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Abstract

Intracellular reaction rates depend on concentrations and hence their levels are often regu-

lated. However classical models of stochastic gene expression lack a cell size description

and cannot be used to predict noise in concentrations. Here, we construct a model of gene

product dynamics that includes a description of cell growth, cell division, size-dependent

gene expression, gene dosage compensation, and size control mechanisms that can vary

with the cell cycle phase. We obtain expressions for the approximate distributions and

power spectra of concentration fluctuations which lead to insight into the emergence of con-

centration homeostasis. We find that (i) the conditions necessary to suppress cell division-

induced concentration oscillations are difficult to achieve; (ii) mRNA concentration and num-

ber distributions can have different number of modes; (iii) two-layer size control strategies

such as sizer-timer or adder-timer are ideal because they maintain constant mean concen-

trations whilst minimising concentration noise; (iv) accurate concentration homeostasis

requires a fine tuning of dosage compensation, replication timing, and size-dependent gene

expression; (v) deviations from perfect concentration homeostasis show up as deviations of

the concentration distribution from a gamma distribution. Some of these predictions are con-

firmed using data for E. coli, fission yeast, and budding yeast.

Author summary

Experiments show that often the number of mRNA or protein in a cell is proportional to

its volume, i.e. as a cell grows, the mRNA or protein concentration remains approximately

constant. This suggests that the maintenance of a constant concentration, i.e. concentra-

tion homeostasis, is important to proper cellular function and that there are mechanisms

responsible behind this regulation. However most mathematical models of gene expres-

sion do not describe the coupling of transcription and cell size; the few models that do

include such a description, ignore many salient aspects of cell dynamics and hence it is

presently difficult to understand how concentration homeostasis emerges. In this article,
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we develop a mathematical model of gene expression that overcomes the aforementioned

difficulties; it includes a detailed description of cellular biology such as cell growth, cell

division, size-dependent gene expression, DNA replication, and cell size control mecha-

nisms that can vary with the cell cycle phase. We devise a method to approximately solve

this complex model to obtain expressions for the distributions and power spectra of con-

centration fluctuations. This allows us to deduce that accurate concentration homeostasis

results from a complex tradeoff between many mechanisms. We confirm our theoretical

predictions using data for bacteria and yeast.

Introduction

Classical models of stochastic gene expression describe the fluctuations in copy numbers of

mRNAs and proteins in single cells and tissues [1–3]. These models have been successful at fit-

ting experimental copy number distributions to estimate rate constants [4–6]. They also have

provided insight into the sources of intracellular fluctuations [7, 8], in their control via feed-

back mechanisms [9–11] and in their exploitation to generate oscillations and multi-stable

states [12, 13]. However, concentrations of mRNAs and proteins are equally and perhaps more

important because cells in many cases try to maintain such a concentration—experiments

have shown that for many genes in cyanobacteria [14], fission yeast [15, 16], mammalian cells

[17, 18], and plant cells [19], the mRNA or protein number scales linearly with cell volume in

order to maintain approximately constant concentrations, a phenomenon known as concen-

tration homeostasis (see [20] for a recent review).

The investigation of concentration fluctuations are more complex than that of copy number

fluctuations since additionally we need a description of cell volume. Commonly, the propensi-

ties of master equations are assumed to be either non volume-dependent (zero and first-order

reactions) or inversely proportional to volume (second-order reaction); in the latter case the

volume is fixed to some time-independent constant in simulations [21, 22]. However in grow-

ing cells, there is a periodic pattern of cell volume dynamics consisting of the increase of cell

volume during the cell cycle followed by its approximate halving at cell division. In classical

models of stochastic gene expression, the mRNA and protein numbers will approach a steady

state, while in reality, the copy number dynamics follows a similar periodic pattern—there is

an increase of copy numbers during the cell cycle followed by their approximate halving at cell

division [23]. This pattern is strongly influenced by various sources of noise including the vari-

ability in cell cycle durations, the doubling of gene copy numbers upon DNA replication, and

the partitioning of molecules during cell division. How noise in gene expression is regulated

by different aspects of cell cycle, growth, and division have been extensively studied in the liter-

ature [24–41].

Cell volume dynamics is important in the modeling of gene expression since it strongly

influences many aspects of gene expression and cell growth. To maintain concentration

homeostasis, there is typically a coordination of the synthesis rate of mRNA or protein with

cell volume [17]—we will refer to this mechanism as balanced biosynthesis. In addition, recent

studies have also shown that cell volume will also influence the growth rate within a cell cycle,

as well as the timing of gene replication and cell division in many cell types [42–45]. In particu-

lar, the amount of growth produced during the cell cycle must be controlled such that, on aver-

age, large cells at birth grow less than small ones, a strategy known as size homeostasis. To

capture these phenomena, there is the need of a model of gene expression that explicitly
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describes cell size dynamics; this can then be used to understand the factors giving rise to size

and concentration homeostasis.

There are three popular models describing cell volume dynamics and the associated size

homeostasis. The first one is the size-additive or time-additive autoregressive model [23, 46].

The time-additive model can reproduce the experimentally observed distribution of newborn

sizes, which is often log-normal [46]; however, it fails to capture the fluctuations of cell cycle

durations, which is usually Erlang distributed in various cell types—the doubling time distri-

bution is left-skewed for the size-additive model and is symmetric (Gaussian) for the time-

additive model, while it is right-skewed in experiments [37, 47]. The second one is the age-

structured model [48–50], where the rate of cell division depends not only on cell volume, but

also on the age of the cell. The third one is the multi-stage model [51, 52], where the progres-

sion of cell cycle is modeled as multiple effective cell cycle stages with the transition rate

between successive stages depending on cell volume. The first two models are simpler than the

third but both of them are non-Markovian. The advantages of the third model is that (i) it can

reproduce the experimentally observed Erlang distribution of cell cycle durations [37, 52], (ii)

it provides a convenient way to retain the Markov property which simplifies calculations, and

(iii) it has a nice scaling property which naturally transforms any size control strategy into an

adder [53].

Recently, a number of detailed gene expression models with both cell volume and cell cycle

descriptions have been investigated [24–27]. However, most of them [24–26] did not provide

an analytical theory of concentration fluctuations in growing cells. A recent study [27] made

progress in this direction. In particular, a simple gene expression model in growing and divid-

ing cells was shown to be exactly solvable when (i) the transcription activity scales linearly with

cell volume and (ii) there is no variation of gene copy numbers across the cell cycle, i.e. gene

replication is not taken into account. While (i) is common, it is by no means a universal phe-

nomenon—there are several examples where there is no such scaling in both prokaryotic [54,

55] and eukaryotic cells [56–60]. The assumption behind (ii) is of course a means to simplify

the model but clearly unrealistic. Relaxing any one of these two properties means that within

the theoretical framework presented in [27], it is not possible to obtain an exact solution for

the copy number and concentration distributions.

Here we develop a model that takes into account experimental observations of size-depen-

dent gene expression, gene replication, gene dosage compensation, cell growth, cell division,

cell cycle duration variability, and size control mechanisms that vary according to cell cycle

phases. By solving the model, we obtain insight into the statistical properties of copy number

and concentration fluctuations in single cells across their cell cycle, the emergence of concen-

tration homeostasis, and the non-trivial relationship between size control mechanisms and

gene expression. Some of the predictions are confirmed by analysis of published data and oth-

ers provide motivation for future experiments.

Results

Building a computational model that captures salient features of the

underlying molecular biology

We consider a biologically detailed, stochastic model of gene expression coupled to cell size

dynamics with the following properties (Fig 1A). The specific meaning of all model parameters

is listed in Table 1.

1) Cell volume grows exponentially with rate g. This assumption holds for a wide range of

cell types [61–64].
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2) Before replication, the synthesis of the gene product of interest, mRNA or protein, occurs

at a rate ρ in bursts of a random size sampled from a geometric distribution with mean B0 [2]

and the gene product is degraded with rate d according to first-order kinetics. This can be rep-

resented by the following two effective reactions:

G
rpk 1� pð Þ
����!Gþ kM; k � 1; M!d ⌀; ð1Þ

where G is the gene, M is the corresponding gene product, ρ is the burst frequency, and the

burst size has the geometric distribution P(k) = pk(1 − p) with parameter p = B0/(B0 + 1). In

some types of bacteria, the transcriptional activity for some promoters is constant throughout

the cell cycle which also implies the transcriptional parameters ρ and B0 are independent of cell

size [54]. However, in yeast, mammalian cells, and plant cells, the products of many genes are

often produced in a balanced manner: the effective synthesis rate ρB0 is proportional to cell vol-

ume [15–19]. Moreover, recent studies have shown that in the presence of balanced biosynthe-

sis, cell size controls the synthesis rate via modulation of the burst size, instead of the burst

frequency [17]. To unify results in various cell types, we assume that B0 = BV(t)β, where V(t) is

cell volume, and B> 0 and 0� β� 1 are two constants. Balanced (non-balanced) biosynthesis

corresponds to the case of β = 1 (β = 0).

Fig 1. Model and its mean-field approximation. A: A detailed stochastic model with both cell size and gene expression descriptions. The model consists of N effective

cell cycle stages, gene replication at stage N0, cell division at stage N, bursty production of the gene product, and degradation of the gene product. The growth of cell

volume is assumed to be exponential and gene dosage compensation is induced by a change in the burst frequency at replication from ρ to κρ with κ 2 [1, 2) (see inset

graphs). Both the transition rates between stages and the mean burst size depend on cell size in a power law form due to size homeostasis and balanced (or non-balanced)

biosynthesis, respectively. The model also considers two-layer cell-size control with its strength varying from α0 to α1 upon replication. B: Schematics of the changes in

cell volume and time from birth as a function of cell cycle stage k for the first three generations in the case of N = 10 and α0 = α1 = 1. In the full model (green curve), the

gene expression dynamics is coupled with the following two types of fluctuations: noise in cell volume at each stage and noise in the time interval between two stages. The

reduced model (red curve) ignores the former type of fluctuations by applying a mean-field approximation while retaining the latter type of fluctuations. Note that when

α0 = α1 = 1, it follows from Eq (3) that the mean cell volume at stage k is vk = v1 + (k − 1)M0/N0, which linearly depends on k. The red dots in the stage-volume plot show

the dependence of vk on k and the joining of these dots by a straight red line is simply a guide to the eye. The reduced model approximates the full model excellently when

N is sufficiently large.

https://doi.org/10.1371/journal.pcbi.1010574.g001
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We emphasize that while we assume bursty expression here, our model naturally covers

constitutive expression since the latter can be regarded as a limit of the former [65, 66]. In fact,

when ρ!1, B! 0, and rB ¼ �r keeps constant, we have rpkð1 � pÞ ! �rVðtÞb for k = 1 and

ρpk(1 − p)! 0 for any k� 2. In this case, the reaction scheme given in Eq (1) reduces to

G
�rV tð Þb
���!GþM; M!d ⌀;

which describes constitutive expression. Hence all the results below are applicable to both

bursty and non-bursty expression.

3) The cell can exist in N effective cell cycle stages, denoted by 1, 2, . . ., N. Note that the N
effective stages do not directly correspond to the four biological cell cycle phases (G1, S, G2,

and M). Rather, each cell cycle phase is associated with multiple effective stages (Fig 1A). The

idea to model cell cycle as a series of uncoupled, memoryless stages have been successfully

used to reproduce the measured variability in the durations of different cell cycle phases in var-

ious cell types [47, 67]. In addition, recent studies have revealed that the accumulation of some

activator to a critical threshold may be used to promote mitotic entry and trigger cell division,

a strategy known as activator accumulation mechanism [68]. For example, in fission yeast, the

activator was believed to be a protein upstream of Cdk1, the central mitotic regulator, such as

Cdr2, Cdc25, and Cdc13 [69–72]. Biophysically, the N effective stages can be understood as

different levels of the key activator that triggers cell division. Besides, another strategy called

the inhibitor dilution mechanism may also be used for size control. This strategy has been

observed in budding yeast [68, 73], where the decrease of the Whi5 concentration below a

given threshold triggers the G1/S transition allowing subsequent DNA replication and

budding.

Table 1. Model parameters and their meaning.

original parameters meaning

g growth rate of cell volume

ρ burst frequency before replication

κρ burst frequency after replication

B proportionality constantfor the mean burst size

β degree of balanced biosynthesis

d degradation rate of the gene product

N total number of effective cellcycle stages

N0 number of effective cell cycle stages before replication

α0 strength of size control before replication

α1 strengthof size control after replication

a proportionality constant for thetransition rate between stages

derived parameters meaning

T� log (2)/g mean cell cycle duration

f = 1/T cell cyclefrequency

deff = d + (log2)f effective decay rate of the gene product

η = d/f ratio of the degradation rate to the cell cycle frequency

vk mean cell volume at stage k
qk transition rate from stage k to the next in the mean-field model

Bk mean burst size at stage k in the mean-field model

ρk burstfrequency at stage k in the mean-field model

w = log2(vN0 + 1/v1) proportion of cell cycle duration before replication

https://doi.org/10.1371/journal.pcbi.1010574.t001
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4) Gene replication occurs instantaneously when the cell transitions from a fixed stage N0

to the next. Note that replication of the whole genome occurs in the S phase, which cannot

be assumed to be instantaneous. However, since the replication time of a particular gene is

much shorter than the total duration of the S phase, it is reasonable to consider it to be

instantaneous. In addition, recent experiments have shown that the time elapsed from birth

to replication for a particular gene occupies an approximately proportion of the cell cycle,

which is called the stretched cell cycle model [74]. This is also consistent with our assump-

tion that replication of the gene of interest occurs after exactly N0 stages. While replication

occurs after a fixed number of stages, nevertheless the time of replication is stochastic since

each stage has a random lifetime (see [75] for a review about stochastic replication timing).

In bacteria, there may be multiple and overlapping rounds of replication per division cycle

and thus the timing of replication becomes much more complicated [76, 77]; this is not con-

sidered in the present paper.

5) Recently, there has been evidence that yeast and mammalian cells may use different

size control strategies before and after replication to achieve size homeostasis [42–45]. To

model this effect, we assume that the transition rate from one effective stage to the next

depends on cell volume in a power law form as ðaVðtÞÞa0 pre-replication and ðaVðtÞÞa1 post-

replication, where a is a constant and α0, α1 > 0 are the strengths of size control before and

after replication. The power law form for the rate of cell cycle progression may come from

cooperativity of the key activator that triggers cell division, as explained in detail in [51, 52].

We emphasize that while this power law is compatible with certain biophysical mechanisms,

it could also simply be understood as a phenomenological means to model size homeostasis,

as will be explained later. Note that here we do not make any assumption about the time

scale of cell cycle progression—the transition between stages can be very fast, or compara-

ble, or very slow compared to the time scales of synthesis and degradation of the gene

product.

Let Vb, Vr, and Vd denote the cell volumes at birth, replication, and division, respectively.

In Methods, we prove (i) the increment in the α0th power of cell volume before replication,

D0 ¼ Va0
r � Va0

b , has an Erlang distribution with shape parameter N0 and mean M0 ¼ N0a0g=aa0

and (ii) the increment in the α1th power of cell volume after replication, D1 ¼ Va1

d � Va1
r , is also

Erlang distributed with shape parameter N1 = N − N0 and mean M1 ¼ N1a1g=aa1 . Both Δ0 and

Δ1 will be referred to generalized added volumes in what follows.

We next focus on three important special cases. When α0! 0, the transition rate from

stage k 2 [1, N0] to the next is a constant independent of k and thus the time elapsed from

birth to replication has an Erlang distribution independent of the birth volume; this corre-

sponds to timer [78]. When α0 = 1, the added volume Vr − Vb before replication has an Erlang

distribution independent of the birth volume; this corresponds to adder. When α0!1, the

α0th power of cell volume at replication, Va0
r , has an Erlang distribution independent of the

birth volume; this corresponds to sizer. In other words, α0! 0, 1,1 corresponds to the timer,

adder, and sizer strategies before replication, respectively. Similarly, α1! 0, 1,1 corresponds

to timer, adder, and sizer after replication, respectively. We define timer-like control to be

when 0< αi < 1 and sizer-like control when 1< αi <1 [51].

6) After replication, the number of gene copies doubles. If the burst frequency per gene

copy does not change at replication, then the total burst frequency after replication is 2ρ. Gene

dosage compensation is then modeled as a change in the burst frequency at replication from ρ
to κρ with 1� κ< 2. [17, 79]. In the absence of dosage compensation, we have κ = 2. Perfect

dosage compensation occurs when κ = 1; in this case, the total burst frequency for all gene cop-

ies is unaffected by replication.
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7) Cell division occurs when the cell transitions from stage N to stage 1. The volumes of the

two daughter cells are assumed to be the same and exactly one half of the volume before divi-

sion. Moreover, we assume that each gene product molecule has probability 1/2 of being allo-

cated to each daughter cell. With this assumption, the number of gene product molecules that

are allocated to each daughter cell has a binomial distribution.

We emphasize that in our model, we assume that the gene product is produced in instanta-

neous bursts, while in reality there is a finite time for the bursts to occur. A more general

assumption is that within each cell cycle, the gene expression dynamics is characterized by the

following three-stage model [2]:

G!
r

G�; G�!r G; G�
sV tð Þb

����!G� þM; M!u M þ P;

M!v ⌀; P!d ⌀;
ð2Þ

where the first two reactions describe the switching of the gene between an inactive state G
and an active state G�, the middle two reactions describe transcription and translation, and the

last two reactions describe the degradation of the mRNA M and the protein P. Here the syn-

thesis rate of mRNA depends on cell volume via a power law form with power β 2 [0, 1]. Dos-

age compensation can be modeled by a decrease in the gene activation rate (for each gene

copy) from ρ to κρ/2 upon replication [26, 79]. Previous studies have revealed that the bursting

of mRNA and protein has different biophysical origins [80]: transcriptional bursting is due to

a gene that is mostly inactive, but transcribes a large number of mRNA when it is active (r� ρ
and s/r is finite), whereas translational bursting is due to rapid synthesis of protein from a sin-

gle short-lived mRNA molecule (v� d and u/v is finite). Under the above timescale assump-

tions, both mRNA and protein are produced in a bursty manner with the reaction scheme

described by Eq (1) [81–83]. The burst frequency for mRNA and protein are both ρ before rep-

lication and κρ after replication. The mean burst size for mRNA is (s/r)V(t)β and the mean

burst size for protein is (su/rv)V(t)β, both of which have a power law dependence on cell

volume.

In S1 and S2 Figs, we compare the mRNA and protein distributions for the bursty model

with the reaction scheme given by Eq (1) and the three-stage model with the reaction scheme

given by Eq (2), where both models under consideration have a cell volume description. It can

be seen that the distributions for the two models are very close to each other under the above

timescale separation assumptions with the bursty model being more accurate as r/ρ and v/d
increase. Moreover, we find that the accuracy of the bursty model is insensitive to the number

of stages N. Here the values of N are chosen so that the ratio of the average time spent in each

stage (T/N, where T� (log 2)/g is the mean cell cycle duration) and the mean burst duration

(1/ρ) ranges from� 0.5 − 2. This shows that the effectiveness of the bursty model does not

require that the lifetime of a cell cycle stage is sufficient long. Due to mathematical complexity,

we only focus on the bursty model in what follows—this is what we shall refer to as the full

model in the rest of the paper. The consistency between the gene product distributions for the

two models justifies our bursty assumption.

Simplifying the computational model via mean-field approximation

The model described above is very complex and hence it is no surprise that the master equa-

tion describing its stochastic dynamics is analytically intractable. The difficulty in solving the

statistics of gene product fluctuations stems from the fact that they are coupled to two other

types of fluctuations: (i) noise in the time elapsed between two cell cycle stages; (ii) noise in cell

volume when a cell cycle stage is reached. Specifically, if at time t a cell enters stage k and has
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volume V(t), then it will jump to stage k + 1 after a random interval Δt whose distribution is

determined by the time-dependent rate function ðaVðtÞÞai . Since volume growth is exponen-

tial, the volume at stage k + 1 is given by V(t + Δt) = V(t)egΔt. As can be seen from this reason-

ing, the fluctuations in cell volume at a certain stage depend on the fluctuations in the time to

move to this stage from the previous stage.

To simplify this model, we devised a mean-field approximation on the volume dynamics,

i.e. we ignore volume fluctuations at each stage but retain fluctuations in the time elapsed

between two stages (Fig 1B). Specifically, we calculate an approximate mean cell size at each

stage by averaging over generations. This implies that the volume change from stage k to stage

k + 1 is now deterministic and decoupled from the fluctuations in the time interval between

the two stages. Within this approximation, the volume at division is twice that at birth imply-

ing that the mean cell cycle duration is T� log(2)/g and thus the cell cycle frequency is f� g/

log(2). The time interval is itself exponentially distributed with rate ðavkÞ
ai , where vk is the

mean cell size at stage k.

Since the exact mean cell volume at each stage is difficult to obtain, we make the approxi-

mation that the number of stages is large, which holds for most cell types and most growth

conditions [37, 40, 52]. When N� 1, the fluctuations in cell volume at each stage are very

small and thus can be ignored. In this case, both the generalized added volumes Δ0 = M0 and

Δ1 = M1 can be viewed as deterministic and we have Vd = 2Vb. Thus the typical birth size Vb is

the solution of the implicit equation

ðVa0

b þM0Þ
a1=a0 þM1 ¼ ð2VbÞ

a1 :

Moreover, when N is large, both va0

k � va0

1 and va1

k � va1
N0þ1 can be viewed as deterministic

and replaced by their means, as given above. Thus the typical cell size at stage k is given by

vk ¼ ½va0

1 þ ðk � 1ÞM0=N0�
1=a0 for k 2 ½1;N0�;

vk ¼ ½ðva0

1 þM0Þ
a1=a0 þ ðk � N0 � 1ÞM1=N1�

1=a1 for k 2 ½N0 þ 1;N�:
ð3Þ

This approximation is generally valid provided the number of cell cycle stages N is large

enough, which equivalently means that the variability in cell cycle duration is not very large

[52]. In our model, the time from birth to replication occupies approximately a fixed propor-

tion of the total cell cycle duration, with the proportion given by w = log2(vN0 + 1/v1). As men-

tioned earlier, this is consistent with the stretched cell cycle model proposed in [74]. Note that

the proportion w of cell cycle duration before replication is different from the proportion N0/

N of cell cycle stages before replication. This is because the transition rate between cell cycle

stages is an increasing function of cell size, which means that earlier (later) stages have longer

(shorter) durations.

We now can construct a reduced model. Since we will be replacing a stochastic variable, the

cell volume, by its mean, this is a type of mean-field approximation which has a long history of

successful use in statistical physics [84]. In the reduced model, we choose the transition rate

from stage k to the next to be qk ¼ ðavkÞ
a0 for k 2 [1, N0] and qk ¼ ðavkÞ

a1 for k 2 [N0 + 1, N],

the mean burst size at stage k to be Bk ¼ Bvbk , and the burst frequency at stage k to be ρk = ρ for

k 2 [1, N0] and ρk = κρ for k 2 [N0 + 1, N] (Fig 2); these are the same rates as in the full model

but with the instantaneous volume being replaced by its mean. The microstate of the reduced

model can be represented by an ordered pair (k, n), where k is the cell cycle stage and n is the

copy number of the gene product. Let pk,n denote the probability of observing microstate
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(k, n). Then the evolution of copy number dynamics is governed by the master equation

_p1;n ¼
Xn� 1

m¼0

r1w1;n� mp1;m �
X1

m¼1

r1w1;mp1;n þ ðnþ 1Þdp1;nþ1

� ndp1;n þ qN

X1

m¼n

m
n

� � 1

2

� �m

pN;m � q1p1;n;

_pk;n ¼
Xn� 1

m¼0

rkwk;n� mpk;m �
X1

m¼1

rkwk;mpk;n þ ðnþ 1Þdpk;nþ1

� ndpk;n þ qk� 1pk� 1;n � qkpk;n; 2 � k � N;

ð4Þ

Fig 2. Reduced model obtained by making the mean-field approximation of cell size dynamics. Here Xk denotes the gene product at stage k
and bk denotes the burst size at stage k. Moreover, vk is the typical cell size at stage k, Bk is the mean burst size at stage k, and qk is the typical

transition rate from stage k to the next.

https://doi.org/10.1371/journal.pcbi.1010574.g002
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where χk,n = [Bk/(Bk + 1)]n[1/(Bk + 1)] is the burst size distribution at stage k, the first two

terms on the right-hand side describe bursty production, the middle two describe degradation,

and the last two describe cell cycle progression or binomial partitioning of gene product mole-

cules at cell division. The master equation for the concentration dynamics can also be derived

in the large molecule number limit (Section A in S1 Appendix).

Note that here the mean-field approximation is not made for the whole cell cycle, rather we

make the approximation for each stage and thus different stages have different mean cell vol-

umes. This type of piecewise mean-field approximation, as far as we know, is novel and has

not been used in the study of concentration fluctuations before. In Fig 3 and S3 Fig, we make a

detailed comparison between stochastic simulations of the full and mean-field models (com-

pare dots and squares). The simulations show that they are in good agreement when N� 15

Fig 3. Comparison between the full and mean-field models under different choices of N and different size control strategies. The blue (red) dots show the

simulated concentration (copy number) distribution for the full model obtained from the stochastic simulation algorithm (SSA). The blue (red) squares show the

simulated concentration (copy number) distribution for the mean-field model obtained from SSA. The blue (red) curve shows the analytical approximate concentration

(copy number) distribution given in Eq (8) (Eq (15)). The full and mean-field models are in good agreement when N� 15 and they become almost indistinguishable

when N� 30. Moreover, the analytical solution performs well when N� 15 and perform excellently when N� 30. The model parameters are chosen as N0 = 0.4N,

B = 1, β = 0, κ = 2, d = 1, η = 10, where η = d/f is the ratio of the degradation rate to cell cycle frequency. The growth rate g is determined so that f = 0.1. The parameters

ρ and a are chosen so that the mean gene product number hni = 100 and the mean cell volume hVi = 1. The strengths of size control are chosen as α0 = α1 = 1 for the

upper panel, α0 = 2, α1 = 0.5 for the middle panel, and α0 = 0.5, α1 = 2 for the lower panel. When performing SSA, the maximum simulation time for each lineage is

chosen to be 105. To deal with the time-dependent propensities in the full model, we use the numerical algorithm described in [85, Sec. 5].

https://doi.org/10.1371/journal.pcbi.1010574.g003
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and become practically indistinguishable when N� 30. Interestingly, the condition of N� 15

holds for various cell types. Previous work estimated N to be 15 − 38 for E. coli, depending on

temperature [52], 16 − 50 for fission yeast, depending on temperature and culture medium

[53], 59 for the cyanobacterium S. elongatus, 21 for rat 1 fibroblasts, 27 for human B-cells, and

50 for human mammary epithelial cells [37]. In what follows, the mean-field model, rather

than the full model, will be used to study the fluctuations in gene product numbers and con-

centrations under different rate parameters, as well as to study the conditions for accurate con-

centration homeostasis.

The concentration distribution is generally a sum of gamma distributions;

for perfect concentration homeostasis, it is a single gamma

Many quantities of interest can be computed analytically using the master equation, Eq (4), of

the mean-field model. Suppose that the copy number and concentration distributions of the

gene product at each cell cycle stage have reached the steady state. We first compute the

steady-state moment statistics. For each stage k, we introduce the generating function

FkðzÞ ¼
P1

n¼0
pk;nzn. Then the master equation given in Eq (4) can be converted into the fol-

lowing system of partial differential equations:

@tF1ðzÞ ¼ r1½H1ðzÞ � H1ð1Þ�F1ðzÞ

þ dð1 � zÞ@zF1ðzÞ þ qNFN
z þ 1

2

� �

� q1F1ðzÞ;

@tFkðzÞ ¼ rk½HkðzÞ � Hkð1Þ�FkðzÞ

þ dð1 � zÞ@zFkðzÞ þ qk� 1Fk� 1ðzÞ � qkFkðzÞ; 2 � k � N:

ð5Þ

where HkðzÞ ¼
P1

n¼1
wk;nzn ¼ ðBkzÞ=ðBk þ 1Þ½Bkð1 � zÞ þ 1� is the generating function of

the typical burst size distribution χk = (χk,n) at stage k. Let mlk ¼
P1

n¼0
nðn � 1Þ � � � ðn � l þ

1Þpk;n ¼ FðlÞk ð1Þ denote the unnormalized lth factorial moment of copy numbers when the cell

is at stage k. In particular, m0k ¼
P1

n¼0
pk;n is the probability that the system is at stage k. For

convenience, let ml = (mlk) be the row vector composed of all lth factorial moments. Taking

the kth derivative on both sides of Eq (5), we obtain

_ml ¼ mlWll þ
Xl� 1

j¼0

mjWjl; ð6Þ

where Wll and Wjl are matrices defined as

Wll ¼

� q1 � ld q1

� q2 � ld q2

. .
. . .

.

� qN� 1 � ld qN� 1

qN=2l � qN � ld

0

B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
A

; ð7Þ

and Wjl = (l!/j!)STl − j with S = diag(ρ1, ρ2, � � �, ρN) and T = diag(B1, B2, � � �, BN) being two
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diagonal matrices. In steady state, we have m0 W00 = 0 and its solution is given by

m0k ¼ 1=½
PN

i¼1
qk=qi�. From Eq (6), the higher-order factorial moments of gene product num-

bers can be computed recursively as

ml ¼ �
Xl� 1

j¼0

mjWjlW
� 1

ll ; l � 1:

In particular, the first two moments are given by m1 ¼ � m0STW � 1
11

and

m2 ¼ � 2ðm1ST þm0ST2ÞW � 1
22

. It then follows that the mean of concentration fluctuations

at stage k is given by μk = m1k/(m0kvk) and the variance at stage k is given by

s2
k ¼ ðm1k þm2kÞ=ðm0kv2

kÞ � m
2
k .

We then focus on the steady-state gene product distribution measured over a cell lineage or

from a population snapshot. For lineage measurements, a single cell is tracked at a series of

time points, and at division one of the two daughters is randomly chosen such that we have

information of the stochastic dynamics along a lineage. Once μk and s2
k are known, the steady-

state distribution of concentrations can be computed approximately as (Methods)

pðxÞ �
XN

k¼1

m0kðmk=s
2
kÞ
m2

k=s
2
k

Gðm2
k=s

2
kÞ

xm2
k=s

2
k � 1e� mkx=s2

k ; ð8Þ

which is a mixture of N gamma distributions; the distribution of copy numbers can also be

computed and is given by a mixture of N negative binomial distributions (Methods). Note that

the distributions given above are not exact and but serve as very good approximations. The

analytical distribution agrees well with stochastic simulations when N� 15 (compare squares

and curves in Fig 3 and S3 Fig). The gene product distributions can also be computed for pop-

ulation measurements, i.e. all single cells in a population are measured at a particular time

such that we have information of the stochastic dynamics across a growing population

(Methods). For the rest of this paper, we focus on lineage calculations because the results from

population calculations are qualitatively the same.

We emphasize that here we do not make any assumptions about timescale separation of

and cell cycle progression and gene expression dynamics. If the lifetime of the gene product is

much shorter compared to the lifetime of each cell cycle stage, then the gene expression

dynamics will rapidly relax to a quasi-steady state for each stage [86]. In this case, it is well

known that the gene product fluctuations at each stage can be characterized by a gamma distri-

bution in terms of concentrations [87] and by a negative binomial distribution in terms of

copy numbers [88], and hence the distribution of concentrations (copy numbers) for a popula-

tion of cells is naturally a mixture of N gamma (negative binomial) distributions. However, the

powerfulness of Eq (8)) is that it serves an accurate approximation when N� 1 without mak-

ing any timescale assumptions. The effectiveness of our analytical distributions is validated in

S3 Fig for three different cases: (i) the degradation rate d of the gene product is much smaller

than the cell cycle frequency f (most proteins in bacteria and yeast); (ii) d and f are comparable

(many mRNAs and proteins in mammalian cells); (iii) d is much larger than f (most mRNAs

in bacteria and yeast). Please refer to Table 2 of [40] for the typical values of d and f in various

cell types. It can be seen that our analytical distribution works reasonably well in all cases

when N� 1.

It can be shown that in the special case of balanced biosynthesis (β = 1, i.e. the mean burst

size scales linearly with cell size) and perfect dosage compensation (κ = 1, i.e. the total burst

frequency is independent of the number of gene copies), both the mean μk and variance s2
k of

concentration fluctuations are independent of stage k, i.e. invariant across the cell cycle,
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provided the number of gene product molecules is large (Section A in S1 Appendix). We will

call this condition perfect concentration homeostasis. In this case, we have μk = ρB/deff and

s2
k ¼ rB2=deff , where deff = d + log(2)f is the effective decay rate of the gene product due to deg-

radation and dilution at cell division. As well, in this case, Eq (8)) reduces to a gamma distribu-

tion and the theory agrees with the classical model of Friedman et al. [87] which has no

explicit cell size description.

The condition for perfect concentration homeostasis implies that the mean concentration

is constant across the cell cycle, which guarantees a linear relationship between mean molecule

number and cell volume. Note that this coincides with the definition of concentration homeo-

stasis given in [25], while it is weaker than what is experimentally referred to as concentration

homeostasis which is indicated by an approximate linear relationship between molecule num-

ber and cell volume, i.e. a high R2 value for the scatter plot of molecule number versus cell vol-

ume [16, 18]. In this paper, we stick to the former definition, i.e. the linear relationship is

understood in the average sense. We emphasize that perfect homeostasis (β = κ = 1) does not

generally exist in nature, e.g. the burst frequency per gene copy does not precisely halve upon

replication and hence gene dosage compensation is never perfect [17, 79]. This means that

generally some deviation of the concentration distribution from gamma is expected, and this

is captured by Eq (8)).

Accurate concentration homeostasis requires a fine tuning of dosage

compensation and balanced biosynthesis

Before studying concentration homeostasis in more depth, we first distinguish between two

different types of concentration fluctuations. In our model, the mean hci and variance σ2 of

concentration fluctuations (averaged over all cell cycle stages) can be computed explicitly

as hci ¼
PN

k¼1
mkm0k and s2 ¼

PN
k¼1
ðs2

k þ m
2
kÞm0k � hci

2
, where μk = m1k/(m0kvk) and

s2
k ¼ ðm1k þm2kÞ=ðm0kv2

kÞ � m
2
k are the mean and variance of concentrations at stage k, respec-

tively, and m0k is the probability of the cell being at stage k. Then noise in concentrations can

be characterized by ϕ = σ2/hci2, the coefficient of variation (CV) squared of concentration

fluctuations. Interestingly, we find that the total noise ϕ can be decomposed as ϕ = ϕext + ϕint,

where

�ext ¼

PN
k¼1
m2

km0k � ð
PN

k¼1
mkm0kÞ

2

ð
PN

k¼1
mkm0kÞ

2

is the extrinsic noise which characterizes the fluctuations between different stages due to cell

cycle effects, and

�int ¼

PN
k¼1
s2

km0k

ð
PN

k¼1
mkm0kÞ

2

is the intrinsic noise which characterizes the fluctuations within each stage due to stochastic

bursty synthesis and degradation of the gene product.

We remind the readers that our definition of concentration homeostasis implies constancy

of the mean concentration across the cell cycle [25]. Note that the extrinsic noise ϕext is CV

squared of the mean concentrations μk across all stages. Given a certain level ϕ of total concen-

tration variability, the smaller the value of ϕext, the stronger the homeostatic mechanism. In

keeping with the above definition, we define the accuracy of homeostasis as γ = ϕext/ϕ, which

characterizes the relative concentration of cell cycle effects in the total concentration fluctua-

tions. Under the metric γ, accurate homeostasis occurs when the variability of the mean
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concentration across the cell cycle is sufficiently small so that the total concentration variability

is not dominated by it. Here we normalize ϕext by ϕ because the cell-cycle dependence of the

mean concentration will be very visible if gene expression is weakly noisy (ϕ is small) and will

become almost invisible if gene expression is highly noisy (ϕ is large). Hence the visibility of

cell-cycle dependence of the mean concentration should be compared to the total concentra-

tion variability ϕ. Note that γ = 0 implies perfect homeostasis (Fig 4A and Section B in S1

Appendix). A small γ implies an approximate linear relationship between mean copy number

and cell volume, while a large γ implies a strong nonlinear relationship between the two (see

the second row in Fig 4A–4C).

We next use the metric γ to investigate the conditions for accurate concentration homeosta-

sis. In Fig 4D, we illustrate γ as a function of β and κ when replication occurs halfway through

the cell cycle (w = 0.5). Of particular interest is that there is a region of parameter space (shown

in blue) where γ is minimised; this is approximately given by the curve k ¼
ffiffiffi
2
p 1� b

(shown by

the yellow dashed line). This implies that to maintain accurate homeostasis, a lack of balanced

biosynthesis requires also a lower degree of dosage compensation. The functional form of the

yellow dashed line can be obtained intuitively as follows. If the gene product is very unstable,

then each time that the volume changes, the concentration distribution instantaneously equili-

brates and thus the mean concentration for a cell of age t is given by ρB0/dV(t) before replica-

tion and is given by κρB0/dV(t) after replication. To maintain accurate homeostasis, the time-

average of mean concentrations before and after replication should be equal, which shows that

1

wT

Z wT

0

rB0

dVðtÞ
dt ¼

1

ð1 � wÞT

Z T

wT

rB0

dVðtÞ
dt;

where T� (log 2)/g is the mean cell cycle duration and w ¼ log
2
ðvN0þ1=v1Þ is the proportion of

cell cycle before replication. This implies that κ = (1 − w)(2(β−1)w−1)/w(2β−1 − 2(β−1)w). Note

that this reduces to k ¼
ffiffiffi
2
p 1� b

when w = 0.5. We emphasize that while the above derivation is

made for unstable gene products, the result also holds for stable gene products. A more rigor-

ous derivation will be given later.

Now we look in detail at the case where there is no dosage compensation (κ = 2). In Fig 4E,

we illustrate γ as a function of η and β, where η = d/f is the ratio of the degradation rate to cell

cycle frequency (a measure of the stability of the gene product). Note that γ becomes smaller as

η decreases, implying that stable gene products (e.g. most proteins) give rise to better concen-

tration homeostasis than unstable ones (e.g. most mRNAs). The combined results from Fig 4D

and 4E indicate that homeostasis is the weakest when β = 1, κ = 2, and η is large. This shows

that balanced biosynthesis, weak dosage compensation, and large degradation rates together

can break homeostasis.

Next we look in detail at the case where synthesis is non-balanced (β = 0). In Fig 4F, we

illustrate γ as a function of κ and w, where w ¼ log
2
ðvN0þ1=v1Þ is the proportion of cell cycle

before replication. Interestingly, we find that γ is remarkably small when k �
ffiffiffi
2
p
� 1:4 and w

� 0.5. The optimal values of κ and w are stable and depend very less on other parameters. This

shows that when β = 0, accurate homeostasis can still be obtained at an intermediate strength

of dosage compensation when replication occurs halfway through the cell cycle.

Precise determination of the onset of concentration homeostasis using the

power spectrum of fluctuations

Generally the time traces of gene product numbers increase from birth up till division time, at

which point they halve. This periodicity would be also expected to some extent in concentrations.
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Fig 4. Concentration homeostasis and its relation to concentration oscillations. A: Perfect homeostasis. The first row shows the mean concentration μk at

cell cycle stage k versus the proportion of cell cycle before stage k, which can be computed explicitly as wk = log2(vk/v1). The second row shows the scatter plot of

molecule number versus cell volume obtained from SSA. Here data are sorted into 8 bins according to cell volume, and the mean and variance of molecule

numbers within each bin are shown by the blue dot and the error bar. The red curve is the regression line for the scatter plot. The third row shows typical time

traces of concentrations, where c(t) denotes the concentration at time t for a single cell lineage. The fourth row shows the theoretical (blue curve) and simulated

(red circles) power spectra of concentration fluctuations. The theoretical spectrum is computed from Eq (9), while the simulated spectrum is obtained by means

of the Wiener-Khinchin theorem, which states that GðxÞ ¼ limT!1hjĉTðxÞj
2
i=T, where ĉTðxÞ ¼

R T
0

cðtÞe� 2pixtdt is the truncated Fourier transform of a single

concentration trajectory over the interval [0, T] and the angled brackets denote the ensemble average over trajectories. The vertical lines show the cell cycle

frequency f and its harmonics. B: Same as A but for quasi-perfect homeostasis. C: Same as A but for weak homeostasis. D: Heat plot of γ (the accuracy of

concentration homeostasis) versus β (the degree of balanced biosynthesis) and κ (the strength of dosage compensation) when replication occurs halfway

through the cell cycle (w = 0.5). The yellow dashed line shows the exponential curve k ¼
ffiffiffi
2
p 1� b

, around which homeostasis is accurate. E: Heat plot of γ versus

β and η (the stability of the gene product) when there is no dosage compensation (κ = 2). Stable gene products give rise to more accurate homeostasis than

unstable ones. F: Heat plot of γ versus κ and w (the proportion of cell cycle before replication) when synthesis is non-balanced (β = 0). Homeostasis is the most

accurate when k ¼
ffiffiffi
2
p

and w = 0.5. See Section D in S1 Appendix for the technical details of this figure.

https://doi.org/10.1371/journal.pcbi.1010574.g004
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However clearly if there is strong concentration homeostasis, no such periodic behaviour would

be visible. Hence it stands to reason that a lack of a peak in the power spectrum of concentration

oscillations (computed from a single lineage) can be interpreted as strong concentration homeo-

stasis. Stochastic simulations, shown in Fig 4A–4C, indicate that this intuition is indeed the case:

as γ increases (from left to right), the scatter plot of mean molecule number versus cell volume

displays an increasingly nonlinear relationship with smaller R2 value, the trajectory of concentra-

tions becomes more oscillatory, and the power spectrum switches from monotonic to a peaked

one at a non-zero value of frequency.

We next study the power spectrum analytically. Recall that the autocorrelation function

R(t) of concentration fluctuations is defined as the steady-state covariance between c(0) and

c(t), where c(t) denotes the concentration at time t for a single cell lineage. Because the propen-

sities of the reactions in our model are linear in gene product numbers, the autocorrelation

function R(t) can be computed in closed form as (Section C in S1 Appendix)

RðtÞ ¼ ðm1 þm2ÞV � 1eW11tV � 11 � ðm1V � 11Þ2

þ

Z t

0

m1V
� 1eW00sSTeW11ðt� sÞV � 11ds;

ð9Þ

where V = diag(v1, � � �, vN) and 1 ¼ ð1; � � � ; 1ÞT . The power spectrum GðxÞ ¼
R1
� 1

RðjtjÞe� 2pixtdt
is then the Fourier transform of the autocorrelation function which can be computed straight-

forwardly. Note that the power at zero frequency, G(0), characterizes the strength of stochasti-

city that is not owing to oscillations. Throughout the paper, we normalize the power spectrum

so that G(0) = 1. In Section C in S1 Appendix, we show that the power spectrum is a weighted

sum of N Lorentzian functions, which either decreases monotonically or has an off-zero peak

around the cell cycle frequency f (see the fourth row in Fig 4A–4C). The height of the non-

zero peak (relative to the power at zero frequency) acts as a measure of the regularity of oscil-

lations. Furthermore, when N� 1, the power spectrum also has peaks around the higher

order harmonics of f (Fig 4C). This is probably because an arbitrary periodic function with

frequency f, when expanded as Fourier series, cannot be solely described by a sinusoidal func-

tion with frequency f, but needs components with higher order harmonics.

Interestingly, we find that the power spectrum of concentration fluctuations can be used to

precisely determine the onset of concentration homeostasis. Complex computations show that

the height H of the off-zero peak, which characterizes the regularity of concentration oscilla-

tions, is proportional to both N2 and (Section C in S1 Appendix)

Cðb; k;wÞ ¼ j1 � k2b� 1 þ ðk � 1Þ2ðb� 1Þwe2pwij
2
: ð10Þ

Generally, the condition C(β, κ, w) = 0 is the necessary condition for the power spectrum to

lack an off-zero peak which means that strong homeostasis is present. This can be achieved

when β = κ = 1 (balanced biosynthesis and perfect dosage compensation) which implies also

γ = 0. However interestingly, it can be achieved also when balanced biosynthesis is broken.

When β 6¼ 1, Eq (10) vanishes when 1 − κ2β−1 + (κ − 1)2(β−1)w cos(2πw) = 0 and sin(2πw) = 0,

i.e. k ¼
ffiffiffi
2
p 1� b

and w = 0.5. In this case, we have γ 6¼ 0, which means that there is still some var-

iation of the mean concentration across the cell cycle. As a result, we refer to this case as quasi-

perfect homeostasis (Fig 4B). This also corresponds to the minimum shown by the yellow

dashed line in Fig 4D. In particular, when β = 0, quasi-perfect homeostasis is obtained when

k ¼
ffiffiffi
2
p

and w = 0.5. This also corresponds to the dark blue region in Fig 4F. The optimal

value of κ� 1.4 is comparable to the experimental values of κ measured for Oct4 and Nanog
genes in mouse embryonic stem cells [79]. However generally the conditions for strong
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homeostasis, i.e. no peak in the power spectrum, appear quite restrictive (β = κ = 1 or β< 1,

k ¼
ffiffiffi
2
p 1� b

, and w = 0.5). In bacteria and budding yeast, there has been some evidence that

dosage compensation is not widespread [54, 89]. In fission yeast [90] and human cells [91],

examples where expression is balanced but the effects of replication are not completely buff-

ered by dosage compensation are starting to be uncovered. In addition, replication may not

occur halfway through the cell cycle (please refer to Table 2 in [40] for the typical value of w in

various cell types). Hence our theory predicts that strong homeostasis is probably rarely seen

in nature.

It has been shown [40] that when synthesis is non-balanced (β = 0), the time traces of copy

numbers for unstable gene products display the strongest oscillation regularity when w = 0.5;

here we have shown that the time traces of concentrations display the weakest regularity when

w = 0.5 (S4 Fig). This shows that copy number and concentration time traces may exhibit

totally different dynamical behaviors.

To better understand concentration oscillations and its relation to homeostasis, we depict

both γ and H as a function of B and hni (S5 Fig). As expected, the off-zero peak becomes lower

as B increases and as hni decreases since both of them correspond to an increase in concentra-

tion fluctuations which counteracts the regularity of oscillations; noise above a certain thresh-

old can even completely destroy oscillations. Furthermore, we find that γ and H have similar

dependence on B and hni. This again shows that the occurrence of concentration oscillations

is intimately related to the visibility of cell cycle effects in concentration fluctuations.

A sizer-timer or adder-timer size control strategy maintains concentration

homeostasis while minimising concentration noise

Recently, evidence has emerged that budding yeast, fission yeast, and mammalian cells may

exhibit multiple layers of size control within each cell cycle, e.g. there can be different size con-

trol strategies at work before and after replication [42–45]. A natural question is why eukary-

otic cells apply such two-layer control strategies to achieve size homeostasis. In our model, we

assume that the size control strength varies from α0 to α1 upon replication. In Methods, we

show that when the variability in cell size is small, the birth size Vb and the division size Vd are

interconnected by Vd = 21−α Vb + �, where α = wα0 + (1 − w)α1 is the effective size control

strength over the whole cell cycle and � is a noise term independent of Vb. The cell behaves as

an overall timer/adder/sizer when α! 0, 1,1, respectively. Note that in real systems, α is

never much larger than 1—for fission yeast which is known to have a sizer-like mechanism, it

has recently been estimated that α is 1.4 − 2.1 [53].

To understand the effect of size control on concentration homeostasis, we illustrate γ as a

function of β, α0, and α1 (Fig 5A and 5B). Recall that balanced biosynthesis, weak dosage com-

pensation, and unstable gene products may break concentration homeostasis. When synthesis

is balanced (β = 1) and dosage compensation is not very strong (κ is not very close to 1), we

find that homeostasis depends strongly on size control and its accuracy is significantly

enhanced if cells use different size control strategies before and after replication (see also S6

Fig). Homeostasis is the strongest if (i) the cell behaves as a sizer before replication and a timer

after replication or (ii) the cell behaves as a timer before replication and a sizer after replica-

tion. Thus such sizer-timer or timer-sizer compound control strategies may help eukaryotic

cells maintain accurate homeostasis without any clearly distinguishable concentration oscilla-

tions (Fig 5E) for genes with a wide range of dynamic parameters. In contrast, when synthesis

is non-balanced (β = 0) such as in bacteria, we find that homeostasis is insensitive to size con-

trol (S6 Fig).
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Furthermore, we find that size control also affects gene expression noise. Fig 5C and 5D illus-

trate the noise ϕ as a function of β, α0, and α1, from which we can see that concentration noise

depends only weakly on β but depends strongly on size control. Noise is minimised when the

cell behaves as a sizer before replication and a timer after replication, and is maximized when

the control strategy changes from timer to sizer at replication, whether synthesis is balanced or

not (Fig 5D and S6 Fig). This suggests that while the timer-sizer compound strategy is condu-

cive to concentration homeostasis, it gives rise to large concentration noise (Fig 5E). However,

the sizer-timer compound strategy both maintains homeostasis and reduces noise. Note that

while sizer-timer is optimal, the adder-timer compound strategy is still ideal in maintaining

homeostasis and reducing noise since it also falls in the blue regions in Fig 5B and 5D.

In a recent work [45], it was found that both the duration of the G1 phase and the added

volume in G1 decrease with birth volume in two types of cancerous epithelial cell lines

(HT29-hgem and HeLa-hgem), indicating that the control strategy before replication is sizer-

like. Moreover, they also found that the duration of the S-G2 phase decreases and the added

volume in S-G2 increases with the volume at the G1/S transition in both cell types, showing

that the cell uses a timer-like strategy after replication. Similar results have been found in yeast

[42–44]. Our results may explain why the sizer-timer compound strategy is preferred over oth-

ers and hence commonly used in nature.

Bimodality in the concentration distribution is rarer than bimodality in the

copy number distribution

To gain a deeper insight into gene product fluctuations, in Fig 6A–6C we contrast the copy

number and concentration distributions. Clearly, the shapes of the two can be significantly

Fig 5. Influence of size control on concentration homeostasis and concentration noise. A,B: Heat plot of γ (the accuracy of concentration homeostasis) versus β (the

degree of balanced biosynthesis), α0 (the strength of size control before replication), and α1 (the strength of size control after replication). When synthesis is balanced (β
= 1), concentration homeostasis is accurate when the cell applies different size control strategies before and after replication. Both the timer-sizer and sizer-timer

compound strategies enhance the accuracy of homeostasis. C,D: Heat plot of ϕ (noise in concentration) versus β, α0, and α1. While the timer-sizer compound strategy

leads to accurate concentration homeostasis, it results in large gene expression noise. The sizer-timer compound strategy both maintains homeostasis and reduces noise.

The model parameters are chosen as N = 50, N0 = 21, ρ = 4.7, B = 1, κ = 2, d = 0.4, η = 4 in A-D, α1 = 1 in A,C, and β = 1 in B,D. The growth rate g is determined so that

f = 0.1. The parameter a is chosen so that the mean cell volume hVi = 1. E: Typical time traces of concentration under three different size control strategies: adder (upper

panel), timer-sizer (middle panel), and sizer-timer (lower panel). See Section E in S1 Appendix for the technical details of this figure.

https://doi.org/10.1371/journal.pcbi.1010574.g005
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different; for some parameter sets, one is unimodal and the other is bimodal. Both distribu-

tions can display bimodality, due to a change in the burst frequency upon replication; however,

the concentration distribution is generally less wide than the copy number distribution, which

agrees with experimental observations [18].

Recall that concentration has the gamma distribution when β = κ = 1 and hni � 1. To

understand the deviation from gamma, we depict the Hellinger distance D of the concentra-

tion distribution from its gamma approximation as a function of β, κ, η, and B (Fig 6E and

6F). Note that Fig 6E is similar to Fig 4D, implying that the deviation from gamma is closely

related to concentration homeostasis. Accurate homeostasis usually results in a concentration

distribution that is gamma-shaped. In particular, stable gene products usually have a unimodal

concentration distribution that is not far from gamma. Since sizer-timer and timer-sizer com-

pound strategies enhance the accuracy of homeostasis, they both lead to a smaller deviation

from gamma (Fig 6D). In Fig 6E and 6F we show the regions of parameter space where the

concentration and copy number distributions are unimodal and bimodal. Both distributions

display bimodality when β, κ, and η are large and B is small. However, the region of parameter

space for observing bimodality in copy number distributions is much larger than that for con-

centration distributions. This shows that the number of modes of the concentration distribu-

tion is always less than or equal to that of the copy number distribution. The situation that the

concentration distribution has more modes than the copy number distribution is not found,

according to simulations of large swathes of parameter space. Bimodality in the concentration

distribution occurs only in the presence of balanced biosynthesis, weak dosage compensation,

large degradation rates, and small burst size.

Fig 6. Influence of model parameters on copy number and concentration distributions. A-C: The copy number (red curve) and concentration (blue curve)

distributions display different shapes under different choices of parameters. A Both distributions are unimodal. B The concentration distribution is unimodal while the

copy number one is bimodal. C Both distributions are bimodal. D: Concentration distributions under three different size control strategies: adder (blue curve), timer-

sizer (red curve), and sizer-timer (green curve). Two-layer control strategies lead to unimodal concentration distributions that are not far from gamma. E,F: Heat plot of

the Hellinger distance D of the concentration distribution from its gamma approximation versus β (the degree of balanced biosynthesis), κ (the strength of dosage

compensation), η (the stability of the gene product), and B (the mean burst size). The violet (blue) curve encloses the region for the copy number (concentration)

distribution being bimodal. The bimodal region for the copy number distribution is much larger than that for the concentration distribution. G,H: The mRNA copy

number (red curve) and concentration (blue curve) distributions for the HTB2 gene in budding yeast measured using smFISH. The green (yellow) curves show the

distributions of cells in the G1 (G2-S-M) phase. No apparent dosage compensation was observed with the mean copy number (concentration) in G2-S-M being 2.22

(1.66) times greater than that in G1. The data shown are published in [92]. See Section F in S1 Appendix for the technical details of this figure.

https://doi.org/10.1371/journal.pcbi.1010574.g006
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Confirmation of theoretical predictions using bacterial and yeast data

Next we use published experimental data to test some of the predictions of our model: (i)

unstable gene products can have a concentration distribution with either the same or a smaller

number of modes than the copy number distribution; (ii) strong concentration homeostasis is

rare, i.e. while the gene product numbers may scale approximately linearly with cell volume,

nevertheless oscillations in concentration due to the periodicity of cell division are still detect-

able; (iii) deviations from perfect homeostasis result in deviations of the concentration distri-

bution from gamma. We used three data sets reporting mRNA or protein measurements for

bacteria, budding yeast, and fission yeast, to test these results, as follows.

To test prediction (i), we used the population data collected in diploid budding yeast cells

using single-molecule mRNA fluorescence in situ hybridization (smFISH) [92]. In this data

set, the mRNA abundance and cell volume are measured simultaneously for four genes: HTB1,

HTB2, HHF1, and ACT1, with the cell cycle phase (G1, S, and G2/M) of each cell being labelled.

These mRNAs are produced in a balanced manner [92] and expected to be unstable since the

median mRNA half-life in budding yeast is� 20 min [93], which is much less than the mean

cell cycle duration of 1.5 − 2.5 hr [94, 95]. Interestingly, for HTB2, we observed an apparent

bimodal distribution for the mRNA number and a unimodal distribution for the mRNA con-

centration (shown by the red and blue curves in Fig 6G and 6H). Calculating the distributions

conditional on the G1 and S-G2-M phases (shown by the green and yellow lines) clarifies that

the bimodality stems from replication and a lack of dosage compensation. Specifically, since

the volume distribution for the population of cells is unimodal (S7 Fig), the bimodal copy

number distribution must come from replication and weak dosage compensation, rather than

from a bimodal volume distribution and strong dosage compensation. Similar distribution

shapes were also observed for HTB1 and ACT1; for HHF1, both distributions are unimodal

(S8 Fig).

To test predictions (ii) and (iii), we used the lineage data collected in E. coli and haploid fis-

sion yeast cells using a mother machine [23, 96]. In the E. coli data set [23], the time course

data of cell size and fluorescence intensity of a stable fluorescent protein were recorded for 279

cells lineages under three growth conditions. In the fission yeast data set [96], similar data for a

stable fluorescent protein were monitored for 10500 cell lineages under seven growth condi-

tions. For both cell types, we illustrate the change in the mean concentration across the cell

cycle, as well as the distribution and power spectrum of concentration fluctuations, in Fig 7A–

7C and 7E–7G. In agreement with prediction (ii), from Fig 7A and 7B we see that for E. coli,
while the mean concentration is practically invariant across the cell cycle, nevertheless homeo-

stasis is not strong enough to suppress concentration oscillations whose signature is a peak at a

non-zero frequency in the power spectrum. A similar phenomenon was also observed for fis-

sion yeast (Fig 7E and 7F). The higher-order harmonics of concentration fluctuations (second

and third peaks in the spectrum) can be seen for fission yeast but not for E. coli; this is likely

due to a stronger periodicity (smaller variability) in cell cycle duration in fission yeast com-

pared to that in E. coli [52, 53]. Finally, in agreement with prediction (iii), from Fig 7D and 7H

we see that for both organisms, the Hellinger distance D, which measures the distance of the

concentration distribution from a gamma, is positively correlated with the non-dimensional

parameter γ and the off-zero peak height H, both of which measure how strong concentration

homeostasis is.

Discussion

In this paper, we have developed and solved a complex model of gene product fluctuations

which presents a unified description of intracellular processes controlling cell volume, cell
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Fig 7. Analysis of single-cell lineage data of concentration fluctuations in E. coli and fission yeast. The data shown are published in [23, 96]. The E. coli data set

contains the lineage measurements of both cell length and fluorescence intensity of a stable fluorescent protein at three different temperatures (25˚C, 27˚C, and 37˚C).

The fission yeast data set contains the lineage measurements of both cell area and fluorescence intensity of a stable fluorescent protein under seven different growth

conditions (Edinburgh minimal medium (EMM) at 28˚C, 30˚C, 32˚C, and 34˚C and yeast extract medium (YE) at 28˚C, 30˚C, and 34˚C). A: The change in the mean

concentration across the cell cycle for E. coli under three growth conditions. Here, we divide each cell cycle into 50 pieces and compute the mean and standard deviation

(see error bars) of all data points that fall into each piece. The CV squared of the mean concentrations of all pieces gives an estimate of ϕext and the CV squared of the

concentrations of all cells gives an estimate of ϕ, from which γ can be inferred. B: Power spectra of copy number (red curve) and concentration (blue curve) fluctuations

under three growth conditions. C: Experimental concentration distributions (blue bars) and their gamma approximations (red curve) under three growth conditions. D:
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cycle phase, and their coupling to gene expression. In our model, cell cycle and cell volume act

on gene expression mainly by (i) the dependence of the burst size on cell volume; (ii) the

increase in the burst frequency upon replication; (iii) the change in size control strategy upon

replication; (iv) the partitioning of molecules at division. Point (iv) strongly affects copy num-

ber fluctuations, while it has little influence on concentration fluctuations. In our model, there

is a strong coupling between gene expression dynamics, cell size dynamics, and cell cycle

events, mainly due to size-dependent synthesis and cell size control. The analytical difficulties

in solving a model with considerable biological details were circumvented by means of a novel

type of mean-field approximation which involves neglecting cell size fluctuations such that the

cell size at a given fraction of the cell cycle is independent of the generation number. This

approximation disentangled the coupling between gene expression and cell volume and led to

a reduced model from which we derived expressions for the moments, distributions, and

power spectra of both gene product number and concentration fluctuations. We showed by

simulations that the full and reduced models are in good agreement over all of parameter

space provided the number of cell cycle stages N is greater than 15 (which experimental data

shows to be the case for most cell types).

We note that whilst the majority of gene expression models have no cell size description,

recently a few pioneering papers have considered extensions to include such a description. In

[25], it was shown that concentration homeostasis can arise when RNA polymerases are limit-

ing for transcription and ribosomes are limiting for translation. This model takes into account

gene replication and cell division but neglects dosage compensation and multi-layer size con-

trol, and some of the mechanistic details are specific to E. coli. In addition, the analysis is deter-

ministic and while stochastic simulations are presented, a detailed study of fluctuations in

molecule number and concentration is missing. In [26], mRNA number distributions are

approximated by a negative binomial using a model that takes into account replication, divi-

sion, dosage compensation, and balanced biosynthesis. The main limitations of this approach

is its lack of flexibility to capture complex distributions and the neglection of fluctuations in

cell volume dynamics. In [27], a simplified model is considered whereby replication and

multi-layer size control are neglected and dosage compensation is assumed to be perfect. The

main limitations of this approach is the assumption of stochastic concentration homeostasis

(SCH) [27], which will be broken when the synthesis of the gene product is not balanced or

when dosage compensation is not perfect. Specifically, when synthesis is balanced and when

dosage compensation is perfect, our model reduces to one of the models studied in [27]; this

model satisfies SCH and the concentration has a gamma distribution. The breaking of SCH

and the deviation of the concentration distribution from gamma were analyzed in detail in the

present paper.

Our model differs from the above models in numerous ways, by (i) including a wider

description of relevant biological processes; (ii) capturing complex distributions and power

spectra of concentration fluctuations using a novel non-SCH-based approach; (iii) showing

that accurate concentration homeostasis results from a complex tradeoff between dosage

compensation, balanced biosynthesis, degradation, and the timing of replication; (iv) showing

that concentration homeostasis is typically not strong enough to suppress concentration

oscillations due to cell division; (v) showing that the number of modes of mRNA number

Scatter plots between γ (the accuracy of concentration homeostasis), H (the height of the off-zero peak of the power spectrum), and D (the Hellinger distance between the

concentration distribution from its gamma approximation) under three growth conditions. E-H: Same as A-D but for fission yeast. Here E-G only show the three growth

conditions for YE, while H shows the scatter plots between γ, H, and D under all seven growth conditions (for both EMM and YE). Both cell types show remarkable

positive correlations between γ, H, and D.

https://doi.org/10.1371/journal.pcbi.1010574.g007
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distributions is greater than or equal to that of mRNA concentration distributions; (vi) show-

ing that a sizer-timer or adder-timer compound strategy is ideal because it maintains accurate

concentration homeostasis whilst minimising concentration noise. In the study concentration

homeostasis, we disentangled the extrinsic noise due to cell cycle effects from the total concen-

tration variability, and then use their ratio to characterize the accuracy of homeostasis. Our

definition of homeostasis can be identified experimentally by the scatter plot of molecule num-

ber and cell volume—accurate homeostasis is indicated by a strong linear relationship between

mean molecule number and cell volume, while inaccurate homeostasis is indicated by a strong

nonlinear relationship between the two.

Our model is complex due to the coupling between gene expression dynamics, cell volume

dynamics, and cell cycle events. A natural question is whether all the parameters involved in

the model can be inferred accurately. In fact, parameter inference for similar models has been

made in our previous papers—the parameters related to cell volume dynamics have been

inferred in E. coli [52] and fission yeast [53] using the method of distribution matching, and

the parameters related to gene expression dynamics have be estimated in E. coli [40] using the

method of power spectrum matching. In Section G in S1 Appendix, we provide details of a

parameter inference method for our model and validate it using synthetic cell-cycle resolved

lineage data of gene expression and cell volume obtained from stochastic simulations. We

show that fitting this data to the model leads to accurate estimation of all model parameters

(see Table A in S1 Appendix for the comparison between input and estimated parameters).

Although our model is detailed, it has some limitations. We briefly discuss a few of the

most relevant ones from a physiological point of view: (i) we have assumed no particular

change in transcription during mitosis. However, during mitosis, chromosomes are highly

condensed, physically excluding the transcription machinery and leading to transcriptional

silence; subsequently at mitotic exit, the transcriptional program is faithfully reactivated, allow-

ing the cell to maintain its identity and continue to function [97]; (ii) we have assumed that the

parameters β and κ are independent of each other, while in reality the two are likely related

because both balanced biosynthesis and dosage compensation emerge from RNA polymerase

dynamics; (iii) we have assumed the growth rate is constant through the cell cycle, while in real

systems the growth rate has small fluctuations [45, 49, 98]; (iv) while we assumed that only the

synthesis rate is volume dependent, in some cell types both the synthesis and degradation rates

of mRNA may be volume-dependent—this may be needed to maintain concentration homeo-

stasis because the synthesis rate does not always scale linearly with cell size [99]; (v) our model

does not provide a detailed description of the biochemical processes at play behind the mainte-

nance of concentration homeostasis, such as competition between genes for limiting RNA

polymerase II [16] and the negative regulation of RNA polymerase II activity and abundance

by nuclear mRNA [20, 91]; (vi) we have focused on the expression of unregulated genes but it

is well known that many regulate each other resulting in complex gene regulatory networks

[100]. In particular, regarding the latter point, it remains to be seen how the plethora of results

on noise-induced bifurcations and oscillations derived using classical models are modified

when size-dependent transcription and cell-size control strategies are introduced.

Methods

Distributions of the generalized added volumes

Let Vb, Vr, and Vd denote the cell volumes at birth, replication, and division, respectively. Let

α0 and α1 denote the strengths of size control before and after replication, respectively. Here

we will prove that (i) the generalized added size before replication, D0 ¼ Va0
r � Va0

b , has an

Erlang distribution with shape parameter N0 and mean M0 ¼ N0a0g=aa0 and (ii) the
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generalized added size after replication, D1 ¼ Va1

d � Va1
r , is also Erlang distributed with shape

parameter N1 = N − N0 and mean M1 ¼ N1a1g=aa1 .

To prove this, we first focus on the volume dynamics before replication. Note that when Vb

is fixed, the cell volume at time t is given by V(t) = Vbegt. Since the transition rate from one

stage to the next is equal to ðaVðtÞÞa0 before replication, the distribution of the transition time

T is given by

PðT > tÞ ¼ e�
R t

0
ðaVðsÞÞa0 ds

¼ e�
R t

0
ðaVbÞ

a0 ea0gsds
¼ e�

ðaVbÞ
a0

a0g ðe
a0gt � 1Þ

:

This shows that

PðVa0

b ðea0gT � 1Þ > tÞ ¼ e�
aa0 t
a0g : ð11Þ

Let vk be the volume when the cell first enters stage k with v1 = Vb andvN0þ1 ¼ Vr. Note that

Va0

b ðea0gT � 1Þ ¼ va0

2 � va0

1 is the generalized added size at stage 1. Hence Eq (11) suggests that

va0

2 � va0

1 is exponentially distributed with mean a0g=aa0 . Similarly, we can prove that the gen-

eralized added size va0

kþ1 � va0

k at stage k is also exponentially distributed with mean a0g=aa0 for

each k 2 [1, N0]. As a result, the generalized added size before replication, Va0
r � Va0

b , is

the independent sum of N0 exponentially distributed random variables with the same mean

a0g=aa0 . This indicates that Va0
r � Va0

b has an Erlang distribution with shape parameter N0 and

mean M0 ¼ N0a0g=aa0 , and is also independent of Vb. The fact that Va1

d � Va1
r is Erlang distrib-

uted with shape parameter N1 and mean M1, and is also independent of both Vb and Vr can be

proved in the same way.

Moreover, it is easy to see that for each k 2 [1, N0], the generalized added size va0

kþ1 � va0

1 ,

has an Erlang distribution with shape parameter k and mean ka0g=aa0 . Similarly, for each

k 2 [N0 + 1, N], the generalized added size va1

kþ1 � va1
N0þ1 is also Erlang distributed with shape

parameter k − N0 and mean ðk � N0Þa1g=aa1 .

Effective size control strategy over the whole cell cycle

In our model, we assume that the size control strategies before and after replication can be dif-

ferent with the strength of size control changing from α0 to α1 at replication. The following

question naturally arises: what is the size control strategy over the whole cell cycle? To answer

this, we first focus on the cell size dynamics before replication. Recall that the generalized

added size Va0
r � Va0

b before replication has an Erlang distribution and is independent of Vb.

When the fluctuations of Vb and Vr are small, we have the following Taylor expansions:

Va0

b � va0

b þ a0v
a0 � 1

b ðVb � vbÞ ¼ ð1 � a0Þv
a0

b þ a0v
a0 � 1

b Vb;

Va0
r � va0

r þ a0va0 � 1
r ðVr � vrÞ ¼ ð1 � a0Þva0

r þ a0va0 � 1
r Vr;

where vb = v1 and vr ¼ vN0þ1 are the typical values of Vb and Vr, respectively. Therefore, we

obtain

Va0
r � Va0

b � ð1 � a0Þðva0
r � va0

b Þ þ a0va0 � 1
r Vr � a0va0 � 1

r Vb

¼ ð1 � a0Þðva0
r � va0

b Þ þ a0va0 � 1
r Vr �

vb

vr

� �a0� 1

Vb

" #

¼ ð1 � a0Þðva0
r � va0

b Þ þ a0va0 � 1
r ðVr � 2ð1� a0ÞwVbÞ;
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where w = log2(vr/vb) is the proportion of cell cycle before replication. This shows that

Va0
r � Va0

b � aþ bðVr � 2ð1� a0ÞwVbÞ;

where a ¼ ð1 � a0Þðva0
r � va0

b Þ and b ¼ a0va0 � 1
r are two constants. Hence Vr � 2ð1� a0ÞwVb is

approximately independent of Vb, i.e.

Vr � 2wð1� a0ÞVb ¼ �0; ð12Þ

where �0 is a noise term independent of Vb and which has a mean greater than zero. Similarly,

for the cell size dynamics after replication, we have

Vd � 2ð1� wÞð1� a1ÞVr ¼ �1; ð13Þ

where �1 is a noise term independent of both Vb and Vr, and which has a mean greater than

zero. Combining the above two equations, we can eliminate Vr and obtain

Vd � 21� ½wa0þð1� wÞð1� a1Þ�Vb ¼ �1 þ 2ð1� wÞð1� a1Þ�0; ð14Þ

where the right-hand side is a noise term independent of Vb. Eqs (12) and (13) again show that

αi! 0, 1,1 corresponds to timer, adder, and sizer, respectively.

To proceed, note that if the strength of size control does not change upon replication, i.e.

α0 = α1 = α, then similar reasoning suggests that Vd − 21−αVb is a noise term independent of

Vb. Therefore, if the strength of size control changes from α0 to α1 at replication, then it follows

from Eq (14) that the effective size control strength α over the whole cell cycle should be

defined as

a ¼ wa0 þ ð1 � wÞa1:

The cell behaves as an overall timer/adder/sizer when α! 0, 1,1, respectively.

Lineage distributions of gene product number

We consider the distribution of copy numbers for lineage measurements. Note that at each

cell cycle stage, the stochastic dynamics of copy number is exactly the classical discrete bursty

model proposed in [88], whose steady-state is the negative binomial distribution. Therefore,

it is natural to approximate the conditional distribution of copy numbers at each stage by the

negative binomial distribution

pnjk �
1

n!

�m2
k

�s2
k � �mk

� �

n

1 �
�mk

�s2
k

� �n
�mk

�s2
k

� ��m2
k=ð�s

2
k � �mkÞ

;

where �mk ¼ m1k=m0k and �s2
k ¼ ðm1k þm2kÞ=m0k � �m2

k are the conditional mean and variance

of copy number at stage k, respectively, and (x)n = x(x + 1)� � �(x + n − 1) denotes the Pochham-

mer symbol. Hence the overall distribution of copy numbers is given by the following mixture

of N negative binomial distributions:

pn ¼
XN

k¼1

m0kpnjk �
XN

k¼1

m0k

n!

�m2
k

�s2
k � �mk

� �

n

1 �
�mk

�s2
k

� �n
�mk

�s2
k

� ��m2
k=ð�s

2
k � �mkÞ

: ð15Þ

We emphasize that the above derivation is not rigourous; the analytical distribution derived

is not exact but it serves an accurate approximation when N� 15. The logic behind our

approximate distribution is that while the gene product may produce complex distribution of

copy numbers, when the number of cell cycle stages is large, the distribution must be relatively
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simple within each stage and thus can be well approximated by a simple negative binomial dis-

tribution.

Lineage distributions of gene product concentration

We consider the distribution of concentration for lineage measurements. Note that at each cell

cycle stage, the stochastic dynamics of concentration is exactly the classical continuous bursty

model proposed in [87], whose steady-state is the gamma distribution. Therefore, it is natural

to approximate the conditional distribution of concentrations at each stage by the gamma dis-

tribution

pðxjkÞ �
ðmk=s

2
kÞ
m2

k=s
2
k

Gðm2
k=s

2
kÞ

xm2
k=s

2
k � 1e� mkx=s2

k ;

where μk = m1k/(m0kvk) and s2
k ¼ ðm1k þm2kÞ=ðm0kv2

kÞ � m
2
k are the conditional mean and var-

iance of concentration at stage k, respectively. Hence the overall distribution of concentrations

is given by the following mixture of N gamma distributions:

pðxÞ ¼
XN

k¼1

m0kpðxjkÞ �
XN

k¼1

m0kðmk=s
2
kÞ
m2

k=s
2
k

Gðm2
k=s

2
kÞ

xm2
k=s

2
k � 1e� mkx=s2

k :

We emphasize that the above derivation is not rigourous; the analytical distribution derived

is not exact but it serves an accurate approximation when N� 15. While the gene product may

produce complex distribution of concentrations, when N is sufficiently large, the distribution

must be relatively simple within each stage and thus can be well approximated by a simple

gamma distribution.

Population distributions of gene product number and concentration

Up till now and in the main text, we have calculated gene product statistics for lineage mea-

surements. Here we perform calculations for population measurements following the

approach described in [37, 38]. Let Ck(t) be the mean number of cells at stage k in the popula-

tion at time t. Then all Ck(t), 1� r� N satisfy the following set of differential equations:

_C1 ¼ � q1C1 þ 2qNCN ;

_C2 ¼ � q2C2 þ q1C1;

� � �

_CN ¼ � qNCN þ qN� 1CN� 1;

ð16Þ

where the term 2qN CN in the first equation is due to the fact that the cell divides when the sys-

tem transitions from stage N to stage 1. We then make the ansatz

CkðtÞ ¼ pkCðtÞ;

where C(t) is the total number of cells in the population and πk is the proportion of cells at
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stage k. Then Eq (16) can be rewritten as

p1
_C ¼ ð2qNpN � q1p1ÞC;

p2
_C ¼ ðq1p1 � q2p2ÞC;

� � �

pN
_C ¼ ðqN� 1pN� 1 � qNpNÞC:

It then follows from the above equation that

2qN
pN

p1

� q1 ¼ q1

p1

p2

� q2 ¼ � � � ¼ qN� 1

pN� 1

pN
� qN ¼ J;

where J ¼ _C=C. This clearly shows that

pN

p1

¼
q1 þ J
2qN

;
p1

p2

¼
q2 þ J

q1

; � � � ;
pN� 1

pN
¼

qN þ J
qN� 1

: ð17Þ

Multiplying all the above equations shows that J is the solution to the equation

ðq1 þ JÞðq2 þ JÞ � � � ðqN þ JÞ ¼ 2q1q2 � � � qN :

It thus follows from Eq (17) that

pk ¼
ðqkþ1 þ JÞ � � � ðqN þ JÞ

qk � � � qN� 1

pN :

Since all πk add up to 1, we finally obtain

pk ¼
ðqkþ1 þ JÞ � � � ðqN þ JÞ=ðqk � � � qN� 1Þ

PN
k¼1
ðqkþ1 þ JÞ � � � ðqN þ JÞ=ðqk � � � qN� 1Þ

:

Now we have obtained the proportion of cells at each stage. Therefore, the population dis-

tribution of copy number is given by the following mixture of N negative binomial distribu-

tions:

ppop
n ¼

XN

k¼1

pkpnjk �
XN

k¼1

pk

n!

�m2
k

�s2
k � �mk

� �

n

1 �
�mk

�s2
k

� �n
�mk

�s2
k

� ��m2
k=ð�s

2
k � �mkÞ

:

Similarly, the population distribution of concentration is given by the following mixture of

N gamma distributions:

ppopðxÞ ¼
XN

k¼1

pkpðxjkÞ �
pkðmk=s

2
kÞ
m2

k=s
2
k

Gðm2
k=s

2
kÞ

xm2
k=s

2
k � 1e� mkx=s2

k :

Supporting information

S1 Appendix. Technical details. This file contains the detailed derivation of some equations,

the technical details of some figures, and the detailed description of the parameter inference

method.

(PDF)
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S1 Fig. Comparison between the mRNA distributions the bursty model and the three-

stage model with a cell volume description. The blue (red) dots show the simulated mRNA

concentration (copy number) distribution for the three-stage model with a cell volume

description obtained from SSA. The blue (red) curves show the simulated mRNA concentra-

tion (copy number) distribution for the bursty model with a cell volume description

obtained from SSA. The parameters for the three-stage model are chosen as N0 = 0.2N, β = 1,

κ = 2, α0 = α1 = 1, v = 10f, d = f, s = 0.2r, u = v. The parameters for the bursty model are cho-

sen as N0 = 0.2N, B = 0.2, β = 1, κ = 2, α0 = α1 = 1, v = 10f, where v is the degradation rate of

mRNA. The growth rate g is determined so that f = 2 for the bursty model. The parameter ρ
and a are chosen so that the mean mRNA number hni = 25 and the mean cell volume hVi = 1

for the bursty model.

(EPS)

S2 Fig. Comparison between the protein distributions for bursty model and the three-

stage model with a cell volume description. The blue (red) dots show the simulated protein

concentration (copy number) distribution for the three-stage model with a cell volume

description obtained from SSA. The blue (red) curves show the simulated protein concen-

tration (copy number) distribution for the bursty model with a cell volume description

obtained from SSA. The parameters for the three-stage model are chosen as N0 = 0.2N,

ρ = 70, β = 1, κ = 2, α0 = α1 = 1, d = f, r = 50ρ, s = 0.2r, u = v. The parameters for the bursty

model are chosen as N0 = 0.2N, ρ = 70, B = 0.2, β = 1, κ = 2, α0 = α1 = 1, d = f, where d is

the degradation rate of protein. The growth rate g is determined so that f = 2 for the bursty

model. The parameter a are chosen so that the mean cell volume hVi = 1 for the bursty

model.

(EPS)

S3 Fig. Comparison between the full and mean-field models as N0 and η vary. The blue

(red) dots show the simulated concentration (copy number) distribution for the full model

obtained from SSA. The blue (red) squares show the simulated concentration (copy number)

distribution for the mean-field model obtained from SSA. The blue (red) curve shows the ana-

lytical approximate concentration (copy number) distribution. The model parameters are cho-

sen as N = 50, B = 1, β = 0, κ = 2, α0 = α1 = 1, d = ηf. The growth rate g is determined so that

f = 0.1. The parameter ρ and a are chosen so that hni = 100 and hVi = 1.

(EPS)

S4 Fig. Power spectra of copy number and concentration fluctuations. A: Power spectra of

copy number fluctuations when w = 0.5 (blue curve) and w = 0.8 (red curve). B: Power spectra of

concentration fluctuations when w = 0.5 (blue curve) and w = 0.8 (red curve). In A,B, the model

parameters are chosen as N ¼ 20;B ¼ 1;b ¼ 0; k ¼
ffiffiffi
2
p

; a0 ¼ a1 ¼ 0:01; d ¼ 0:5; Z ¼ 5. The

growth rate g is determined so that f = 0.1. The parameters ρ and a are chosen so that hni = 100

and hVi = 1. The power spectra are computed using Eq (17) in S1 Appendix.

(EPS)

S5 Fig. Relationship between concentration homeostasis and concentration oscillations. A:

Heat plot of γ (the accuracy of concentration homeostasis) versus B (the mean burst size) and

hni (the mean gene product number). B: Heat plot of H (the height of the off-zero peak of the

power spectrum) versus B and hni. The model patenters in A,B are chosen as N = 40, N0 =

0.4N, β = 1, κ = 2, α0 = α1 = 1, d = 0.1, η = 1. The growth rate g is determined so that f = 0.1.

The parameter a is chosen so that hVi = 1.

(EPS)
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S6 Fig. Influence of two-layer cell-size control on concentration homeostasis and concen-

tration noise for various choices of β and κ. A-C: Heat plot of the homeostasis accuracy γ
(left panel) and concentration noise ϕ (right panel) versus the strengths of size control, α0 and

α1. The model parameters are chosen as N = 50, N0 = 21, ρ = 4.7, B = 1, d = 0.4, η = 4.

(EPS)

S7 Fig. Cell volume distribution in budding yeast. The blue curve shows the volume distribu-

tion of all cells. The green curve shows the distribution of cells in the G1 phase and the yellow

curve shows the distribution of cells in the G2/S/M phase. The data shown are published in

[92].

(EPS)

S8 Fig. Copy number and concentration distributions of three mRNAs in budding yeast.

A: The mRNA copy number (red curve) and concentration (blue curve) distributions for the

HTB1 gene. The green curves show the distributions of cells in the G1 phase and the yellow

curves show the distributions of cells in the G2/S/M phase. B: Same as A but for the ACT1
gene. C: Same as A but for the HHF1 gene. The data shown are published in [92].

(EPS)
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