ 
GSSG are heritable in mice [48–52] and humans [53] alike, and Zhou 
et al. discovered new genetic loci associated with hepatic GSH levels and 
GSH/GSSG in mice [51]. However, those genes were found using a panel 
of inbred mouse strains, which do not fully reflect the human condition, 
and many in silico mapping tools have limited power and a predisposi
tion toward false positives [54–56]. Thus, more powerful and compre
hensive approaches are needed to identify genes that truly govern tissue 
GSH levels and redox balance, and ultimately, affect chronic disease 
risk. 

In the present study, we performed genome-wide analysis of hepatic 
GSH and GSSG levels, as well as GSH/GSSG, in the Diversity Outbred 
(DO) mouse stock, which models the genetic diversity of humans and 
facilitates high-precision mapping of quantitative trait loci (QTL) [57, 
58]. To best understand the genetics of the entire GSH system [59], we 
expanded our analysis to include the redox cofactor NADPH, which is 
essential for GSH recycling [60], and its precursor NADH. To our 
knowledge, this is the most comprehensive genetic mapping study to 
focus on tissue GSH homeostasis, and overall, our results point to novel 
loci and candidate genes that will vastly expand our understanding of 
this essential redox system and its regulation. 

2. Materials and methods 

2.1. Mice 

Male and female Diversity Outbred (DO) mice (J:DO; JAX® 
#009376) from generations 30, 32, and 35 were purchased from The 
Jackson Laboratory (Bar Harbor, ME USA); the DO stock was originally 
generated from eight inbred founder strains: A/J (AJ), C57BL/6J (B6), 
129S1/SvImJ (129), NOD/ShiLtJ (NOD), NZO/HlLtJ (NZO), CAST/EiJ 
(CAST), PWK/PhJ (PWK), and WSB/EiJ (WSB). All mice arrived at 4 
weeks of age and were given ad libitum access to water and standard 
chow diet (LabDiet®, St. Louis, MO USA, product 5053) and kept on a 12 
h light-dark cycle. These conditions were maintained until the mice 
were sacrificed at 5–6 months of age. Prior to sacrifice, and during the 
light cycle, all mice were fasted for 3–4 h. Then mice were humanely 
euthanized by cervical dislocation and tissues were collected for anal
ysis. A total of 351 mice (174 males, 177 females) were sacrificed, and at 
the time of harvest, total body weight (g), liver weight (g), and liver 
weight/body weight (%) were documented (Supplementary 
Tables S1–S3; Supplementary Figure S1). The University of Georgia 
Institutional Animal Care and Use Committee (IACUC) approved all 
methods and procedures involving animals in accordance with the 
ethical standards of the institution (AUP #A2016-07-016), and all 
methods and procedures were carried out in accordance with the Na
tional Institutes of Health guide for the care and use of Laboratory an
imals (NIH Publications No. 8023, revised 1978). 

2.2. Assessment of hepatic total glutathione, GSH, GSSG, and redox 
ratios 

Samples of liver tissue were promptly harvested from each mouse 
after humane euthanasia. Tissues were rinsed with ice-cold PBS, 

promptly blotted on a paper towel, and flash frozen in liquid nitrogen. 
Within 12 h of each harvest, samples were homogenized in PBS con
taining 10 mM diethylenetriaminepentaacetic acid (DTPA) and 
promptly acidified with an equal volume of ice-cold 10% perchloric acid 
(PCA) containing 1 mM DTPA as previously described [52,61]. Acidified 
samples underwent centrifugation (15,000 RPM at 4C for 15 min) and 
the acidified supernatant was collected and filtered. Filtered supernatant 
samples were stored at − 80◦C until analysis, and all samples were 
analyzed within 6 months. GSH and GSSG concentrations were quanti
fied in each sample by HPLC coupled with electrochemical detection 
(Dionex Ultimate 3000, Thermo Fisher Scientific, Waltham, MA USA) 
based on previously published methods [61]. A conditioning cell was set 
to +500 mV and placed immediately before the boron-doped diamond 
cell which was set at +1475 mV with a cleaning potential at +1900 mV 
between samples. The mobile phase consisted of 4.0% acetonitrile, 0.1% 
pentafluoropropionic acid, and 0.02% ammonium hydroxide. The flow 
rate was maintained at 0.22 mL/min and injection volumes were set at 
5.0 μL. Peaks were quantified using external GSH and GSSG standards, 
external calibration, and the Chromeleon Chromatography Data System 
Software (Dionex Version 7.2, Thermo Fisher Scientific, Waltham, MA 
USA). Total glutathione concentrations were determined by calculating 
[GSH] + [2GSSG] and all glutathione concentrations were standardized 
to total protein (Pierce BCA Protein Assay, Thermo Fisher Scientific, 
Waltham, MA USA) and expressed in nmol/mg protein. The ratio of 
GSH/GSSG was then calculated. Another commonly reported measure
ment related to GSH dynamics and oxidative stress is the redox potential 
Eh of the redox couple [62–67]. To calculate the redox potential (Eh) of 
the GSSG-GSH pair (2GSH →GSSG+2e− +2H+) in each liver sample, we 
used the Nernst equation at 40 ◦C: 

Eh =E0 +
RT
nF

ln
[ (ox)
(red)

]

Eh = measured cell potential, E0 = standard electrode potential for 
GSSG/2GSH (− 264 mV at pH 7.4 [63–65]), R = gas constant (8.3145 J x 
mol− 1 x K− 1), T = temperature in Kelvin (313.15 K), n = number of 
electrons transferred (2), F = Faraday’s constant (96485C x mol− 1), ox 
= molar concentration of oxidant (GSSG), and red = molar concentra
tion of reductant (GSH). The exponential of GSH reflects the stoichi
ometry where 2 GSH are oxidized per 1 GSSG formed [62]. Tissue 
concentrations of GSH and GSSG (nmol/mg protein) were expressed in 
molar concentrations [66,67] using a conversion factor of 500 μL/mg of 
protein. The final equation used to calculate Eh (mV) for the GSSG-GSH 
couple was: 

Eh(mV)= − 264 + 31 log
[
(GSSG)

(GSH)
2

]

2.3. Assessment of hepatic NADPH, NADP+, NADP+/NADPH, and 
NADH 

Liver samples collected at harvest were rinsed with ice-cold PBS, 
blotted on a paper towel, and flash frozen in liquid nitrogen. Within 12 h 
of each harvest, samples were homogenized, processed, and analyzed by 
kit (NADP/NADPH Quantification Kit and NAD/NADH Quantification 
Kit, MilliporeSigma, Burlington, MA USA) according to the manufac
turer’s instructions. All nicotinamide adenine dinucleotide (NAD) phe
notypes were standardized to total protein (Pierce BCA Protein Assay, 
Thermo Fisher Scientific, Waltham, MA USA) and expressed in pmol/μg 
protein. 

2.4. Genotyping 

Genotyping was performed on all 351 DO samples. DNA was 
extracted from tail tips collected at sacrifice and subsequently geno
typed using the third-generation Mouse Universal Genotyping Array 
(GigaMUGA) [68] performed by GeneSeek (Neogen Genomics, Lincoln, 
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NE USA, 68504). This 143K-probe array is built on the Illumina Infinium 
II platform and has been optimized for genetic mapping in the DO 
populations. 

2.5. Quantitative trait loci (QTL) mapping 

Genome scans were performed using 347 (172 male, 175 female) of 
the original 351 DO samples; 2 mice were excluded from QTL analysis 
because they were XO females, and 2 were excluded due to low call 
rates. Prior to analysis, all phenotypic data underwent z-score trans
formation to ensure normality [69]. We then performed genomes scans 
using R/qtl2 software [58], and for each phenotype, scans included sex 
and experimental cohort as additive covariates. Each genome scan 
model also accounted for kinship among the DO mice using the “leave 
one chromosome out” (LOCO) method [58,70]. Significance thresholds 
were determined for individual traits by performing 1000 permutations 
[58,71,72], and we applied a suggestive threshold (p-value≤0.20) for 
reporting QTL loci based on the permutation analysis [72]. A 95% 
Bayesian credible interval was calculated around each peak using the 

R/qtl2 find_peaks and bayes_int functions [58,71]. To estimate allelic 
contributions of the eight founder strains at specific QTL, we used the 
Best Linear Unbiased Predictors (BLUPs) model within R/qtl2 [73]. 
Genes within Bayesian credible intervals ±1 Mbp were plotted using 
R/qtl2 via connection with the Mouse Genome Informatics (MGI) 
database. All genotype data, genotype probabilities, and marker infor
mation are publicly available through figshare (https://doi.org/10. 
6084/m9.figshare.c.5360501.v1). All source code, phenotype data, 
and other files used in QTL analyses are available through a public 
GitHub repository (https://doi.org/10.5281/zenodo.4683881). 

2.6. Candidate gene analysis 

To interrogate the plausibility of candidate genes within significant 
and suggestive loci, we used an integrative bioinformatics approach that 
queried databases for expression, phenotypic, and functional annota
tions based on previously published methods [74,75]. First, we identi
fied all protein-coding and functional RNA genes within the significant 
QTL intervals ±1 Mbp reported by R/qtl2 using the Unified Mouse 

Table 1 
Descriptive statistics for hepatic redox system metabolites in DO mice.  

Phenotype N x‾ Median SD Min Max 

Total Glutathione (nmol/mg) 346 45.945 43.045 19.215 10.183 117.232 
GSH (nmol/mg) 346 44.695 41.971 18.708 9.843 113.359 
GSSG (nmol/mg) 347 0.627 0.558 0.346 0.140 2.288 
GSH/GSSG 346 78.052 74.714 25.120 31.894 177.181 
Eh (mV) 346 − 195.278 − 195.477 7.707 − 215.556 − 166.948 
NADPH (pmol/μg) 335 0.262 0.238 0.170 0.011 0.898 
NADP+ (pmol/μg) 331 0.981 0.890 0.450 0.157 2.575 
NADP+/NADPH 319 9.888 3.694 19.499 0.460 161.363 
NADH (pmol/μg) 332 2.788 2.788 1.233 0.293 7.572  

Fig. 1. Variation in hepatic glutathione concentrations and redox balance in the DO population. Hepatic concentrations of A. Total Glutathione (GSH+2GSSG, 
expressed in nmol/mg); B. GSH (nmol/mg); C. GSSG (nmol/mg); D. GSH/GSSG; and E. Redox Potential of the GSSG-GSH couple, indicated as Eh (mV) were 
measured in a population of DO mice. Values are arranged from smallest to largest, and the N for each measurement is provided underneath each panel. 
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Genome Feature Catalog within the Mouse Genome Informatics (MGI) 
database. Second, for each genome feature in the region, we compiled 
expression annotations from the bioinformatics resources listed in 
Supplementary Table S4. Gene expression annotations were collected 
from the EBI Expression Atlas (EEA) [76] and the Gene eXpression 
Database (GXD) [77] through MGI [78]. Functional annotations were 
collected using InterPro [79] and Gene Ontology (GO) annotations [80, 
81] obtained through MGI [78]. All phenotypic data relevant to the liver 
were collected from PheWeb [82] and Ensembl BioMart [83]. 

2.7. Statistical analysis 

IBM SPSS Statistics version 26 (SPSS Inc., Chicago, IL USA) was used 
to detect the significance of relationships between variables of interest. 
Mann-Whitney tests were used to compare variables between sex to 
elucidate any sex-effects between variables, and the test included a U 
statistic and a standard error. RStudio version 1.3.1093 (RStudio, PBC., 
Boston, MA USA) and R version 4.0.2 (R Foundation for Statistical 
Computing, Vienna, Austria) were used to evaluate correlations between 
values and rank-based Spearman’s rho (ρ) was calculated for each 
relationship. A relationship between variables was considered statisti
cally significant if the p-value was less than 0.05. 

3. Results 

3.1. Hepatic GSH and NADPH vary significantly among outbred mice 

In a large cohort of genetically-diverse DO mice, we measured he
patic concentrations of GSH and GSSG, as well as GSH/GSSG, and found 
that under normal physiological conditions, these phenotypes vary 
widely (Table 1; Fig. 1). Hepatic concentrations of total glutathione and 
GSH exhibited an over 11-fold difference, ranging from 10.183 to 
117.232 nmol/mg and 9.843 to 113.359 nmol/mg, respectively. Hepatic 
GSSG concentrations ranged from 0.140 to 2.288 nmol/mg, reflecting a 
16-fold difference, and GSH/GSSG ranged from 31.894 to 177.181, over 
a 5-fold difference. We observed a significant degree of variation in 
hepatic Eh with a range of − 215.556 to − 166.948 mV, a 1.3-fold dif
ference. There were no sex effects observed for any of these phenotypes 
(Supplementary Tables S5 and S6). 

A similar degree of variation was observed in the redox cofactor 

NADPH and its precursor NADH (Table 1; Fig. 2). NADP+ concentrations 
ranged from 0.157 to 2.575 pmol/μg, over a 16-fold difference, while its 
reduced form NADPH ranged from 0.011 to 0.898 pmol/μg, over an 81- 
fold difference. NADP+/NADPH ranged from 0.460 to 161.363, over a 
350-fold difference. NADH ranged from 0.293 to 7.572 pmol/μg, over a 
25-fold difference. Sex-specific values are found in Supplementary 
Tables S5 and S6. 

We screened for statistical associations among variables and 
discovered multiple significant correlations. Association results are lis
ted in Table 2 and shown visually in Fig. 3. Hepatic total glutathione 
concentrations were positively correlated with GSH concentrations (ρ =
1.000, p = <0.001), GSSG concentrations (ρ = 0.801, p = <0.001), and 
GSH/GSSG levels (ρ = 0.120, p = 0.026), and were strongly negatively 
correlated with Eh levels (ρ = − 0.799, p = <0.001). Hepatic GSH con
centrations were positively correlated with GSSG concentrations (ρ =
0.791, p = <0.001) and GSH/GSSG levels (ρ = 0.137, p = 0.011), and 
were negatively correlated with Eh levels (ρ = − 0.810, p = <0.001). 
Hepatic GSSG concentrations were negatively correlated with GSH/ 
GSSG levels (ρ = − 0.443, p = <0.001) and Eh levels (ρ = − 0.326, p =
<0.001). Hepatic GSH/GSSG levels were negatively correlated with Eh 
levels (ρ = − 0.652, p = <0.001). 

Hepatic NADPH concentrations were positively correlated with total 
glutathione concentrations (ρ = 0.265, p = <0.001), GSH concentra
tions (ρ = 0.267, p = <0.001), and GSSG concentrations (ρ = 0.203, p =
<0.001), and negatively correlated with NADP+ concentrations (ρ =
− 0.278, p = <0.001), NADP+/NADPH levels (ρ = − 0.846, p = <0.001) 
and Eh levels (ρ = − 0.234, p = <0.001). Hepatic NADP+ concentrations 
were negatively correlated with total glutathione concentrations (ρ =
− 0.306, p = <0.001), GSH concentrations (ρ = − 0.306, p = <0.001), 
GSSG concentrations (ρ = − 0.269, p = <0.001), and NADP+ concen
trations (ρ = − 0.142, p = 0.010), and positively correlated with NADP+/ 
NADPH levels (ρ = 0.711, p = <0.001) and Eh levels (ρ = 0.226, p =
<0.001). Hepatic NADP+/NADPH levels were positively correlated with 
Eh levels (ρ = 0.240, p = <0.001) and negatively correlated with total 
glutathione concentrations (ρ = − 0.296, p = <0.001), GSH concentra
tions (ρ = − 0.297, p = <0.001), and GSSG concentrations (ρ = − 0.233, 
p = <0.001). Neither NADPH or NADP+, nor the NADP+/NADPH ratio 
were found to be correlated with GSH/GSSG (p = 119, p = 0.850, and p 
= 0.208, respectively). Hepatic NADH concentrations were positively 
correlated with NADPH (ρ = 0.191, p = 0.001), total glutathione 

Fig. 2. Variation in hepatic NAD(P)H concentrations and redox balances in the DO population. Hepatic concentrations of A. NADPH (pmol/μg); B. NADP+ (pmol/ 
μg); C. NADP+/NADPH; and D. NADH (pmol/μg) in a population of DO mice. Values are arranged from smallest to largest, and the N for each measurement is 
provided underneath each panel. 

R.L. Gould et al.                                                                                                                                                                                                                                



Redox Biology 46 (2021) 102093

5

concentrations (ρ = 0.250, p =<0.001), GSH concentrations (ρ = 0.253, 
p = <0.001), GSSG concentrations (ρ = 0.123, p = 0.025), GSH/GSSG 
levels (ρ = 0.186, p = 0.001), and were negatively correlated with 
NADP+/NADPH levels (ρ = − 0.181, p = 0.001), and Eh levels (ρ =
− 0.307, p = <0.001). 

Relationships between redox phenotypes and liver weights were also 
observed, with positive associations between liver weights and total 
glutathione concentrations (ρ = 0.137, p = 0.011), GSH concentrations 
(ρ = 0.136, p = 0.012), and GSSG concentrations (ρ = 0.176, p = 0.001). 
Liver weights were also positively correlated with NADPH concentra
tions (ρ = 0.203, p = <0.001) and negatively correlated with NADP+

concentrations (ρ = − 0.218, p = <0.001) and NADP+/NADPH (ρ =
− 0.262, p = <0.001). NADH was not correlated with liver weight (ρ =
− 0.063, p = 0.253). 

3.2. QTL mapping of the hepatic GSH redox system 

We performed QTL analysis using R/qtl2 on all measured markers of 
the GSH redox system (Fig. 4). Here we outline the results of statistically 
significant peaks, yet it should be noted that multiple other peaks sur
passed LOD scores of 6 but failed to surpass significance thresholds 

calculated through 1000 permutation tests. Genome-wide scans for he
patic concentrations of total glutathione and GSH revealed a suggestive 
peak (LOD scores 6.755 and 6.748, respectively) on mouse chromosome 
14 (founder allele effects and candidate gene results are included in 
Supplementary Figures S2 and S3). Mapping GSH/GSSG and Eh revealed 
a significant (p-value ≤ 0.05) peak on mouse chromosome 16 at 8.998 
Mbp (LOD scores 8.224 and 8.598, respectively). Given that the peak 
position was the same between the two scans, we focused on GSH/GSSG 
results, which are outlined in Fig. 5, while Eh results are provided in 
Supplementary Figure S4. 

The genome-wide scan for GSH/GSSG revealed a significant peak on 
mouse chromosome 16 with a QTL interval of 8.865–10.077 Mbp 
(Fig. 5A). Within the interval, founder allele effects were extrapolated, 
showing that the AJ allele contributes to a higher GSH/GSSG, whereas 
the 129 allele contributes to a lower GSH/GSSG (Fig. 5B). Genes found 
within this interval ±1 Mbp were plotted using R/qtl2 through 
connection with the MGI database (Fig. 5C), and functional RNA and 
protein-coding genes were collected and screened for physiological 
relevance using existing expression, functional, and phenotypic anno
tations (Supplementary Table S7). The QTL interval contained 66 
possible candidate genes: 29 protein-coding, 35 non-coding RNA, and 2 
unclassified (GRCm38/mm10; gene query performed November 2020, 
Feature Type “gene” [78]). 30 of the 66 GSH/GSSG candidate genes had 
limited hepatic expression annotations and were therefore excluded. Of 
the remaining 36 candidate genes, 22 were limited to hepatic expression 
data only, and the remaining 14 candidate genes had annotations with 
functional relevance to the GSH redox system: transmembrane protein 
114 (Tmem114), predicted gene 5767 (Gm5767), RIKEN cDNA 
1810013L24 gene (1810013L24Rik), ribosomal protein L39-like 
(Rpl39l), activating transcription factor 7 interacting protein 2 
(Atf7ip2), predicted gene 1600 (Gm1600), nucleotide binding protein 1 
(Nubp1), trans-golgi network vesicle protein 23A (Tvp23a), class II 
transactivator (Ciita), C-type lectin domain family 16, member A 
(Clec16a), suppressor of cytokine signaling-1 (Socs1), protamine 3 
(Prm3), protamine 2 (Prm2), and LPS-induced TN factor (Litaf). Based on 
functional and phenotypic annotations, Socs1 
(Chr16:10783808–10785536 bp; 5.81 cM; GRCm38) was determined to 
be the most likely candidate gene within the interval. SOCS1 functions 
as a negative regulator of cytokine signaling, including the 
JAK/STAT-signaling pathway, as well as insulin and toll-like receptor 
(TLR) signal transduction [84]. Importantly, SOCS1 has been involved 
in p53 activation and subsequent repression of the transcription of 
SLC7A11 [85] – a cystine/glutamate antiporter and regulator of intra
cellular cysteine concentrations, the rate-limiting precursor for GSH 
biosynthesis [86,87]. As a result of its suppression of SLC7A11, SOCS1 
expression has been found to negatively correlate with GSH levels [85]. 
Furthermore, SOCS1 negatively regulates the nuclear factor-κB (NF-κB) 
transcription complex, specifically the p65 subunit, by acting as a 
ubiquitin ligase and prompting proteasome-mediated degradation [88]. 
NF-κB is transcription factor and activation of NF-κB is critical in 
maintaining cellular GSH concentrations [89] and expression of en
zymes involved in GSH synthesis [90]. 

3.3. QTL mapping of the hepatic NAD(P)H phenotypes 

Genome-wide scans were conducted for the following NADPH redox 
phenotypes: NADPH, NADP+, NADP+/NADPH, and NADH (Fig. 6). 
Scans for NADPH and NADH included peaks that surpassed LOD score 6 
or more yet failed to reach significance. The genome-wide scan for 
NADP+ revealed a suggestive peak (p-value≤0.20) on mouse chromo
some 3 at 110.517 Mbp (LOD score 7.032) with a QTL interval of 
109.677–115.729 Mbp (Fig. 7A). Founder allele effects showed that the 
WSB and PWK alleles contribute to a higher NADP+ concentration, 
whereas the NOD and CAST alleles contribute to a lower NADP+ con
centration (Fig. 7B). Genes located within this interval ±1 Mbp were 
plotted using R/qtl2 (Fig. 7C) and existing biological annotations were 

Table 2 
Statistical relationships among markers of the hepatic GSH redox system as well 
as liver weights. 
Spearman’s rho (ρ) was calculated for each variable combination. Total gluta
thione, GSH, and GSSG concentrations were standardized as nmol/mg protein. 
Concentrations of NADPH, NADP, and NADH were standardized as pmol/μg 
protein. Eh was expressed as mV. Liver weight was reported in grams (g). * in
dicates a significant relationship (p≤0.05).  

Variables ρ p-value 

Total Glutathione, GSH 1.000* <0.001 
Total Glutathione, GSSG 0.801* <0.001 
Total Glutathione, GSH/GSSG 0.120* 0.026 
Total Glutathione, Eh − 0.799* <0.001 
Total Glutathione, NADPH 0.265* <0.001 
Total Glutathione, NADP+ − 0.306* <0.001 
Total Glutathione, NADP+/NADPH − 0.296* <0.001 
Total Glutathione, NADH 0.250* <0.001 
GSH, GSSG 0.791* <0.001 
GSH, GSH/GSSG 0.137* 0.011 
GSH, Eh − 0.810* <0.001 
GSH, NADPH 0.267* <0.001 
GSH, NADP+ − 0.306* <0.001 
GSH, NADP+/NADPH − 0.297* <0.001 
GSH, NADH 0.253* <0.001 
GSSG, GSH/GSSG − 0.443* <0.001 
GSSG, Eh − 0.326* <0.001 
GSSG, NADPH 0.203* <0.001 
GSSG, NADP+ − 0.269* <0.001 
GSSG, NADP+/NADPH − 0.233* <0.001 
GSSG, NADH 0.123* 0.025 
GSH/GSSG, Eh − 0.652* <0.001 
Eh, NADPH − 0.234* <0.001 
Eh, NADP+ 0.226* <0.001 
Eh, NADP+/NADPH 0.240* <0.001 
Eh, NADH − 0.307* <0.001 
NADPH, NADP+ − 0.278* <0.001 
NADPH, NADP+/NADPH − 0.846* <0.001 
NADPH, NADH 0.191* 0.001 
NADP+, NADP+/NADPH 0.711* <0.001 
NADP+, NADH − 0.142* 0.010 
NADP+/NADPH, NADH − 0.181* 0.001 
Liver Weight, Total Glutathione 0.137* 0.011 
Liver Weight, GSH 0.136* 0.012 
Liver Weight, GSSG 0.176* 0.001 
Liver Weight, GSH/GSSG − 0.089 0.099 
Liver Weight, Eh − 0.050 0.349 
Liver Weight, NADPH 0.203* <0.001 
Liver Weight, NADP+ − 0.218* <0.001 
Liver Weight, NADP+/NADPH − 0.262* <0.001 
Liver Weight, NADH − 0.063 0.253  
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Fig. 3. Correlation matrix of statistical relation
ships among markers of the hepatic GSH redox 
system and liver weights. Spearman’s rho (ρ) was 
calculated for each variable combination and is 
listed within each corresponding box. Total gluta
thione, GSH, and GSSG concentrations were stan
dardized as nmol/mg protein. Concentrations of 
NADPH, NADP, and NADH were standardized as 
pmol/μg protein. Eh was expressed as mV. Liver 
weight was reported in grams (g). A colored box 
indicates a significant relationship (p≤0.05). An 
uncolored (white) box indicates an insignificant 
relationship (p>0.05).   

Fig. 4. QTL results for markers of the GSH redox system. Genome-wide scans of hepatic A. Total Glutathione (GSH+2GSSG, expressed in nmol/mg); B. GSH (nmol/ 
mg); C. GSSG (nmol/mg); D. GSH/GSSG; and E. Redox Potential of the GSSG-GSH couple (Eh, expressed as mV). Permutation-derived significance thresholds are 
indicated by colored lines at significance (α) levels 0.05 (blue), 0.1 (red), and 0.2 (purple). (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 
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collected. The QTL interval contained 85 possible candidate genes: 38 
protein-coding, 37 non-coding RNA, and 10 unclassified (Supplemen
tary Table S8; GRCm38/mm10; gene query performed November 2020, 
Feature Type “gene” [78]). 52 of the 85 NADP+ candidate genes had no 
hepatic expression and were therefore excluded. Of the remaining 33 
candidate genes, 8 had no additional functional or phenotypic annota
tions related to hepatic redox function. The remaining 25 candidate 
genes were: chloride channel CLIC-like 1 (Clcc1), G-protein signaling 
modulator 2 (Gpsm2), AKNA domain containing 1 (Aknad1), syntaxin 
binding protein 3 (Stxbp3), PRP38 pre-mRNA processing factor 38 
(yeast) domain containing B (Prpf38b), HEN1 methyltransferase homo
log 1 (Henmt1), family with sequence similarity 102, member B 
(Fam102b), solute carrier family 25, member 54 (Slc25a54), vav 3 
oncogene (Vav3), netrin G1 (Ntng1), protein arginine N-methyl
transferase 6 (Prmt6), RNA-binding region containing 3 (Rnpc3), olfac
tomedin 3 (Olfm3), RIKEN cDNA A930005H10 gene (A930005H10Rik), 
diphthamide biosynthesis 5 (Dph5), solute carrier family 30 (zinc 

transporter), member 7 (Slc30a7), exostoses-like 2 (Extl2), vascular cell 
adhesion molecule 1 (Vcam1), CDC14 cell division cycle 14A (Cdc14a), 
RNA 3′-terminal phosphate cyclase (Rtca), dihydrolipoamide branched 
chain transacylase E2 (Dbt), leucine rich repeat containing 39 (Lrrc39), 
tRNA methyltransferase 13 (Trmt13), SAS-6 centriolar assembly protein 
(Sass6), and solute carrier family 35 (UDP-N-acetylglucosamine 
(UDP-GlcNAc) transporter), member 3 (Slc35a3). Evaluation of func
tional and phenotypic annotations did not point to a single candidate 
with a direct link to NADP+ regulation. Yet a subsequent literature 
search suggested that Vav3, Vcam1, and Cdc14a were the most likely 
genes influencing NADP+ concentrations. Vav3 
(Chr3:109340653–109685698 bp; 48.13 cM; GRCm38) is a Rho GTPase 
regulating guanine nucleotide exchange factor (GEF) [91]. The Vav 
protein family, including Vav3, are key activators of the Card9/NF-κB 
pathway in immunity [92]. VCAM-1 (Chr3: 116110020–116129688 bp; 
50.17 cM; GRCm38) expression is upregulated by NF-κB and increases in 
oxidative stress [93,94], and VCAM-1 activates NADPH oxidase in 

Fig. 5. High-resolution association mapping for hepatic GSH/GSSG in outbred mice reveals a significant QTL on mouse chromosome 16. A. Genome-wide scan of 
hepatic GSH/GSSG in outbred mice shows a QTL with peak LOD score 8.224 at 8.998 Mbp (4.779 cM) on mouse chromosome 16. Permutation-derived significance 
thresholds are indicated by colored lines at significance (α) levels 0.05 (blue), 0.1 (red), and 0.2 (purple). B. The founder allele QTL effects indicate that the 129 allele 
contributes to a lower hepatic GSH/GSSG concentration, whereas the AJ allele contributes to a higher hepatic GSH/GSSG concentration. Each colored line represents 
a DO founder allele as indicated in the legend. The differences between strains are considered significant when the LOD score (bottom) crosses significance thresholds 
(panel A). C. Candidate genes found within the QTL interval relative to the MGI database. Eh (mV) genome scan resulted in the same significant QTL interval on 
mouse chromosome 16 compared to GSH/GSSG (Supplementary Figure S4). (For interpretation of the references to color in this figure legend, the reader is referred 
to the Web version of this article.) 
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endothelial cells [95]. CDC14A (Chr3: 116272553–116428741bp; 
50.24 cM; GRCm38) is a phosphoprotein-phosphatase involved in cell 
cycle progression [96]. CDC14A has been found to dephosphorylate 
tumor suppressor p53 and is thought to regulate the function of p53 [97, 
98] whose actions are critical in regulating NADPH redox status and 
NADPH production through the pentose phosphate pathway [99,100]. 
We were unable to find research supporting the involvement of Vav3, 
Vcam-1, or Cdc14a’s involvement with hepatic NF-κB or p53, nor their 
influence on hepatic NADP+. 

The genome-wide scan for NADP+/NADPH revealed a suggestive 
peak (p-value≤0.10) on mouse chromosome 12 at 28.626 Mbp (LOD 
score 7.637) with a QTL interval of 28.562–29.394 Mbp (Fig. 8A). 
Founder allele effects were extrapolated within the interval and show 
that the WSB and B6 alleles contribute to a higher NADP+/NADPH ratio, 
whereas the NOD and PWK alleles contribute to a lower NADP+/NADPH 
ratio (Fig. 8B). Genes found within this credible interval ±1 Mbp were 
plotted using R/qtl2 through connection with the MGI database 
(Fig. 8C) for collection of functional RNA and protein coding genes. The 
QTL interval contained 51 possible candidate genes: 15 protein-coding, 
34 non-coding RNA, and 2 unclassified (GRCm38/mm10; gene query 
performed November 2020, Feature Type “gene” [78]). Biological an
notations were collected (Supplementary Table S9), and 36 of the 51 
NADP+/NADPH candidate genes had no hepatic expression annotations 
and were therefore excluded. 6 of the remaining 15 candidate genes did 
not have additional functional or phenotypic annotations related to 
hepatic redox function, and the remaining 9 candidate genes were: SRY 
(sex determining region Y)-box 11 (Sox11), collecting sub-family 
member 11 (Colec11), ribosomal protein S7 (Rps7), ribonuclease H1 
(Rnaseh1), acireductone dioxygenase 1 (Adi1), myelin transcription 
factor 1-like (Myt1l), peroxidasin (Pxdn), thyroid peroxidase (Tpo), and 
syntrophin, gamma 2 (Sntg2). A comprehensive literature search on each 
gene failed to suggest evidence of their influence on hepatic 

NADP+/NADPH levels or redox homeostasis. 

4. Discussion 

GSH is a core regulator of the cellular redox environment and its 
biochemistry has been thoroughly investigated since its discovery in the 
late 19th century [101]. Yet in recent years, studies have suggested that 
GSH is also controlled at a genetic level [48–53], though the specific loci 
and genes have remained unidentified. Here, we utilized the DO popu
lation, a model of human genetics, to map loci underlying indicators of 
the hepatic GSH redox system, including the essential cofactor NADPH 
and its precursor NADH. Through these efforts, we discovered novel loci 
and candidate genes responsible for hepatic GSH/GSSG, as well as 
NADP+ and NADP+/NADPH, shifting existing paradigms surrounding 
the role of genetics in redox regulation. 

In this study, genome-wide association mapping revealed a novel 
locus for GSH/GSSG on murine chromosome 16 at 8.998 Mbp (p≤0.05), 
a region that contains 66 candidate genes. Via bioinformatic database 
query, we identified Socs1 as the most plausible candidate gene for 
multiple reasons. First, Socs1 is involved in the activation of p53 [85], a 
critical tumor suppressor that has been closely tied to redox systems and 
oxidative stress [102]. In low oxidative stress conditions, p53 augments 
antioxidant protection by upregulating Gpx and other stress resistance 
genes to ensure cell survival [102]. In high oxidative stress conditions, 
p53 acts as a prooxidant, increasing expression of prooxidative genes, 
such as proline oxidase, to initiate a stress cascade that ultimately leads 
to cell death [102]. In parallel to its upregulation of prooxidative genes, 
p53 inhibits nuclear factor E2-related factor 2 (Nrf2), a critical antiox
idant transcription factor [103], ultimately repressing the expression of 
genes involved in glutathione metabolism (namely, GCLM, GCLC, GR, 
and cysteine transporter SLC7A11) [104–106]. SLC7A11, also referred 
to as xCT, is the regulator of intracellular cysteine, the essential 

Fig. 6. QTL results for hepatic NAD(P)H phenotypes. Genome-wide scans of hepatic A. NADPH (pmol/μg); B. NADP+ (pmol/μg); C. NADP+/NADPH; and D. NADH 
(pmol/μg). Permutation-derived significance thresholds are indicated by colored lines at significance (α) levels 0.05 (blue), 0.1 (red), and 0.2 (purple). (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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rate-limiting precursor to GSH biosynthesis [86,87,107,108]. Impor
tantly, this full pathway has been validated, confirming that SOCS1 
activates p53, driving declines in both SLC7A11 expression and GSH 
levels [85]. Our results now suggest that variation in the SOCS1 gene 
may have a similar effect. 

In addition to its effect on p53 signaling, SOCS1 controls GSH levels 
via another prominent transcription factor: NF-κB [84]. NF-kB is 
responsive to oxidative stress, and upon activation, it controls expres
sion of GCLC and GCLM, to increase GSH biosynthesis [89,90], and 
upregulates other antioxidant and anti-apoptotic proteins [109]. SOCS1 
regulates the NF-κB complex by acting as a ubiquitin ligase, specifically 
at the p65 subunit, and prompting proteasome-mediated degradation 
[88,110–112]. Future research will investigate if promotion of NF-κB 
degradation by SOCS1 drives a decline in GSH biosynthesis. 

To determine whether SOCS1 has been associated with liver func
tion, we queried databases and published literature. In mice, Socs1 
expression was positively associated with hepatic necrosis 
(MP:0001654), hepatic steatosis (MP:0002628), liver degeneration 

(MP:0003103), and liver inflammation (MP:0001860) [78,113]. Yet 
interestingly, Socs1− /− knockout mice are rendered perinatal lethal 
[114], and gene deletion resulted in severe liver inflammation [114]. 
Furthermore, Socs1 methylation in mouse liver is associated with 
advancement of liver fibrosis [114]. Therefore, both increases and de
creases in Socs1 expression have been associated with liver dysfunction 
in rodents. In humans, a SOCS1 variant (rs243330) was associated with 
non-alcoholic fatty liver disease and insulin resistance in obese in
dividuals [115]. Based on these findings, we propose that Socs1 nega
tively regulates hepatic GSH via p53 and NF-kB, ultimately impeding 
liver function. Additional studies are needed to validate the specific 
effect of Socs1 on GSH/GSSG and better understand its impact on liver 
disease. 

Next, we mapped phenotypes related to the cofactor NADPH and 
discovered suggestive QTL for NADP+ on mouse chromosome 3 at 
110.517 Mbp (p≤0.20) and NADP+/NADPH on mouse chromosome 12 
at 28.626 Mbp (p≤0.10). Candidate gene analysis for NADP+ and 
NADP+/NADPH was inconclusive, with a possible 25 candidate genes 

Fig. 7. High-resolution association mapping of hepatic NADP+ reveals a suggestive QTL on mouse chromosome 3. A. Genome-wide scan of hepatic NADP+ (pmol/ 
μg) in outbred mice shows a QTL with peak LOD score 7.032 at 110.517 Mbp (48.547 cM) on mouse chromosome 3. Permutation-derived significance thresholds are 
indicated by colored lines at significance (α) levels 0.05 (blue), 0.1 (red), and 0.2 (purple). B. The founder allele QTL effects indicate that the NOD and CAST alleles 
contribute to a lower hepatic NADP+ concentration, whereas the WSB and PWK alleles contribute to a higher hepatic NADP+ concentration. Each colored line 
represents a DO founder allele as indicated in the legend. The differences between strains are considered significant when the LOD score (bottom) crosses significance 
thresholds (panel A). C. Candidate genes found within the QTL interval relative to the MGI database. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 
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for NADP+ (Clcc1, Gpsm2, Aknad1, Stxbp3, Prpf38b, Henmt1, Fam102b, 
Slc25a54, Vav3, Ntng1, Prmt6, Rnpc3, Olfm3, A930005H10Rik, Dph5, 
Slc30a7, Extl2, Vcam1, Cdc14a, Rtca, Dbt, Lrrc39, Trmt13, Sass6, and 
Slc35a3) and 9 candidate genes for NADP+/NADPH (Sox11, Colec11, 
Rps7, Rnaseh1, Adi1, Myt1l, Pxdn, Tpo, and Sntg2). A collection of 
functional and phenotypic annotations suggests that Vav3, Vcam1, and 
Cdc14a are the most likely genes influencing NADP+ concentrations, 
though they have no documented roles in hepatic redox metabolism. 
Future studies will be conducted to narrow and eventually select the 
causative gene. 

Previous genetics research used in silico haplotype association map
ping (HAM) to identify novel loci associated with hepatic and renal GSH 
and GSSG concentrations, as well as GSH/GSSG [51]. We compared 
those loci to all QTL peaks with LOD scores >6 from the present study 
(Supplementary Table S10) to find any loci overlapping between 
studies. We did not observe any direct overlap between the previous 
HAM results and the current QTL study. Yet we found alignment be
tween our QTL peak for NADP+ on mouse chromosome 8 at 61.237 
(60.722–65.378) Mbp and HAM peaks for hepatic GSH on mouse 

chromosome 8 at 56.109 Mbp and renal GSSG on mouse chromosome 8 
at 54.793 and 55.416 Mbp. Moreover, we documented a QTL peak for 
hepatic GSSG on chromosome 1 at 21.043 (18.793–22.050) Mbp which 
was near the HAM peak observed for renal GSH on chromosome 1 at 
20.259 Mbp. Overall, these results indicate that there could be shared 
regulatory mechanisms between the hepatic and renal GSH redox sys
tems, and new research will need to investigate these relationships 
further. 

Notable in this study was the absence of loci overlapping with ca
nonical genes involved in GSH synthesis and metabolism. We posited 
that no such loci were found because DO mice lack significant variation 
in those genes. Using R/qtl2, we visualized founder allele effects in the 
genetic regions of Gpx1, Gclc, Gclm, Gs, and Gr (Supplementary 
Table S11) [113] and concluded that those gene locations contained no 
variation that would significantly increase or decrease the phenotype 
(Supplementary Figure S5 – S9). Our results support previous conclu
sions that variation in hepatic GSH is not driven by canonical genes 
responsible for GSH synthesis and recycling [51], but rather by novel 
regulatory loci in mouse models. 

Fig. 8. High-resolution association mapping of hepatic NADP+/NADPH reveals a suggestive QTL on mouse chromosome 12. A. Genome-wide scan of GSH in outbred 
mice shows a QTL with peak LOD score 7.637 at 28.626 Mbp (10.987 cM) on mouse chromosome 12. Permutation-derived significance thresholds are indicated by 
colored lines at significance (α) levels 0.05 (blue), 0.1 (red), and 0.2 (purple). B. The founder allele QTL effects indicate that the NOD and PWK alleles contribute to a 
lower hepatic NADP+/NADPH concentration, whereas the WSB and B6 alleles contribute to a higher hepatic NADP+/NADPH concentration. Each colored line 
represents a DO founder allele as indicated in the legend. The differences between strains are considered significant when the LOD score (bottom) crosses significance 
thresholds (panel A). C. Candidate genes found within the QTL interval relative to the MGI database. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 
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The DO stock is a model of human genetic variation [116] with over 
39.8 million documented single nucleotide polymorphisms (SNPs) 
available for genome-wide association studies (GWAS), compared to the 
human 1000 Genomes Project which had only 8.1 million SNPs avail
able for GWAS [D. Gatti, personal communication, May 5, 2021]. 
Furthermore, the DO population exhibits traits similar to those of human 
disease [69] and may be useful for modeling human variation in phe
notypes that are not readily measurable in patients. For instance, GSH 
status [5,117] and circulating GSH/GSSG [118] have been tied to liver 
disease severity, yet it is unclear how hepatic GSH varies in the broader 
human population. Here, in the DO stock, we observed substantial 
variation in GSH phenotypes, with an 11-fold difference in total gluta
thione and GSH concentrations, a 16-fold difference in GSSG concen
trations, and over a 5-fold difference in GSH/GSSG. Moreover, liver 
weight, which has been tied to NAFLD [119], exhibited an approxi
mately 5.5-fold variation and correlated with hepatic GSH and GSSG. 
Based on our knowledge of this model and its relevance to the human 
condition, we predict that human populations may see similar differ
ences in hepatic GSH among individuals, though such a hypothesis must 
be carefully addressed in future studies. 

It must be noted that the present study was accompanied by some 
limitations. Though male and female mice were used in near-equal 
numbers, a subset of males (N = 63) had to be individually housed 
due to aggressive behavior. Excessive fighting has been associated with 
additive stress in mice [120], which had the potential of negatively 
influencing GSH due to the molecule’s sensitivity toward external 
stressors [52]. To address this issue, we performed Mann-Whitney tests 
comparing variables in mice to their housing group size and found that 
singly-housed mice did not have significantly different levels of GSH, 
NAD(P)H, their redox balances, or liver weights compared to those 
housed in greater numbers. Furthermore, to avoid the possibility of 
oxidation from prolonged exposure on the HPLC sample plate, all sam
ples were thawed on the sample plate at 4◦C and analyzed in duplicates 
within 4 h of being put on the plate. 

5. Conclusion 

Here, for the first time, the GSH redox system was explored using an 
innovative, powerful systems genetics approach. We discovered a novel 
locus associated with hepatic GSH/GSSG on murine chromosome 16 and 
identified Socs1 as the most likely candidate gene within the region, a 
decision informed by the gene’s established roles in redox homeostasis 
and inflammation. Future mechanistic studies will continue in
vestigations into Socs1 as a central genetic regulator of GSH homeosta
sis, and the results will considerably expand our understanding of GSH 
and the mechanisms that control it. Subsequent studies will also probe 
the newly discovered loci associated with NAD(P)H dynamics. As 
genome-wide association studies in mice are crucial for isolating and 
identifying candidate genes to test in human trials, we expect that 
SOCS1 and other candidates will be interrogated in future clinical 
studies as well. Overall, these results establish a framework for studying 
redox biochemical pathways using systems genetics tools such as the 
DO. 
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