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Abstract 

Background  Fetal alcohol spectrum disorder (FASD) is a significant public health concern, yet there is no internation-
ally agreed set of diagnostic criteria or summary of underlying evidence to inform diagnostic decision-making. This 
systematic review assesses associations of prenatal alcohol exposure (PAE) and outcomes of diagnostic assessments, 
providing an evidence base for the improvement of FASD diagnostic criteria.

Methods  Six databases were searched (inception–February 2023). Case-controls or cohort studies examining associ-
ations between participants with/without PAE or a FASD diagnosis and the domains of physical size, dysmorphology, 
functional neurodevelopment and/or brain structure/neurology were included. Excluded studies were non-empirical, 
sample size < 10, PAE determined via biological markers only, or no suitable comparison group. Summary data were 
extracted and associations between outcomes and standardised levels of PAE or FASD diagnosis determined using 
random-effects meta-analyses. Certainty of the evidence was assessed using GRADE.

Results  Of the 306 included studies, 106 reported physical size, 43 dysmorphology, 195 functional neurodevelop-
ment and 110 structural/neurological outcomes, with 292 different outcomes examined. There was a dose–response 
relationship between PAE and head circumference, as well as measures of physical size, particularly at birth. There 
was also an association between higher PAE levels and characteristic sentinel facial dysmorphology, as well as many 
of the current functional neurodevelopmental outcomes considered during diagnosis. However, data were often lack-
ing across the full range of exposures. There was a lack of evidence from studies examining PAE to support inclusion 
of non-sentinel dysmorphic features, social cognition, speech-sound impairments, neurological conditions, seizures, 
sensory processing or structural brain abnormalities (via clinical MRI) in diagnostic criteria. GRADE ratings ranged 
from very low to moderate certainty of evidence.

Conclusions  This comprehensive review provides guidance on which components are most useful to consider 
in the diagnostic criteria for FASD. It also highlights numerous gaps in the available evidence. Future well-designed 
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pregnancy cohort studies should specifically focus on dose–response relationships between PAE and dysmorphology, 
neurodevelopment and brain structure/neurological outcomes.

Systematic review registration  PROSPERO: CRD42021230522.

Keywords  Fetal alcohol spectrum disorder, FASD, Birth weight, Prenatal alcohol exposure, Head circumference, 
Functional neurodevelopment, Diagnostic criteria, Facial features, Dysmorphology

Background
Prenatal alcohol exposure (PAE) is common in over 
76 countries [1] and can lead to various adverse out-
comes in pregnancy and childhood. Fetal alcohol 
spectrum disorder (FASD) is the leading cause of 
non-genetic developmental disability in many coun-
tries, affecting an estimated 7.7 per 1000 individu-
als [1]. Consequently, FASD is a serious public health 
issue, associated with significant costs for the indi-
vidual, family and society [2]. FASD is under-diag-
nosed globally, in part owing to the current lack of a 
unified diagnostic approach [3]. Due to the complex 
and heterogeneous nature of FASD, over ten different 
diagnostic criteria are currently employed internation-
ally [4]. This lack of standardised diagnostic criteria 
contributes to variations in the identification of FASD 
cases, making it difficult to establish accurate preva-
lence and impact. Establishing uniform diagnostic cri-
teria is crucial for improving FASD identification and 
facilitating appropriate services for those affected.

The key clinical components in diagnostic crite-
ria are physical size (i.e. birth weight, birth length, 
postnatal weight and/or postnatal height); dysmor-
phology (i.e. characteristic facial features [small pal-
pebral fissures, smooth philtrum and thin vermilion], 
other dysmorphic features and birth defects); func-
tional neurodevelopmental outcomes (e.g. general 
intelligence, memory, attention, executive function); 
structural neurodevelopmental outcomes (e.g. head 
circumference, structural brain abnormalities); and 
neurological outcomes (e.g. seizures of unknown ori-
gin, cerebral palsy, hearing and vision impairment) 
[5–10]. Whilst there have been previous systematic 
reviews on isolated diagnostic features (e.g. executive 
function, motor skills, birth weight) [11–13], none 
have provided a comprehensive summary to inform 
evidence-based decisions regarding diagnostic criteria. 
We systematically reviewed and synthesised the exist-
ing evidence examining the association of PAE with 
diagnostic outcomes to provide an evidence base for 
the improvement of diagnostic criteria, in the context 
of revising the Australian Guide for the Diagnosis of 
FASD [8].

Methods
We used Cochrane Systematic Review methodology to 
conduct this systematic review and meta-analysis and 
followed the 2020 PRISMA guideline for reporting [14]. 
This review was pre-registered with PROSPERO (refer-
ence: CRD42021230522).

Search strategy and selection criteria
Criteria for study inclusion were case–control and cohort 
studies with summary estimates examining the associa-
tion between PAE (exposure studies) or FASD (diagnosed 
studies) and one or more outcomes related to physical 
size, dysmorphology, functional neurodevelopment or 
structural/neurological (see full population, exposure, 
comparator and outcome (PECO) components and 
detailed outcomes list in Additional file 1: Tables S1 and 
S2) [6, 15–24]. Articles were excluded if they were pre-
clinical studies, the wrong publication type (letters, edi-
torials, conference abstracts, higher degree dissertations, 
reviews of commentaries), sample size < 10 participants, 
PAE measured only using biological markers and no 
appropriate comparison group: individuals with no/mini-
mal exposure (for exposure studies) or typically devel-
oping controls (for diagnosed studies). Six electronic 
databases (CINAHL, the Cochrane Library, EMBASE, 
PsychINFO, PubMed and Web of Science Core Collec-
tion) were searched (LA) from inception until January 30, 
2021, and updated February 28, 2023. The search strat-
egies included alcohol-related terms (and specifically 
those focussed on alcohol exposure during pregnancy) 
combined with terms related to the diagnostic criteria for 
FASD. Details of search strategies applied to each data-
base are provided in Additional file 1: Table S3. Manual 
screening of reference lists of retrieved full-text publi-
cations and previous relevant systematic reviews was 
performed to identify additional relevant publications. 
Retrieved references were imported into an EndNote 
library and duplicate records removed. Remaining refer-
ences were uploaded to Covidence (www.​covid​ence.​org) 
for screening against the inclusion and exclusion criteria. 
Title and abstracts were independently screened for eli-
gibility by two reviewers (NR, LA). Full-text publications 
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of the remaining references were then retrieved and inde-
pendently assessed by two reviewers (NR, LA). Discrep-
ancies were resolved via discussion and consensus with a 
third reviewer (NH). A list of studies excluded at the full 
text level is provided (Additional file 1: Table S4).

Standardisation of prenatal alcohol exposure (PAE) levels 
across studies
For exposure studies, PAE levels were standardised and 
classified into six categories: light, moderate, heavy, very 
heavy, any (dichotomised as yes/no), and confirmed/
unquantifiable (level not reliably collected but gener-
ally reported to be heavy or very heavy). Light PAE was 
defined as 1–20 g alcohol/ week (equivalent to 2 stand-
ard drinks in Australia), as per O’Leary et  al. [25]. This 
study described different patterns of alcohol use during 
pregnancy and defined low exposure in terms of both 
dose per week (never more than 2 drinks per occa-
sion) and maximum weekly amount (up to 7 drinks in a 
week). Most papers did not provide both dose and weekly 
amount so we chose ≤ 20 g/week to ensure that exposure 
could never be more than 2 drinks per occasion (i.e. no 
possibility of a ‘binge’ exposure, defined as 4 drinks per 
occasion). The definition for heavy PAE (> 100 g/week) 
was based on the Australian National Health and Medi-
cal Research Council (NHMRC) Guidelines that rec-
ommend no more than 10 standard drinks per week 
(equivalent to 100 g alcohol), with > 10 standard drinks/
week defined as ‘risky drinking’ [26]. Therefore, moderate 
PAE was between the light and heavy levels of exposure 
(21–100 g/week). Very heavy PAE was defined by dou-
bling the minimum level for heavy exposure (i.e. > 200 g 
alcohol/week).

In instances where PAE group mean alcohol level was 
not reported in the study, the PAE category definitions 
reported in the study methods were used to quantify and 
classify PAE level using procedures described by Patra 
et al. [13]. When a range of alcohol intake level was given, 
the midpoint of the range was used (e.g. 10–20 g per 
week = 15 g per week). In cases where no upper boundary 
was provided for the highest category of PAE (e.g. 40 + g 
per week), three-quarters of the length of the immediate 
previous category range was added to the lower bound-
ary to estimate the amount per week. Where consump-
tion was reported in drinks and not in grams, the grams 
of pure alcohol per drink (if defined in each article) was 
used. If the amount of alcohol per standard drink was 
not defined, conversion was based on geographical loca-
tion: for Canada 13.6 g, USA 14 g, UK 8 g and for both 
New Zealand and Australia 10 g pure alcohol per stand-
ard drink (see https://​iard.​org/​scien​ce-​resou​rces/​detail/​
drink​ing-​guide​lines-​gener​al-​popul​ation/ for definitions of 
standard drinks). For all other countries without any clear 

specifications, 12 g pure alcohol was used per standard 
drink. Where consumption was reported over some other 
timeframe (e.g. per day or per month), this was converted 
to weeks. Where multiple study PAE categories were clas-
sified into the same exposure level defined in this review, 
the higher PAE category from the study was used in the 
analyses. Example calculations for standardising PAE lev-
els are provided in Additional file 1: Table S5.

Standardisation of diagnostic categories
For diagnosed studies, four categories were used to group 
diagnoses: FASD, FAS (fetal alcohol syndrome), pFAS 
(partial fetal alcohol syndrome) and ARND/other (alco-
hol-related neurodevelopmental disorder). FASD was 
used when a study grouped all individuals with an FASD 
diagnostic outcome together. FAS included diagnoses of 
FAS, FASD with three sentinel facial features, syndromal, 
and where FAS and pFAS were grouped together but FAS 
participants were reported to be in the majority. When a 
study had a pFAS/FAS group and pFAS participants were 
the majority, or if participant numbers were not reported, 
the study was classified in the pFAS category. ARND/
other included static encephalopathy/alcohol exposed 
(SE/AE), neurobehavioural disorder/alcohol exposed 
(ND/AE), and heavily exposed non-syndromal. If a study 
reported multiple ARND/other groups, SE/AE was used 
in favour of ND/AE and ARND was used in favour of 
heavily exposed.

Data extraction and analysis
Data extraction was performed by multiple reviewers 
(LA, NH, NR, CV) and checked by a second reviewer 
(LA, JL, NH, NR or CV). When multiple studies reported 
the same population/cohort and outcome, the study with 
the largest sample size was included. Exceptions were 
studies where participant groups were reported with 
greater specificity (e.g. multiple PAE levels or FASD diag-
nostic subgroups).

Meta-analyses were conducted using Review Man-
ager 5·4 software (RevMan desktop, Cochrane, London, 
UK) to investigate effects of PAE or FASD diagnoses on 
outcomes. Effect estimates were pooled across studies 
(when ≥ 2 studies) using a random effects model with 
study weightings adjusted using the generic inverse-
variance method. For binary outcomes, odds ratios 
(OR) or frequency data were used. For continuous 
data, means/standard deviations or mean differences 
were used. Where available, adjusted estimates were 
prioritised. Separate meta-analyses were conducted 
for each PAE level or diagnostic category where avail-
able. Associations between diagnostic outcomes and 

https://iard.org/science-resources/detail/drinking-guidelines-general-population/
https://iard.org/science-resources/detail/drinking-guidelines-general-population/
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FASD diagnoses are often interdependent due to inclu-
sion of these features in the diagnostic criteria. Unlike 
exposure studies, which classify participants based on 
the level of PAE and then determine whether particu-
lar features are present, diagnostic studies base their 
inclusion of participants on a diagnosis based on the 
presence or absence of these features. We included 
these diagnostic studies for a complete analysis of all 
available evidence, particularly where there may be 
gaps in available exposure data. However, presentation 
of exposure study data were prioritised as these stud-
ies are the most informative in understanding associa-
tions between PAE and diagnostic features. Subgroup 
analyses were used where possible to examine the effect 
of risk of bias (low versus moderate–high risk of bias), 
or adjustment for confounders (adjusted versus unad-
justed data), on pooled effect estimates. Subgroup 
analysis investigating timing of PAE during pregnancy 
was not possible due to lack of available data or incon-
sistent reporting of exposure timing. Most studies did 
not stratify their effect estimates by sex so we could not 
include a sex-based analysis. Separate meta-analyses 
were conducted based on data availability for different 
measures and instruments across age groups.

Risk of bias assessment of included studies
Risk of bias assessment was performed independently 
by three reviewers (LA, NH, CV) and checked by a 
third reviewer (NR) using a modified version of the RTI 
Item Bank for Assessing Risk of Bias and Confounding 
for Observational Studies of Interventions or Exposures 
[27]. Ten items were included assessing selection bias, 
detection bias, performance bias, attrition bias and 
confounding. Risk of bias was assessed at the outcome 
level. Therefore, where relevant, studies that reported 
multiple outcomes were assessed for risk of bias mul-
tiple times for the different outcomes and analyses (e.g. 
raw data and regression analyses). Overall risk of bias 
was rated as low, moderate, serious or critical:

•	 Studies were rated as low risk of bias if there were 
no concerns across all areas of the assessment.

•	 Studies were rated as moderate risk of bias if they 
had some minor methodological concerns, but no 
major methodological concerns.

•	 Studies were rated as serious risk of bias if they had 
one or more major methodological flaws or five 
or more areas where enough information was not 
provided.

•	 Studies were rated as critical risk of bias and 
excluded from analysis if they did not measure and 
even partially consider confounding variables.

GRADE assessment of the certainty of evidence
Certainty of evidence for each meta-analytic finding was 
made using the GRADE (Grading of Recommendations 
Assessment, Development, and Evaluation) approach [28, 
29]. The GRADE approach is international best practice 
when considering evidence for clinical practice guideline 
development and provides an assessment of degree of 
certainty that the observed effects from each meta-ana-
lytic finding are true and reliable. The following domains 
were assessed, and a judgement made as to whether there 
were serious or not serious concerns:

•	 Risk of bias: A serious rating was provided 
when > 50% of the studies included in a meta-analysis 
had a moderate or high risk of bias.

•	 Inconsistency: A serious rating was provided when 
the overall heterogeneity chi-square statistic was sig-
nificant (P < 0.05) and I2 was > 50%. Where the out-
come included only a single study, inconsistency was 
rated as not serious.

•	 Indirectness: A serious rating was provided 
when > 50% of studies included samples not likely 
to be comparative to an Australian population 
(e.g. studies were undertaken in South Africa, 
Ukraine or Chile).

•	 Imprecision: A serious rating was provided when 
the overall 95% confidence intervals (CI) for the 
meta-analysis crossed the line of no effect, were 
wide or when optimal sample size criteria were 
not met (i.e. for dichotomous data, ≥ 300 abnor-
mal events or sample size ≥ 2000; for continuous 
data, required sample size of ≥ 400). A very serious 
rating was provided when all three serious crite-
ria above were present. 95% CIs were considered 
‘wide’ based on clinically meaningful differences 
between the lower and upper confidence intervals 
for each of the outcomes (following discussion 
with clinical members of the Guidelines Development 
Group).

•	 Other considerations: Publication bias was assessed 
with funnel plots generated for outcomes with 10 or 
more studies. Publication bias was rated as strongly sus-
pected in the presence of an asymmetrical funnel plot.

GRADE Profiler (GRADEPro, McMaster University 
and Evidence Prime, 2022) was used to complete the 
assessments and generate the overall GRADE certainty 
rating for each meta-analytic outcome. The GRADE 
approach for prognostic factors was used whereby rat-
ings started out as high certainty and were rated down 
due to the GRADE domains mentioned above. Overall 
GRADE ratings for each meta-analysis were reported 
in summary figures as: ⨁◯◯◯ very low certainty, 
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⨁⨁◯◯ low certainty, ⨁⨁⨁◯ moderate certainty, and 
⨁⨁⨁⨁ high certainty. Note that GRADE domain and 
overall certainty of evidence ratings are made at the 
meta-analytic level and not at an individual study level. 
Ratings did not exclude individual studies or meta-
analyses from inclusion in the review findings. Further 
details of the GRADE ratings for each meta-analysis can 
be found here: https://​zenodo.​org/​recor​ds/​10649​619.

Data presentation
Information from meta-analyses (i.e. number of stud-
ies, number of participants, pooled effect estimates, 95% 
CIs and I2%), and the GRADE ratings, were combined 
in composite figures created using GraphPad Prism 9 
(GraphPad Software, Boston MA, USA). This approach 
facilitated visual comparison across PAE levels or FASD 
diagnoses. Due to the large amount of data available for 
physical size outcomes, we did not include outcomes 
reported in only single studies in the summary figures 
(reported instead here: https://​doi.​org/https://​doi.​org/​
10.​5281/​zenodo.​10783​892). For functional neurodevel-
opmental outcomes, due to the diversity of assessments 
and outcome types, the more clinically relevant out-
comes were included in summary figures (including out-
comes with single studies) and results for other outcomes 
are provided elsewhere (see https://​doi.​org/https://​doi.​
org/​10.​5281/​zenodo.​10783​892). For dysmorphology and 
structural/neurological outcomes, aside from head cir-
cumference, single studies were included in summary fig-
ures due to the limited data available.

Results
Study selection and characteristics
The initial search identified 18,422 records (Fig.  1). 
After removal of duplicates and screening at the title/
abstract and full text level, 306 studies were included: 
106 reporting physical size outcomes, 43 dysmorphology, 
195 functional neurodevelopmental outcomes, and 110 
structural/neurological measures (many studies reported 
more than one outcome).

Characteristics for all included studies are presented in 
Additional file 1: Table S6 [22, 25, 30–332]. Studies origi-
nated from 23 countries, including 136 (44%) from USA, 
44 (14%) from Europe/UK (including Ukraine), 42 (14%) 
from South Africa, 41 (13%) from Canada, 20 (7%) from 
Australia/New Zealand, 5 (2%) from Japan and 7 (2%) 
from other countries (e.g. India, Ethiopia). Eleven studies 
(4%) were multinational. Of the 306 included studies, 216 
(71%) were case-controls (99 nested case-controls).

Risk of bias assessments
Of the 505 risk of bias assessments completed at the 
outcome level, 360 (72%) studies with outcomes ana-
lysed were rated as having serious risk of bias, 107 
(21%) as moderate, and 33 (7%) as low risk of bias. 
Two studies were rated as critical risk of bias and were 
excluded from further analysis (see Additional file  1: 
Table  S4 for details). A summary of the risk of bias 
assessments at the level of each diagnostic component 
is presented in Table 1.

Meta‑analyses and GRADE ratings summaries
Descriptive and summary statistics for the > 900 meta-
analyses conducted are presented in Table  2 and Addi-
tional file  1: Table  S7. Meta-analyses averaged ~ 2–4 
studies per analysis but for many, there was only one 
study available at that specific exposure level/diagnosis 
for a specific diagnostic outcome. For most diagnostic 
components, heterogeneity across studies within each 
meta-analysis was generally high (where this could be 
assessed), excluding dysmorphology. There was no evi-
dence of publication bias, assessed where possible using 
funnel plots. Further details of GRADE assessments, 
meta-analyses and funnel plots are provided here: https://​
doi.​org/https://​doi.​org/​10.​5281/​zenodo.​10783​892.

Studies reporting regression analyses were nar-
ratively synthesised and included for completeness 
(Additional file  1: Table  S8) [34, 35, 45–47, 55, 61, 
63, 67–69, 74, 75, 80, 90, 106, 107, 109–111, 123, 128, 
129, 132, 133, 141, 146–150, 175, 176, 192, 217, 271, 
275, 284, 292, 293, 302, 310, 312, 313, 321]. Whilst 
these analyses included adjustment for potential con-
founders, they showed a similar pattern of associa-
tion between various diagnostic outcomes and PAE 
levels to the meta-analyses, with limited evidence for 
effects at light to moderate levels of PAE but sustained 
impacts at higher levels of exposure.

Physical size outcomes
There was an inverse dose–response relationship 
with the level of PAE (Fig. 2, PAE and birth measures; 
all other outcomes in Additional file  1: Fig. S2). Cer-
tainty of the evidence was higher for the odds of small 
for gestational age (SGA) and low birthweight (LBW), 
compared to raw measures of weight and length/
height. More comprehensive and higher certainty evi-
dence was available for birth outcomes (Fig.  2), com-
pared to postnatal outcomes (Additional file  1: Fig. 
S2). FASD diagnoses were also associated with reduced 
physical size, particularly FAS and pFAS (Additional 
file 1: Fig. S1 and S3).

https://zenodo.org/records/10649619
https://doi.org/
https://doi.org/10.5281/zenodo.10783892
https://doi.org/10.5281/zenodo.10783892
https://doi.org/
https://doi.org/10.5281/zenodo.10783892
https://doi.org/10.5281/zenodo.10783892
https://doi.org/
https://doi.org/
https://doi.org/10.5281/zenodo.10783892
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Dysmorphology outcomes
There were increased odds of the characteristic facial fea-
tures of smooth philtrum (OR 3·3–6·2) or short palpebral 
fissures (OR 8·3–9·2) with moderate, very heavy and con-
firmed/unquantifiable PAE levels and thin vermilion with 
confirmed/unquantifiable PAE (OR 5·3, 95% CI 3·6–7·7; 
Additional file 1: Fig. S4A). Few exposure studies examined 
other facial and non-facial dysmorphic features (Additional 

file 1: Fig. S5), with substantial variability across outcomes. 
A small number of exposure studies reported composite 
dysmorphology scores, with an association with moderate 
and very heavy PAE (Additional file 1: Fig. S7). As expected, 
diagnostic groups with dysmorphic features showed a posi-
tive association with dysmorphology outcomes (Additional 
file 1: Figs. S4, S6, S7). Certainty of evidence across dysmor-
phology outcomes was very low to low.

Fig. 1  PRISMA flow chart. # studies where exclusion reasons differed across outcomes. *Studies included in both exposure and diagnosed groups 
(n = 3). Note: Some studies reported on more than one diagnostic domain. ti = title, ab = abstract, and kw = keyword
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Functional neurodevelopment outcomes
For functional neurodevelopmental outcomes, few expo-
sure studies examined light or moderate PAE levels. 
Caregiver-reported attention problems were associated 
with very heavy and confirmed/unquantifiable PAE when 
reported as a standardised mean difference, with very 
low to low certainty ratings (Fig. 3A). Results were more 
variable when reported as an OR (Additional file 1: Fig. 
S8). All diagnostic groups demonstrated increased atten-
tion problems on both caregiver and teacher reports, 
although there was wide variability for the pFAS group, 

Table 1  Risk of bias assessment ratings summary

Data shown as the number of studies per outcome, n (%). Note that some 
studies reported on more than one diagnostic outcome
a The two studies with critical risk of bias were excluded from further analysis. 
See Additional file 1: Table S4 for more details

Diagnostic component Low Moderate Serious Criticala

Physical size 9 (7%) 32 (27%) 76 (64%) 2 (2%)

Dysmorphology - 6 (12%) 41 (84%) 2 (4%)

Functional neurodevelop-
ment

19 (9%) 42 (20%) 153 (70%) 1 (1%)

Structural/neurological 5 (4%) 27 (22%) 90 (73%) 2 (2%)

Table 2  Descriptive statistics of meta-analyses

a Defined as I2 > 75%, calculated using a random-effects model where the meta-analysis included ≥ 5 studies. Number of meta-analyses per diagnostic outcome where 
this could be calculated: physical size, n = 31; dysmorphology, n = 16; functional neurodevelopment, n = 37; structural/neurological, n = 11. Note: Publication bias was 
also assessed using funnel plots where the meta-analysis included ≥ 10 studies. Number of meta-analyses per diagnostic outcome where this could be calculated: 
physical size, n = 10; dysmorphology, n = 3; functional neurodevelopment, n = 3. There was no evidence of publication bias. All analyses conducted using Revman 5.4

Diagnostic component Number of meta-
analyses

Studies per meta-analysis Meta-analyses with 
high heterogeneitya

Mean Mode Range

Physical size 104 3.9 1 1–14 48.4%

Dysmorphology 58 2.1 1 1–12 1.9%

Functional neuro-development 663 1.8 1 1–16 45.9%

Structural/ neurological 118 2.4 2 1–9 54.5%

Fig. 2  Association between prenatal alcohol exposure (PAE) and size at birth. A Small for gestational age. B Low birth weight.C Birth weight. D Birth 
length. GRADE Ratings: ⨁◯◯◯=very low certainty; ⨁⨁◯◯=low certainty; ⨁⨁⨁◯=moderate certainty. s=number of studies included in each 
meta-analysis. n=overall number of participants included in each meta-analysis. OR=odds ratio [95% confidence interval (CI)]. MD=mean difference 
[95% CI]. I2=indicator of heterogeneity
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and overall, very low to moderate certainty of the evi-
dence (Additional file  1: Fig. S8). For executive func-
tion (EF), poorer performance on most direct measures 
was associated with heavy and confirmed/unquantifi-
able PAE, with very low to moderate evidence certainty 
(Fig. 3B; Additional file 1: Fig. S9). Caregiver and teacher 
reports of EF were only associated with poorer perfor-
mance in the confirmed/unquantifiable PAE group, and 
no associations were found with other PAE levels (Addi-
tional file  1: Fig. S10). Most diagnosed groups demon-
strated poorer performance on all measures of EF, with 
very low to low certainty evidence (Additional file 1: Figs. 
S9, S10). Total and externalising behaviour problems, as 
assessed using the Child Behaviour Checklist (CBCL), 
were increased in the very heavy and confirmed/unquan-
tifiable exposure groups, whilst results were more vari-
able for internalising behaviour problems, all with very 
low to low certainty ratings (Fig.  3C). Scores for CBCL 
sub-scales such as aggression, anxiety/depression and 
rule-breaking were consistently increased in very heavy 
and confirmed/unquantifiable PAE groups (Additional 
file  1: Fig. S11). Odds of scoring in the clinical range 
for behavioural problems using other measures were 
increased at moderate PAE levels, but not all heavier 

levels of exposure were examined (Additional file 1: Fig. 
S11). FASD diagnoses were consistently associated with 
increased behaviour problems across most measures 
(Additional file 1: Figs. S12, S13). The evidence for these 
associations was generally of moderate certainty. Similar 
poorer performance was found for measures of working 
memory, although only studies with confirmed/unquan-
tifiable PAE were available (Fig.  3D). Most diagnosed 
groups demonstrated poorer performance compared to 
controls on measures of working memory, with very low 
to low evidence certainty (Additional file 1: Fig. S14).

For language, confirmed/unquantifiable PAE showed 
significant associations with poorer language abilities, 
with very low to low certainty of the evidence, but there 
were no studies with heavy or very heavy PAE (Fig. 4A, 
Additional file  1: S15). Diagnosed groups demonstrated 
poorer language performance compared to controls, 
except for studies using the NEPSY (a developmental 
neuropsychological test), where scores were variable 
(Additional file  1: Fig. S16). Certainty of the evidence 
for diagnosed studies was very low to low. For academic 
achievement, there was an inverse dose–response rela-
tionship with PAE levels, with significant associations 
found only with very heavy PAE (Fig. 4B), and very low 

Fig. 3  Association between prenatal alcohol exposure (PAE) and neurodevelopmental measures related to behaviour and executive function. A 
Externalising attention. B Measures of executive function. C Caregiver-reported measures of behaviour. D Measures of working memory. Test details 
provided in Additional file 1: p 90. Lower scores indicate better performance for (A) and (C); higher scores indicate better performance for (B) 
and (D). GRADE Ratings: ⨁◯◯◯=very low certainty; ⨁⨁◯◯=low certainty; ⨁⨁⨁◯=moderate certainty; ⨁⨁⨁⨁=high certainty. s=number 
of studies included in each meta-analysis. n=overall number of participants included in each meta-analysis. OR=odds ratio [95% confidence 
interval (CI)]. MD=mean difference [95% CI]. I2=indicator of heterogeneity. NEPSY=NEuroPSYchological. WCST=Wisconsin Card Sorting Test. 
D-KEFS=Delis-Kaplan Executive Function System. WISC-III=Wechsler Intelligence Scale for Children
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to moderate certainty of evidence. There were also asso-
ciations between FASD diagnoses and academic ability, 
with those diagnosed with pFAS showing the greatest 
impairments (Additional file  1: Fig. S17). For motor 
skills, only very heavy PAE was associated with signifi-
cant reductions in motor abilities, although this was only 
in infants and pre-school aged children (Fig. 4C). Avail-
able evidence at other levels showed no associations 
with moderate and confirmed/unquantifiable PAE levels. 
Diagnosed groups generally demonstrated poorer motor 
abilities compared to controls, although studies report-
ing data as ORs showed more variable results (Additional 
file 1: Fig. S16). For intellectual abilities, lower compos-
ite IQ (< 2  years) or full-scale IQ (4–17  years) scores 
were found at very heavy or confirmed/unquantifiable 
PAE levels, although there was often imprecision around 
the effect estimates (i.e. wide 95% CIs), and very low to 
low certainty evidence (Fig.  4D). Component IQ meas-
ures (e.g. verbal and performance) were similarly vari-
able and imprecise (Additional file 1: Fig. S18). All FASD 

diagnoses were associated with lower intellectual ability 
scores (Additional file  1: Fig. S19). Few studies assessed 
memory, adaptive behaviour, social functioning, sensory 
processing or soft neurological signs (Additional file  1: 
Figs. S20-23), often examining only one exposure level 
or diagnostic group. Associations were generally seen for 
heavy and confirmed/unquantifiable PAE. Certainty of 
evidence ranged from very low to moderate.

Structural/neurological outcomes
Head circumference at birth showed a dose–response 
with PAE level (Fig.  5A), but only where data were 
expressed as the mean difference of absolute measure-
ments, and not percentiles (Fig. 5B). There were fewer 
studies examining head circumference postnatally and 
results were variable. A dose–response was evident for 
odds of a small head circumference (< 10th percentile; 
Fig.  5C). Evidence certainty ranged from very low to 
moderate. Diagnoses of FAS and pFAS were generally 
associated with lower head circumference at birth and 

Fig. 4  Association between prenatal alcohol exposure (PAE) and neurodevelopmental measures of motor function and academic performance. A 
Language abilities. B Overall academic achievement. C Motor function. D General intellectual abilities. Test details are provided in Additional 
file 1: (p 90). Higher scores indicate better performance for all measures. GRADE Ratings: ⨁◯◯◯=very low certainty; ⨁⨁◯◯=low certainty; 
⨁⨁⨁◯=moderate certainty; ⨁⨁⨁⨁=high certainty. s=number of studies included in each meta-analysis. n=overall number of participants 
included in each meta-analysis. OR=odds ratio [95% confidence interval (CI)]. MD=mean difference [95% CI]. I2=indicator of heterogeneity. 
BSID-III=Bayley’s Scales of Infant Development. CELF-P=Clinical Fundamentals of Language Preschool. PPVT-R=Peabody Picture Vocabulary 
Test-Revised. NEPSY=NEuroPSYchological. VMI=Visual Motor Integration
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postnatally, with very low to low evidence certainty 
(Additional file  1: Fig. S24). There was only one clini-
cal MRI exposure study, with no clearly increased odds 
of clinically relevant incidental MRI findings with con-
firmed/unquantifiable PAE (Additional file 1: Fig. S25). 
There were only two diagnosed studies, providing some 
evidence for FAS/pFAS diagnosis being associated with 
clinically relevant incidental MRI findings (Additional 
file  1: Fig. S25). Whilst not currently included as part 
of the clinical assessment process, outcomes for quan-
titative MRI findings have been summarised to pro-
vide information regarding potential changes in brain 
structure in relation to PAE or FASD diagnosis (Addi-
tional file  1: Figs. S26, S27). Several other neurological 
outcomes (e.g. hearing and vision impairments, sei-
zures, cerebral palsy) often included in diagnostic cri-
teria were examined. However, there were mostly single 
studies examining each exposure level or diagnostic 
group relative to controls (Additional file  1: Fig. S28). 
Evidence ranged from very low to low certainty, with 
moderate certainty for the one exposure study assess-
ing seizures.

Discussion
Diagnostic criteria are a set of signs and symptoms used 
in clinical practice to support the accurate identifica-
tion of a health condition. These criteria must capture 

the heterogeneity of a condition, including the key clini-
cal features. However, developing diagnostic criteria for 
conditions without ‘gold standard’ diagnostic tests or 
biomarkers is a significant challenge that requires both 
rigor and flexibility [3]. This systematic review compre-
hensively summarises the available evidence on the asso-
ciation between PAE and key diagnostic components of 
FASD. Perhaps not surprisingly, higher PAE levels were 
associated with the largest and most consistent effects, 
including smaller physical size, increased rates of dys-
morphic features, and poorer functional neurodevelop-
mental outcomes across a range of domains. There was 
also a dose–response relationship between PAE and 
head circumference, with higher PAE levels associated 
with smaller head circumference at birth. However, evi-
dence was limited and inconsistent for clinically available 
structural MRI and neurological outcomes. Additionally, 
we examined the relationship of key diagnostic compo-
nents across the spectrum of FASD diagnoses. A signifi-
cant limitation of studies using diagnosed individuals is 
the interdependency between outcomes and diagnosis 
(i.e. individuals were identified based on diagnostic fea-
tures). Consequently, exposure studies provide the high-
est quality evidence to inform decision making about 
associations between PAE and diagnostic features, and 
thus which features should be prioritised for diagnostic 
purposes. Diagnostic studies that prospectively assess 
and compare currently available tools and norms and 

Fig. 5  Association between prenatal alcohol exposure (PAE) and head circumference. A Head circumference (cm) at birth and post-natally. B Head 
circumference at birth as a percentile. C Odds ratio of small post-natal head circumference (<10th percentile).GRADE Ratings: ⨁◯◯◯=very low 
certainty; ⨁⨁◯◯=low certainty; ⨁⨁⨁◯=moderate certainty; ⨁⨁⨁⨁=high certainty. s=number of studies included in each meta-analysis. 
n=overall number of participants included in each meta-analysis. OR=odds ratio [95% confidence interval (CI)]. MD=mean difference [95% CI]. 
I2=indicator of heterogeneity
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collect and report all diagnostic information, rather than 
only reporting to one set of diagnostic criteria, could still 
make important contributions to improved assessment 
and diagnostic practices for FASD.

A key difference among current diagnostic criteria 
internationally is whether a specific PAE threshold is 
required for diagnosis. The results of the current review 
provide no evidence to support the inclusion of light 
alcohol exposure (defined as up to 20 g per week) for 
diagnostic purposes, and mixed evidence for moderate 
alcohol exposure (21–100 g per week). There was how-
ever consistent evidence for higher levels of exposure 
(> 100 g per week). These findings are generally consist-
ent with previous research [333–336]. PAE is a risk factor 
for FASD, but not all exposures will result in a diagnosis 
of FASD. Minimum exposure thresholds increase cer-
tainty that the observed impairments can be attributable 
to PAE, aiding in more accurate diagnosis of FASD. The 
current review did not aim to determine a ‘safe’ PAE level, 
but the findings provide empirical evidence regarding the 
level of PAE at which clinically meaningful impairments 
are likely to be observed for individuals and thus support 
clinicians in diagnostic decision making [334]. Whilst an 
increasing number of FASD diagnostic criteria include 
a PAE minimum threshold [5, 337, 338], this is for diag-
nostic purposes. Public health recommendations in many 
countries advise that people should not consume alcohol 
when planning a pregnancy to prevent the wide range 
of possible adverse outcomes other than FASD that may 
result from PAE.

Included studies were inconsistent or lacked informa-
tion on timing or consumption patterns (e.g. ‘binge,’ prior 
to pregnancy recognition), preventing sub-group analy-
ses. This is a key limitation of the available evidence, as 
previous research suggests that the timing of exposure 
can be related to the type and extent of possible adverse 
outcomes [25, 339]. Recent findings also highlight the 
importance of considering alcohol use frequency and 
amount per occasion separately in characterising PAE 
levels and adverse outcomes [334]. We also acknowledge 
that there are limitations with self-reports of alcohol use 
during pregnancy; however, self-reports are currently the 
best available method to assess PAE [340].

Whilst adjusted effect estimates were included where 
possible, many studies lacked consideration of other 
pre- and post-natal risk factors, which could exacerbate 
or ameliorate the impacts of PAE. For example, there is 
evidence that improving nutrition during pregnancy 
[341, 342] and early childhood [343] can positively influ-
ence the severity of deficits following PAE. Thus, care is 
required when applying PAE thresholds in clinical prac-
tice at an individual level due to the wide range of deter-
minants of PAE impacts. Diagnosis of FASD is a complex 

process that is best undertaken using a holistic interpro-
fessional approach [344].

The current review revealed a lack of evidence for the 
utility of neurological or clinically available MRI assess-
ments to determine effects of PAE. Whilst there is vari-
ability in how structural brain abnormalities, seizures 
of unknown origin, hearing and vision impairment, and 
other neurological conditions are considered, current 
FASD diagnostic criteria include many of these out-
comes. Due to lack of data, there is insufficient evidence 
for inclusion of these currently. However, we suggest that 
brain abnormalities and neurological conditions be con-
sidered in the assessment process to inform individual 
support planning and future research to better under-
stand potential associations with PAE.

This comprehensive systematic review examined the 
components included in international diagnostic criteria 
for FASD across a range of PAE levels and FASD diagnos-
tic groups. A strength of this review is the standardisation 
of PAE categories, enabling synthesis and comparison of 
evidence across studies at equivalent PAE levels, rather 
than comparing studies based on their author-defined 
levels. Another strength was the application of GRADE, 
which provides an indication of the degree of certainty 
in the review findings, supporting evidence-based deci-
sion-making related to FASD diagnostic criteria. Overall, 
GRADE ratings ranged from very low to moderate cer-
tainty. Certainty in findings was impacted by the risk of 
bias in many included studies, which were often rated 
as serious. The most common reasons for risk ratings 
included inadequate control for confounding variables, 
lack of reliable PAE measurement across participant 
groups and/or insufficient details being reported across 
most risk of bias assessment areas.

Another key limitation of the available evidence is 
that few studies stratified results by sex, and thus poten-
tial sex differences could not be examined. Additionally, 
there was wide variability in the outcomes examined, 
whether due to the type of assessment used, or differ-
ences in the reporting of outcomes (i.e. ORs and mean 
differences), which limited the ability for larger meta-
analyses. This was particularly evident in the functional 
neurodevelopmental area, where an extensive range of 
measures and differences in reporting were found. Use of 
a standardised approach to reporting research outcomes 
would strengthen future research efforts. Further, aside 
from the components of physical size and head circum-
ference at birth, there were limited data available across 
PAE levels for the same outcome; often only confirmed/
unquantifiable levels were available (i.e. studies report-
ing suspected heavy or very heavy exposure, but specific 
levels were not reliably collected). This prevents exami-
nation of potential dose–response relationships across all 
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diagnostic components. Future well-designed pregnancy 
cohort studies are required, focussed on dysmorphology, 
functional neurodevelopmental and structural/neuro-
logical outcomes with stratified exposure data collected 
across well-defined PAE levels.

Conclusions
Overall, evidence from this systematic review provides 
direction regarding which components should cur-
rently be considered for inclusion in diagnostic cri-
teria for FASD. The results have also highlighted key 
research gaps that can be targeted to improve under-
standing of the potential associations between PAE and 
diagnostic outcomes. Importantly, a collaborative inter-
national approach, driven by a goal of continuous qual-
ity improvement is required to advance assessment and 
diagnostic practices for FASD, with the united goal of 
improving quality of life for individuals with FASD and 
their families.
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