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Cell of origin in biliary tract cancers and clinical implications
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Summary
Biliary tract cancers (BTCs) are aggressive epithelial malignancies that can arise at any point of the
biliary tree. Albeit rare, their incidence and mortality rates have been rising steadily over the past 40
years, highlighting the need to improve current diagnostic and therapeutic strategies. BTCs show
high inter- and intra-tumour heterogeneity both at the morphological and molecular level. Such
complex heterogeneity poses a substantial obstacle to effective interventions. It is widely accepted
that the observed heterogeneity may be the result of a complex interplay of different elements,
including risk factors, distinct molecular alterations and multiple potential cells of origin. The use
of genetic lineage tracing systems in experimental models has identified cholangiocytes, hepato-
cytes and/or progenitor-like cells as the cells of origin of BTCs. Genomic evidence in support of the
distinct cell of origin hypotheses is growing. In this review, we focus on recent advances in the
histopathological subtyping of BTCs, discuss current genomic evidence and outline lineage tracing
studies that have contributed to the current knowledge surrounding the cell of origin of these
tumours.
© 2021 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the
Liver (EASL). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
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Introduction
Biliary tract cancers (BTCs) are a highly heteroge-
neous group of malignancies that affect both the
small intrahepatic and large extrahepatic bile ducts
(cholangiocarcinoma) or the gallbladder (gall-
bladder cancer).1,2 While dismal clinical prognosis
is a common underlying trait, histological and
epidemiological features significantly differ across
the BTC subtypes.1–6 Furthermore, the recent
application of next-generation sequencing (NGS)
technologies in large international BTC cohorts
suggests a pronounced intra- and inter-tumoural
molecular heterogeneity.7–16 Understanding the
origins of such heterogeneity is paramount to
improve diagnosis and treatment strategies for this
disease.

Both cell-autonomous (i.e. genetics) and non-
cell autonomous elements (i.e. microenvironment)
have been proposed as sources of tumour hetero-
geneity across several cancer types.17–21 An
increasing body of evidence also suggests that the
different tumour profiles may be significantly
influenced by the existence of multiple cells of
origin.22–24 For example, early progenitor cells or
stem cells have emerged as the potential cell of
origin in several solid cancers,22,25 including co-
lon,26,27 prostate28,29 and glioblastoma;30,31 at the
same time, in other malignancies such as breast
cancer,32 different mature cell types may be the
target for oncogenesis, ultimately leading to tu-
mours with different morphology and metastatic
behaviour. The possibility of multiple cells of origin
is particularly relevant in BTCs which may exhibit
distinct phenotypical traits of cholangiocytes and
undifferentiated cells. In addition, the remarkable
plasticity of cholangiocytes and hepatocytes in
response to various injuries has fuelled the
intriguing, albeit controversial, hypothesis that
both cell types may represent the cell of origin of
some BTCs.

Herein, we provide an overview of the current
classification system of BTCs and review the evi-
dence supporting hypotheses regarding the cell of
origin of the distinct subtypes. In the foreseeable
future, integration of this information into current
histopathological and molecular stratification sys-
tems may have important implications in the
design of tailored therapeutic strategies.

Clinicopathological insights into the
origin of BTCs
Overall, BTCs are relatively rare malignancies ac-
counting for ~3% of all gastrointestinal tumours.
Tumours of the biliary tract can be classified as
cholangiocarcinoma (CCA) and gallbladder cancer
(GBC) (Fig. 1).1,2 According to the anatomical loca-
tion, CCA can be further sub-classified into intra-
hepatic (iCCA), perihilar (pCCA) and distal (dCCA).
iCCA accounts for 20–30% of all CCAs and refers to
those neoplastic lesions forming in the bile duct-
ules and segmental ducts located within the liver
(Fig. 1). pCCA (50% of all CCAs) and dCCA (20-30% of
CCAs) arise outside of the liver, with pCCA devel-
oping on the large bile ducts in the hepatic hilum
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Key points

� Biliary tract cancers are clinically and molecularly heterogeneous.

� Histopathological diversity and emerging integrative genomic analyses
support the hypothesis of multiple cells of origin of BTCs.

� The existence of hepatic progenitor cells in adult liver remains
controversial, largely due to mixed results obtained from lineage
tracing studies.

� Depending on the oncogenic insult and presence of liver injury, lineage
tracing systems identify both mature hepatocytes and cholangiocytes
as potential sources of liver regeneration and iCCA development.

� Understanding the nature of the cell of origin of BTCs holds the po-
tential to guide a more accurate diagnosis and personalised treatment
decision-making.
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and above the insertion of the cystic duct, while distal dCCA
arises below the insertion of the cystic duct.33,34 pCCA and dCCA
have been referred to collectively as extrahepatic chol-
angiocarcinoma (eCCA), although increasing evidence suggests
that these subtypes may represent distinct molecular entities.2

Over the past 40 years, distinct epidemiological trends have
been reported for the BTC subtypes.5,35 Multiple studies have
shown rising incidence and mortality rates for iCCA, while rates
for eCCA have been relatively steady or even decreasing in some
European countries.36–40 Collectively, the widely reported rising
incidences in iCCA need to be interpreted with caution since the
accelerated trends may reflect, in part, the establishment of
better classification systems. The epidemiological patterns of
CCA also show great geographical variability, broadly reflecting
differences in risk factors as well as genetic determinants
(Table 1). In the Western world the annual incidence of CCA is
between 0.3 to 6 cases per 100,000 people, whereas in South-
East Asia it reaches up to 85 cases per 100,000.5 While recog-
nised risk factors account for approximately half of CCA cases,
these are more prevalent in South-East Asia (i.e. liver fluke in-
fections and biliary malformations), whereas most cases occur
sporadically in the West.

GBC is the most prevalent type of BTC, occurring at an inci-
dence of 1.6 cases per 100,000 people, and it is the only digestive
cancer that is more common in women than men.35,41 According
to a recent analysis of the World Health Organization (WHO)’s
Cancer Mortality database, rates for GBC are decreasing in most
countries but increasing in several high-income countries due to
emerging trends in lifestyle changes, such as increase in excess
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body weight.35 Like CCA, a disparity in the global disease burden
has been observed, with the highest incidence rates of GBC
among indigenous populations in South America and Northern
India.42

The distinct BTC subtypes also differ regarding specific risk
factors, clinical presentation and management. Below, we review
the current staging system for BTCs, focusing on the histopath-
ological features that, over the years, have fuelled the hypothesis
of multiple cells of origin.
Intrahepatic cholangiocarcinoma and other rare primary
liver cancers
Among BTCs, iCCA stands out due to a highly heterogeneous
macro- and microscopic appearance. This is reflected in its
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gical traits. Based on the anatomical site of origin, BTCs are classified into iCCA,
ahepatic bile ductules and segmental ducts. iCCA together with HCC and mixed
enchyma. Mixed HCC-CCAs are a group of histologically heterogeneous tumours
subtypes of mixed HCC-CCA have been identified, including classical HCC-CCA
angiocytic components, either admixed or as separate areas within the same
bedded in a dense stroma (displayed in the figure). Among the extrahepatic CCA
n, and dCCA involves the common bile duct. Representative histopathological
eterogeneity in cellular phenotypes. BTCs, biliary tract cancers; CCA, chol-
CCA, extrahepatic cholangiocarcinoma; GBC, gallbladder cancer; HCC, hepato-
ngiocarcinoma.
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Table 1. Main clinico-pathological features and potential cell of origin.

Tumour type GBC

eCCA

iCCA Mixed HCC-CCA HCCpCCA dCCA

Annual incidence* 1.6/100,000 1.12/100,000 0.92/100,000 <0.1/100,000 9.5/100,000
Male to female ratio <1:2 1.3:1 1.5:1 1.4:1 1.9:1 3:1
High incidence regions Chile/Northern India South-East

Asia
South-East
Asia

South-East
Asia

Unknown East Asia and
Sub-Saharan Africa

Underlying disease Cholecystolithiasis
Gallbladder polyps
Obesity
Chronic cholecystitis

PSC
Liver flukes
Biliary cysts

PSC
Liver flukes
Choledocholithiasis
Biliary cysts

PSC
Viral hepatitis
Cirrhosis
Liver flukes

Viral hepatitis
Cirrhosis

Viral hepatitis
Cirrhosis
NAFLD/NASH

Expected 5 year OS** ~20% 10% 11% 8% <10% ~19%
Potential cell of origin Mature cholangiocyte,

Gallbladder epithelial cell
Biliary progenitor cell,
mature cholangiocyte

HPCs, mature hepatocyte
and cholangiocyte

HPCs and mature
hepatocyte

dCCA, distal cholangiocarcinoma; eCCA, extrahepatic cholangiocarcinoma; GBC, gallbladder cancer; HCC, hepatocellular carcinoma; HPCs, hepatic progenitor cells; iCCA,
intrahepatic cholangiocarcinoma; pCCA, perihilar cholangiocarcinoma; PSC, primary sclerosing cholangitis; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic
steatohepatitis; OS, overall survival.
* Age-adjusted annual incidence in USA.
** Including all stages.
histological classification which defines conventional tumours as
well as rare variants.43,44 Based on the size of the affected duct,
conventional iCCA tumours are sub-stratified into small and
large bile duct iCCAs. Small bile duct iCCA mostly derives from
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Fig. 2. Hepatobiliary stem cell niches. Schematic representation of the biliary sy
In the adult liver, HPCs are postulated to be located within the CoH (purple circle
into hepatocytes and cholangiocytes. Mature hepatocytes and cholangiocytes ha
upon injury or oncogenic insult (represented as highlighted cells with red hallow
located in the PBGs (pink circles). PBGs are occasionally observed as small evagina
and along the extrahepatic duct, containing less differentiated (in blue) to fully
genitor cells; PBGs, peribiliary glands.

JHEP Reports 2021
interlobular and septal bile ducts and displays a mass-forming
growth pattern.45 On the other hand, large bile duct iCCA ari-
ses in large intrahepatic ducts, presents increased mucin pro-
duction and is more frequently preceded by precancerous lesions
ount Sinai
System
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Table 2. Main genetic alterations and potential targeted therapies in BTCs.

Genes
Alteration
type

Frequencies*

Targetable
alteration Drug

Clinical outcome

Therapy
lineiCCA eCCA GBC ORR % (DCR)

Median PFS,
months

TP53 Mutation 30% 40% 53% No n.a. n.a. n.a. n.a.
KRAS Mutation 15% 30% 10% Yes AMG 510 NR NR NR
IDH1/2 Mutation 20% 3% 2% Yes Ivosidenib122

Enasidenib
Dasatinib

2 (51)
NR
NR

2.7
NR
NR

2nd line
NR
NR

FGFR1-3 Fusion, mutation 20% 1% 3% Yes Pemigatinib121

Infigratinib134

Derazantinib135

Fusibatinib136

35.5 (82)
14.8 (75.4)
20 (76.7)
25 (79)

6.9
5.8
NR
NR

2nd line
2nd line
2nd line
2nd line

ARID1A Mutation 15% 12% 13% No n.a. n.a. n.a. n.a.
CDKN2A/
B

Loss 15% 17% 10% No n.a. n.a. n.a. n.a.

BAP1 Mutation 13% 0% 1% No n.a. n.a. n.a. n.a.
RNF43 Mutation 9% 0% 4% Yes RXC004 NR NR NR
ERBB2/3 Mutation,

amplification
7% 15% 20% Yes Lapatinib130 #

Erlotinib131 ##

Neratinib141

0 (26)
6 (35)
10.5 (31.6)

1.8
2.0
1.8

1st & 2nd line
1st line
2nd line

PIK3CA Mutation 6% 7% 10% Yes Alpelisib, copanlisib NR NR NR
BRAF Mutation 3% 3% 4% Yes Dabrafenib137 ### 51 (91) 9 mo 2nd line
MET Amplification 5% 3% 0% Yes Tivantinib NR NR NR
NTRK1-3 Fusion 4% 4% 4% Yes Entrectinib

Larotectinib
NR NR NR

SMAD4 Mutation 10% 21% 4% No n.a. n.a. n.a. n.a.
PRKACA/B Fusion 0% 2% 0% Yes DNAJB1-PRKACA

vaccine
n.a. n.a. n.a.

ARID1A, AT-rich interactive domain-containing protein 1A; BAP1, BRCA1-associated protein 1; BRAF, v-Raf murine sarcoma viral oncogene homolog B; CDKN2A/B, cyclin-
dependent kinase inhibitor 2A/B; DCR, disease control rate; FGFR2, fibroblast growth factor receptor 2; GBC, gallbladder cancer; iCCA, intrahepatic cholangiocarcinoma; IDH1/
2, isocitrate dehydrogenases 1/2; KRAS, Kirsten Rat Sarcoma Viral Oncogene Homolog; MET, Hepatocyte Growth Factor Receptor; PIK3CA, phosphatidylinositol-4,5-
bisphosphate 3-kinase catalytic subunit alpha; PRKACA/B, Protein Kinase CAMP-Activated Catalytic Subunit Alpha/Beta; NR, not reported; n.a., not applicable; NTRK, neu-
rotrophic receptor tyrosine kinase 1; ORR, objective response rate; PFS, progression-free survival; RNF43, ring finger protein 43; SMAD4, SMAD Family Member 4.
* Frequencies adopted from Lamarca et al.138
# Drug tested in non-enriched population.
## Tested in combination with sorafenib in a non-enriched population.
### Drug tested in combination with the MEK inhibitor trametinib.
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(i.e. biliary intraepithelial neoplasm or intraductal papillary
neoplasm).46,47 It has been speculated that the different histo-
pathology of these subtypes may be due to a different cell of
origin and pathogenesis. For example, large bile duct iCCA shares
phenotypic traits with pCCA and pancreatic cancer, perhaps
suggesting a common origin.48,49 Similarly, given the association
of small bile duct iCCA with chronic liver disease, it has been
proposed that its onset may be linked to activation of hepatic
stem cells and senescence of mature hepatocytes in chronic liver
diseases. Nonetheless, conclusive data validating such hypothe-
ses are lacking.50

iCCA is the second most common primary liver cancer (PLC)
after hepatocellular carcinoma (HCC).2 Even though the vast
majority of iCCAs are sporadic, in recent years risk factors for
chronic liver disease, which are conventionally associated with
HCC (i.e. viral hepatitis, alcohol consumption, non-alcoholic
steatohepatitis, etc.), have been shown to concomitantly in-
crease the risk of iCCA (Table 1).51,52 The association between
iCCA and chronic liver disease, as well as the the existence of
mixed HCC-CCA tumours, has fuelled the hypotheses of a com-
mon cell of origin for these PLCs. Mixed HCC-CCA encompasses a
group of rare (<1% of all PLCs) and histologically diverse tumours
that, based on histopathological features, do not fit into either
typical HCC or iCCA subtypes (Fig. 1).53 These tumours have
attracted great attention due to their possible genesis from stem
cells, although it should be noted that a stem/cell progenitor
phenotype is not solid proof of their bona fide cell of origin.
JHEP Reports 2021
According to the latest World Health Organization classification,
the term mixed HCC-CCA refers to tumours containing un-
equivocal intimately mixed components of both HCC and iCCA
and/or bi-phenotypic stem-like cells.54 Cholangiolocarcinoma
(CLC) is also grouped with mixed HCC-CCA, although it may
represent a unique biliary subtype.55,56 CLC arises in small
intrahepatic ductules and is characterised by low grade cytologic
atypia, and anastomosing cords and glands resembling chol-
angioles or canals of Hering.54 From a histopathological point of
view, CLCs are negative for hepatocyte markers such as HepPar1,
but positive for biliary lineage markers including cytokeratin
(CK)7, CK19 and the progenitor-like marker NCAM.55 Nonethe-
less, recent studies have reported that CLC and CK19+ HCC share
clinico-pathological features, and thus may originate from a
single hepatic progenitor cell (HPC).57,58
Perihilar and distal cholangiocarcinoma CCA
The other CCA tumour types, pCCA and dCCA, are conventional
mucin-producing adenocarcinomas, although several rare his-
tological variants have been described. These tumours may
display 4 main patterns of growth including:59 i) polypoid
papillary tumours, ii) nodular tumours, iii) scirrhous constricting,
the most common type, and (iv) diffusely infiltrating tumours.
Predisposing factors for pCCA and dCCA revolve around chronic
inflammation within the large bile ducts.51,60 This is frequently
precipitated by primary sclerosing cholangitis (PSC) in Western
countries and liver fluke infestation in Eastern countries.5
4vol. 3 j 100226



Hepatic progenitor/stem cell

CLC
iCCA with stem

cell features

HCC-CCA
Hepatocyte
precursor

HCC with stem
cell features

HCCHepatocyte

iCCA

Biliary-like cellCholangiocyte

pCCA dCCA

Cholangiocyte
precursor

GBC

©2020 Mount Sina
Health System

Fig. 3. Potential cells of origin of hepatobiliary cancers. Current evidence from histopathological, genomic and preclinical models suggest multiple potential
cells of origin. HPCs or dedifferentiated hepatocytes can potentially generate liver tumours with biliary features. In addition, intermediate states of HPCs, such as
biliary-committed precursors, may represent the cell of origin of CLC or iCCA with stem cell features. Furthermore, recent evidence supports the hypothesis that
mature hepatocytes can transdifferentiate into biliary-like cells, leading to the development of iCCA. Finally, cholangiocyte lineage cells (precursor and/or mature
cholangiocyte) are considered to be the common cell of origin of all anatomical subtypes of BTCs. BTCs, biliary tract cancers; CLC, cholangiolocarcinoma; dCCA,
distal cholangiocarcinoma; HPCs, hepatic progenitor cells; iCCA, intrahepatic cholangiocarcinoma; GBC, gallbladder cancer; HCC, hepatocellular carcinoma; iCCA,
intrahepatic cholangiocarcinoma; pCCA, perihilar cholangiocarcinoma.
Histological analysis of samples containing extrahepatic or large
intrahepatic bile duct tissue obtained from patients with PSC has
revealed a key role of peribiliary glands (PBGs, Fig. 2) in the
progression of bile duct lesions.61 PBGs are clusters of epithelial
cells residing in the sub-mucosal compartment of large intra-
hepatic and extrahepatic bile ducts. Although the majority of
cells contained in PBGs are mature epithelial cells, few pop-
ulations expressing stem/progenitor cell markers and immature
phenotypes have been identified.62,63 Interestingly, these cells
proliferate in response to bile duct injury as observed in patients
with PSC61 and liver fluke infection,64 thus functioning as a
biliary stem cell niche. Accordingly, PBGs may represent the
potential cell of origin of eCCA.

Gallbladder cancer
Unlike other BTCs, GBC is more common in women and often
grows within the fundus of the gallbladder.60 At the histological
level, adenocarcinomas constitute the most frequent phenotype
of GBC; nonetheless, less frequent variants (for example, intes-
tinal type, clear cell carcinoma and signet ring cell carcinoma)
have recently been recognised by the WHO.65 Similar to eCCA,
GBC is associated with underlying chronic inflammation of the
large bile ducts.51,60 Overall, the gallbladder shares a common
embryological origin with the liver and ventral pancreas.66 In a
recent study, it has been demonstrated that while gallbladders
do not have PBGs, pluripotent EpCAM+ endodermal stem/pro-
genitors are present in the mucosal crypt of the human gall-
bladder.67 However, whether such cells could be a potential cell
of origin of GBC remains to be explored.
JHEP Reports 2021
Genomic data supporting the cell of origin of BTCs
In the past decade, significant efforts have been conducted to
elucidate the molecular pathogenesis of BTCs, particularly iCCA,
through the application of multi-omics approaches, including
genomic, epigenomic, transcriptomic, and metabolomic ana-
lyses.9,13,68–71 Integration of these findings into the clinical
staging system is key for the development of novel drugs and to
improve current histology-based diagnosis of specific subtypes.

Overall, the molecular evidence suggests that BTC tumours
arising from distinct anatomical sites represent different mo-
lecular entities. For example, while TP53 and KRAS mutations are
relatively common to all BTCs, the occurrence of isocitrate de-
hydrogenase (IDH)1/2, EPHA2 and BRCA1-associated protein 1
(BAP1) mutations and fibroblast growth factor receptor (FGFR)2
fusions is significantly higher in iCCA; on the other hand, PRKACA
and PRKACB fusions, ELF3 and ARID1B mutations are detected
almost exclusively in eCCA subsets (Table 2). Notably, iCCA and
eCCA subtypes share some predisposing risk factors, such as PSC
and liver fluke infections (Table 1). In this regard, genome-wide
association studies13–15 have shown the occurrence of a higher
level of non-synonymous mutations and genome-wide epige-
netic derangements in fluke-positive CCA, regardless of the
subtype. Among the most commonly mutated genes in CCA,
mutations in SMAD4 and TP53 as well as ERBB2 (also called
HER2) amplification were more frequent in fluke-associated CCA,
while fluke-negative CCAs were enriched in mutations in IDH1/2
and BAP1 (Table 2).13,14,72 Whether these molecular features
reflect either specific carcinogenic processes or differential vul-
nerabilities in distinct cells of origin remains to be clarified.
5vol. 3 j 100226



Table 3. Genetically engineered mouse models evaluating the potential cells of origin of BTCs.

Cell of origin Tumour type Signalling pathway Method/system Model Ref.

HPCs, Hepatocytes or cholangiocytes iCCA NOTCH GEMM Alb-Cre;NotchIC 97

iCCA TP53 and NOTCH GEMM Alb-Cre;Tp53f/f;NotchICD 101

iCCA, HCC, mixed
HCC-CCA

RAS and TP53 GEMM Alb-Cre;KrasLSLG12D/+;Tp53f/f 104

iCCA RAS and PTEN GEMM with liver injury Alb-Cre:KrasLSLG12D/+, Ptenf/f 107

iCCA RAS and TGF-beta GEMM Alb-Cre:Smad4f/f, Ptenf/f 94

HPCs/hepatoblast HCC and iCCA Hippo/YAP GEMM Alb-Cre; sav1fl/fl or mst1fl/fland mst2fl/fl 110

iCCA and HCC TP53 GEMM Alfp-Cre;Tp53f/f 139

iCCA IDH and RAS GEMM Alb-Cre;IDH2LSL-R172;KrasLSL-G12D 70

Mature hepatocytes iCCA, HCC, mixed
HCC-CCA

YAP and AKT Transposon-based model Overexpression of PIK3CA and Yap 113

iCCA NOTCH and AKT Hepatocyte fate-tracing,
Transposon-based model

Overexpression of NICD1 and AKT 98

iCCA YAP and AKT Transposon-based model Overexpression of myrAKT and YAPS127A 111

iCCA NOTCH and RAS Transposon-based model Overexpression of NICD in KrasLSLG12D mice 100

iCCA NOTCH and AKT Transposon-based model Overexpression of AKT and Jag1 99

iCCA NOTCH Fate-tracing, GEMM
with liver injury

Administration of TAA
Alb-CreERT2;R26RlacZ/+;
Ck19-CreERT2;R26RlacZ/+;
Alb-CreERT2;R26RNotch/+

96

iCCA MYC and RAS or
MYC and AKT

Transposon-based model Overexpression of mouse
Myc and NrasG12V or human AKT1
in ROSAmT/mG ×Alb-cre × p19Arf−/− mice

102

iCCA PTEN and TGFb GEMM AAV8-TBG-Cre: Ptenf/f; Tgfbr2f/f 105

iCCA, HCC, mixed
HCC-CCA

RAS and TP53 GEMM with liver injury Administration of DDC diet
AAV8-TBG-Cre:KrasLSLG12D/+;Tp53f/f

106

Mature cholangiocyte iCCA NOTCH and TP53 GEMM with liver injury Administration of TAA
Ck19-CreERT/eYFP;Tp53f/f,Notch3

103

iCCA RAS and PTEN GEMM Tamoxifen-inducible
Alb-CreERT2+;KrasLSL-G12D/+;Ptenflox/flox,
or Ck19CreERT/+;KrasLSL-G12D/+;Ptenflox/flox

108

iCCA, pCCA/dCCA RAS and PTEN GEMM Ah-CreERT:KrasV12/+, Ptenf/f 140

iCCA RAS and TP53 GEMM Sox9-CreERT2;KrasLSLG12D/+, Tp53f/f 106

pCCA/dCCA RAS and TGFb GEMM Ck19-CreERT:KrasLSLG12D;Tgfbr2f/f;Cdh1f/f 118

GBC, pCCA/dCCA EGFR GEMM Bk5-Erbb2 117

iCCA PTEN and TGFb GEMM with liver injury Administration of DDC diet
Ck19-CreERT or Prom1-CreERT2; Ptenf/f;Tgfbr2f/f

105

iCCA AKT and YAP Transposon-based model Intrabiliary transduction of active AKT
(myr-AKT) and human YAP (YAPS127A)

109

Gallbladder epithelium GBC RAS and NOTCH GEMM Pdx1-Cre: KrasLSL-G12D/+ 119

GBC Estrogen and TGFb GEMM LXRbeta(-/-) 120

CCA, cholangiocarcinoma; dCCA, distal cholangiocarcinoma; DDC, 3,5-diethoxycarbonyl-1,4-dihydrocollidine; eCCA, extrahepatic cholangiocarcinoma; EGFR, epidermal
growth factor receptor; GBC, gallbladder cancer; GEMM, genetically engineered mouse model; HCC, hepatocellular carcinoma; iCCA, intrahepatic cholangiocarcinoma; IDH,
isocitrate dehydrogenase; pCCA, perihilar cholangiocarcinoma; TAA, thioacetamide; TBG, thyroid-binding globulin; TGFb, transforming growth factor-b; TP53, Tumor Protein
P53.
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Independent studies incorporating transcriptomic and
mutational analysis have identified 2 main subtypes of iCCA:68,73

(i) the inflammation class, characterised by inflammatory sig-
nalling and STAT3 activation; and (ii) the proliferation class
which features the upregulation of classical oncogenic pathways
(KRAS, epidermal growth factor receptor [EGFR] and NOTCH).
Tumours belonging to the proliferation class present with an
adverse outcome and a more aggressive phenotype. Of note, a
subset of tumours belonging to the iCCA proliferation class are
enriched with liver-specific stem cell gene signatures73,74 and
molecular signatures of HCC with poor prognosis,75,76 thus sug-
gesting that iCCA and HCC may share a common ancestor.68,73

The hypothesis that HPCs may represent the cell of origin of
iCCA and other PLCs is further supported by the molecular fea-
tures of mixed HCC-CCA subtypes. In an attempt to clarify the
clonality of these neoplasms, recent integrative molecular ana-
lyses of the micro-dissected HCC and iCCA foci within these tu-
mours have shown similar allelic imbalances in most cases,
suggesting a potential single clonal derivation in some subtypes
of PLCs.55,77 Similarly, the subtype of mixed HCC-CCA with stem
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cell features shows a molecular profile characteristic of undif-
ferentiated and CK19+ HCCs, hinting at a single bi-potential cell
of origin (Fig. 3).

Among mixed HCC-CCA, CLC seem to represents a distinct
biliary-derived entity.55,58,78 Whole-genome transcriptome-
based analyses of CLCs have suggested a molecular profile more
similar to iCCA than conventional HCCs.55,79 In addition, CLC
presents mutations in IDH1/2, a common feature in a subset of
iCCA tumours which display stem cell-like features and higher
chromosomal instability.68,70,73 Overall, these findings suggest
that a biliary-committed precursor may represent the potential
cell of origin for CLC and a subset of iCCA with stem cell features
(Fig. 3).

Due to the low number of eCCA samples analysed in large
international initiatives, no molecular classification had been
proposed for eCCA until recently. In an analysis of 189 clinically
annotated eCCAs (76% pCCA and 24% dCCA) from Western
countries, 4 distinct eCCA molecular classes were identified: i)
metabolic (19%); ii) proliferation (22%); iii) mesenchymal (47%);
and iv) immune (12%). Direct comparison of eCCA with
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Fig. 4. Lineage tracing promoter systems and related pathways involved in the onset of BTCs. Depending on the experimental setting and developmental
stage, the Cre system may recombine floxed alleles in different cell types. The CreERT system, a fusion of Cre and the tamoxifen-inducible domain of the estrogen
receptor, enables spatiotemporal control, which has been crucial for manipulating genes in the adult liver. Induction of alterations in signalling pathways (black
continuous arrows), for example activation of NOTCH and YAP signalling, together with oncogenic insults (i.e. Tp53 or Kras mutations) or liver injury, result in the
malignant transformation of potential cells of origin (highlighted with red hallow). KRAS, Kirsten Rat Sarcoma Viral Oncogene Homolog; TP53, Tumor Protein P53.
previously described iCCA molecular classes only identified sig-
nificant similarities in the Proliferation classes.7 However, it re-
mains unclear if the shared molecular features may reflect a
common origin.

GBC remains relatively underexplored at the genomic level
compared to other BTCs. Reports are widely confined to muta-
tional analysis and a deeper understanding of its molecular
pathogenesis is still lacking. Of note, frequently mutated genes
include KRAS, TP53 as well as mutations in the ErbB pathway,11

which occur in all BTC subtypes (Table 2).
In a recent NGS-based international study, Wardell et al.

analysed the genomic landscape of 412 BTC samples from Japa-
nese and Italian populations, including 136 iCCAs, 101 dCCAs, 109
pCCAs and 66 GBCs.16 The authors predicted the cell of origin of a
subset of the BTC samples and 3 additional HCC series by
combining somatic mutation patterns and epigenetic features.
Interestingly, the majority of HCCs (~90%) were classified as
originating from hepatocytes. Conversely, BTCs were classified as
originating from the liver or epithelial cells in 33% and 36% of
cases, respectively. Overall, iCCA samples were more commonly
classified as originating from hepatocytes than epithelial cells
(43.5% vs. 17%), ultimately supporting results of lineage tracing
studies (discussed in the next paragraphs). The opposite was true
for dCCAs and GBCs whose origin was more commonly assigned
to a non-liver source. Interestingly, iCCAs on a background of
hepatitis were more likely to be predicted to derive from liver
sources. Unfortunately, in this study only 39 BTC samples were
used to infer the cell of origin. Further studies are awaited to
further corroborate these results in larger cohorts and further
explore the genomic landscape of these tumours, particularly
eCCAs and GBCs.
Evidence from mouse models
In several instances, the tumour phenotype may not directly
reflect the tumour histology and the underlying process of
JHEP Reports 2021
tumorigenesis.22 Therefore, the use of genetically engineered
mouse models (GEMM) and lineage tracing systems has proven
indispensable to elucidate the cell of origin of cancer, including
BTCs.

A unique feature of biliary cancers is that they manifest in the
hepatic parenchyma or large intrahepatic and extrahepatic bile
ducts, which are furnished by 2 distinct stem cell niches: the
canals of Hering and PBGs, respectively (Fig. 2).80 Despite recent
advances, the existence of compartmentalised bona fide stem cell
populations within the liver and their role as a potential cell of
origin of BTCs remains debatable. This is largely due to the mixed
results obtained from different lineage tracing studies as well as
accumulating evidence demonstrating the high cellular plasticity
of the mature liver epithelium. In the adult liver, both mature
hepatocytes and cholangiocytes exhibit high self-renewal ca-
pacity and are responsible for normal tissue turnover. In addi-
tion, under certain circumstances, this cellular plasticity seems to
be bidirectional, with hepatocytes able to transdifferentiate into
biliary-like cells and cholangiocytes able to act as facultative
stem cells. Below, we summarise the experimental evidence
supporting these highly controversial claims (Fig. 3 and Table 3).
The cellular source of liver regeneration following chronic
injury
The liver is a unique organ with an extraordinary capacity to self-
repair and regenerate upon various injuries.81 In homeostasis,
adult hepatocytes are mostly quiescent with slow cell turnover;
however, upon hepatic injury or partial hepatectomy, hepatocyte
turnover accelerates to restore hepatic mass and function.82

Several studies using multiple lineage tracing of different he-
patic cell lines have demonstrated that, after partial hepatectomy
or in the context of acute liver injuries, regeneration predomi-
nantly relies on the self-renewal of hepatocytes rather than stem
cell differentiation.83–87 Conversely, when hepatocyte prolifera-
tion is impaired, bipotential HPCs or oval cells, postulated to be
localised in the canals of Hering (Fig. 2), are the cellular source of
7vol. 3 j 100226
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hepatocyte turnover.81,88,89 To further complicate the scenario, 2
recent studies have demonstrated that cholangiocytes can also
act as facultative liver stem cells and contribute to hepatocyte
regeneration in the context of severe and prolonged liver dam-
age.90,91 Indeed, Raven et al. demonstrated that the combination
of liver injury (i.e. loss of b1-Integrin) with inhibition of hepa-
tocyte proliferation (i.e. p21 overexpression) causes regeneration
of functional hepatocytes from biliary cells.90 These findings
have been further validated by Deng et al. who showed that
biliary-derived hepatocytes replenish a large fraction of the liver
parenchyma following severe chronic injuries induced by long-
term thioacetamide or 3,5-diethoxycarbonyl-1,4-
dihydrocollidine treatment.91 All together these data suggest
that: i) the nature of the injury can determine the cellular source
of epithelial regeneration; and ii) cholangiocytes represent a
potential cellular source of hepatic regeneration.92 Although
significant gaps exist between the animal models of liver
regeneration and the complex clinical scenarios of chronic liver
injuries, these studies provide insights into the potential mech-
anisms driving liver regeneration. Whether the injury-induced
plasticity of hepatocytes and cholangiocytes could also occur in
the setting of BTC tumorigenesis remains to be clarified.

Hepatocytes or cholangiocytes: who should we blame for
iCCA?
Based on histological observations, the mature cholangiocyte
within the intrahepatic small bile ducts has traditionally been
considered the cell of origin of iCCA. Nonetheless, during the past
decade, the use of sophisticated cell lineage tracing systems and
GEMMs has provided compelling evidence supporting the hy-
pothesis that iCCA may also originate from the malignant
transformation of hepatocytes (Fig. 3). Most of these models are
based on the use of hepatocyte-targeted Cre or overepression
systems (Table 3). Among them, it should be noted that the ac-
tivity of constitutive albumin (Alb)-Cre system in some instances
is not restricted to fully differentiated hepatocytes (Fig. 4). In fact,
depending on the developmental stage, the Alb-Cre allele may
recombine floxed alleles in both hepatocytes, cholangiocytes and
hepatoblasts.93,94 Alternatively, other investigators have adopted
the hydrodynamic delivery of transposon-based system that is
known to preferentially transduce 5−40% of hepatocytes in the
adult liver.95

To date, several studies have consistently shown that
hepatocyte-specific activation of NOTCH, either alone96,97 or in
cooperation with AKT activation,98,99 gain-of-function Kras100 or
loss-of-function Tp53 mutations,101 results in the conversion of
mature hepatocytes into malignant biliary cells. In order to
provide the direct evidence that fully differentiated hepatocytes
can give rise to iCCA, Fan et al. used a hepatocyte fate-tracing
model and elegantly showed that NOTCH and AKT signalling
cooperate to convert normal hepatocytes into biliary cells that
act as precursors in iCCA development.98 Using both hepatic and
biliary lineage tracing systems, Sekiya et al. have further
demonstrated that, upon chronic liver injury, iCCA arises from
biliary lineage cells derived from hepatocytes and not chol-
angiocytes, with NOTCH signalling being the key mediator of
biliary differentiation.96 The tumour microenvironment may also
play a role in determining iCCA growth from oncogenically
transformed hepatocytes. Indeed, it has recently been demon-
strated that in the presence of an apoptotic microenvironment,
hepatocytes with aberrantly activated oncogenes (loss of p19Arf
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in combination with gain-of-function alterations including Myc
and NrasG12V or Myc and AKT1) give rise to HCC whereas a
necroptotic-associated cytokine microenvironment will lead to
iCCA.102

Hepatocytes are not always the cell undergoing the neoplastic
transformation. Indeed, Guest et al. have demonstrated that in
the context of chronic inflammation and biliary-specific (Ck19-
Cre) activation of NOTCH and mutant TP53, cholangiocytes lead
to iCCA formation.103 In addition, murine models based on the
combination of Pten and Tgfbr2 deletions or Tp53 loss and Kras
activation suggest that iCCA can derive from either biliary (Ck19-
Cre or Sox9-Cre, respectively) or hepatic (Alb-Cre or hepatic-
specific thyroid-binding globulin promoter [TBG]-Cre) compart-
ments (Table 3).104–106 Interestingly, the use of an adeno-asso-
ciated vector to express Cre recombinase only in adult
hepatocytes under the TGB promoter (AAV8-TBG-Cre) suggested
that Tp53 and Kras mutated adult hepatocytes are refractory to
malignant transformation in the absence of liver injury.106

The application of sophisticated approaches further supports
the role of cholangiocytes in iCCA formation. For example, the
use of a cell lineage visualisation system using tamoxifen-
inducible Cre-loxP has recently demonstrated that Kras activa-
tion and Pten deletion in both adult hepatocytes or chol-
angiocytes leads to iCCA tumours from cholangiocytes rather
than hepatocytes.107,108 Finally, using a technically challenging
approach for specific intrabiliary instillation of a transposon
system expressing activated forms of YAP and AKT coupled with
IL-33 administration, Yamada et al. have further demonstrated
the role of cholangiocytes in the onset of iCCA.109

Overall, this evidence suggests that depending on the onco-
genic insults, adult hepatocytes can undergo a phenotypic switch
to induce iCCA development, while adult cholangiocytes can
readily go through malignant transformation. Further research is
needed to understand in which circumstances and under which
oncogenic insults one cell type rather than the other will ulti-
mately give rise to iCCA.

Lesson learnt from rare bi-phenotypic primary liver cancers
As previously mentioned, the existence of mixed HCC-CCA tu-
mours suggests the possibility that a progenitor-like cell may
represent the cell of origin of iCCA and other PLCs. Experimental
models based on the activation of the HIPPO-YAP pathway via
Alb-Cre derived knock-out of the neurofibromatosis type 2 (Nf2)
gene, inactivation of Mst1/2 or Sav1, and ectopic expression of
Yap, have demonstrated the expansion of atypical ductal cells or
progenitor-like cells and the subsequent development of iCCA,
HCC and mixed HCC-iCCA tumours.110–113 Similarly, viral-related
specific transduction of mouse HPCs/hepatoblasts with trans-
genes encoding oncogenic H-Ras and SV40LT or Bmi1 and
mutated b-catenin results in the formation of a broad spectrum
of liver tumours with iCCA and/or HCC features.114,115 However,
due to the limitations of the Alb-Cre promoter, whether the HPCs
are the actual cell giving rise to these tumours remains debat-
able. To date, the only study specifically pointing to the expan-
sion of progenitor-like cells as a key mechanism contributing to
iCCA development is based on the expression of gain-of-function
Idh mutations.70 In this study, Saha et al. demonstrated that Idh
mutations block hepatocyte lineage progression and enhance the
expansion of HPCs which, upon acquisition of an oncogenic
insult (i.e. Kras mutations), lead to the development of prema-
lignant biliary lesions and progression to iCCA.70
8vol. 3 j 100226



Peribiliary glands as potential niche for the cell of origin of
eCCA
During embryogenesis, intrahepatic and extrahepatic bile ducts
originate from the intrahepatic ductal plate and hepatic diver-
ticulum,116 respectively, thus suggesting different tumorigenic
processes for iCCA and eCCA subtypes. However, due to the lack
of specific models of eCCA development, our understanding of
the mechanisms underlying the onset of pCCA/dCCA remains
scarce. Interestingly, well-differentiated eCCA tumours have
been detected in the extrahepatic bile duct of a mouse model of
iCCA generated by liver-specific Kras activation and Pten dele-
tion107 and in transgenic mice over-expressing Erbb2 in the basal
layer of the biliary tract epithelium117 (Table 3). Of note, in the
latter study, mice also developed GBC suggesting that mature
cholangiocytes may represent a common cell of origin for all BTC
subtypes.

Recent efforts have been focused on generating a clinically
relevant model of eCCA development by incorporating the most
frequent genetic alterations identified in NGS-based studies.7,9,13

In this regard, Nakagawa et al. developed a mouse model of
injury-related eCCA through biliary-cell-specific Kras activation
and deletion of TGFb receptor type 2 (Tgfbr2) and E-cadherin
(Cdh1).118 Remarkably, these mice fully recapitulate the charac-
teristic features of the human disease, including thickening of
the extrahepatic bile duct wall accompanied by a swollen gall-
bladder, and moderately-differentiated adenocarcinoma cells
with periductal infiltrating growth patterns of pCCA/dCCA. Cell
lineage tracing in these mice suggested biliary precursors of the
PGB as the cell of origin of eCCA (Figs. 2 and 3).118

Cell of origin of GBC
Similar to eCCA, only few murine models of GBC are currently
available (Table 3). As discussed, overexpression of Erbb2 in the
basal layer of the biliary tract epithelium under the bovine ker-
atin 5 (BK5) promoter leads to tumour formation at various sites
along the biliary tract.117 Interestingly, GBC develops in 90% of
these transgenic mice117 suggesting a common cell of origin for
GBC and CCA (Fig. 2). Data obtained in an independent investi-
gation showed that targeted transduction of the gallbladder
epithelium via Pdx1-Cre driven expression of oncogenic Kras
leads to upregulated NOTCH signalling and gallbladder
tumourigenesis, thus suggesting gallbladder epithelial cells,
rather than cholangiocytes, are the direct target of carcinogne-
sis.119 Similarly, malignant transformation of the gallbladder
epithelium was observed in a knock-out model of the oxysterol
receptor liver X receptor–b (LXRb), which is involved in the
control of lipid homeostasis and glucose metabolism.120 Carci-
nogenesis in this model was estrogen dependent, consistent
with a higher incidence of GBC in women (Table 1).
Potential therapeutic impact of the cell of origin
Outcomes of patients with BTC remain poor, particularly at
advanced stages when most cases are diagnosed. Until recently,
available therapeutic strategies relied almost exclusively on
systemic chemotherapy. However, thanks to the discovery of
targetable molecular alterations, the treatment landscape of
BTCs has been rapidly evolving, and it is becoming evident that
tailored approaches elicit superior outcomes (Table 2). In this
regard, the recent accelerated FDA-approval of the FGFR inhibitor
pemigatinib in patients with CCA harbouring FGFR2 fusion genes
is exemplary.121 While these recent advances are encouraging,
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the magnitude of the benefit conveyed by these therapies is
limited and there remains an unmet need to improve outcomes
for all patients.

A better understanding of the cells of origin of BTCs could
facilitate the identification of specific molecular mechanisms of
carcinogenesis amenable to therapeutic targeting. Unfortunately,
thus far, no biomarker able to trace back each patient’s tumour to
its originating cell has been identified; in particular, we still do
not know if the cell of origin may determine the genetic muta-
tion landscape or vulnerability to specific therapeutic strategies.
Similarly, it is important to keep in mind that the previously
described molecular classes, in particular the progenitor-like
cluster of iCCA, as well as aberrations in specific pathways may
just reflect a unique transcriptional profile and do not necessarily
mirror the cell of origin of that tumour.

In this scenario, iCCA with stem cell features and CLC
harbour frequent mutations in IDH1/2 genes. These gain-of-
function mutations result in the accumulation of oncometa-
bolites and promote tumour progression. Several IDH-
inhibitors have been developed and recently the IDH1 inhibi-
tor ivosidenib has been proven superior to placebo in terms of
progression-free survival in an enriched population in the
ClarIDHy phase III trial.122 Aside from targeting IDH1/2, sig-
nalling pathways involved in trans-differentiation of hepato-
cytes and tumorigenesis (i.e. NOTCH,123 WNT/beta-catenin124

and Hippo/Yap125) represent attractive targets. However,
since these pathways play a key role in normal physiology,
toxicity remains a concern. Serious adverse effects are an
overarching theme, particularly in the exploration of NOTCH
inhibitors.126 Likewise, targeting YAP in tumours with a stem
cell phenotype may be an intriguing therapeutic approach but
concerns regarding toxicity outweigh potential benefits.
Finally, WNT-pathway inhibition is an enticing option
currently under evaluation in several phase I clinical trials.127

The role of the TGFb signalling pathway in tumour progres-
sion has prompted several preclinical studies investigating the
efficacy of selective inhibitors targeting this pathway. A phase I
study of bintrafusp alfa, a bifunctional fusion protein128 tar-
geting both TGFbRII and the immune checkpoint PD-L1 (pro-
grammed cell death 1 ligand 1), was able to elicit promising
objective response rates of 20% in a non-enriched population
of BTCs.129

While the therapeutic repertoire for iCCA is expanding, drug
development for pCCA, dCCA and GBC has failed to keep pace.
The main potentially targetable alterations detected in these
tumours relate to EGFR and HER2-4, but trials investigating the
HER-pathway inhibitors, lapatinib and erlotinib, have failed to
show a meaningful benefit.130,131

Immunotherapy with checkpoint inhibitors has elicited
impressive survival benefit in many solid cancers. Several clinical
trials testing these agents are currently underway in patients
with BTC. Unfortunately, initial results have been disappointing,
ultimately suggesting that these tumours may be mostly resis-
tant.2 Considering the potential role of the microenvironment in
dictating the onset of different types of liver cancer,102 a more
comprehensive understanding of the complexity and diversity of
the immune microenvironment of BTCs and its relationship with
tumour genotypes and cellular hierarchies may provide sound
rationale for the use of immunotherapy in combination with
targeted therapies in selected populations. This is of high rele-
vance since tumours displaying stem cell features correlate with
more aggressive tumour behaviour and poor clinical outcome.
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Concluding remarks
BTCs represent an extremely heterogenous group of cancers with
different anatomic location, risk factors, molecular features and
potentially distinct cells of origin. Although several genomic
advances have helped elucidate the molecular pathogenesis of
BTCs and improve their histopathological classifications, the
critical question of which cell is responsible for cancer initiation
remains unanswered. Experimental studies applying sophisti-
cated lineage tracing systems have indicated that HPCs, mature
hepatocytes and cholangiocytes may give rise to iCCA. Albeit less
explored, emerging data suggest that while eCCAs may derive
from either biliary progenitor cells or mature cholangiocytes,
GBCs may arise from mature cholangiocytes and/or gallbladder
epithelial cells. In addition, the phenotypic complexity and
presence of progenitor/stem cell features in BTC could also be
explained by the so-called cancer stem cell model, which suggests
that tumour cells dedifferentiate to acquire progenitor cell
JHEP Reports 2021
features and become cancer stem cells (extensively reviewed
in132,133). However, controversy exists. Future research will need
to clarify the similarities between experimental models and the
human disease and the exact relationship between the cell of
origin, tumour genotype and immune microenvironment.
Incorporating this information into current staging systems
could provide the rationale for combining targeted therapies
with immune checkpoint inhibitors and ultimately identify po-
tential biomarkers of response and resistance. This is particularly
relevant given that only a small fraction of patients seems to
benefit from currently available immunotherapies and the un-
derstanding of the immune landscape of BTCs remains limited. In
this regard, the analysis of the tumour, immune and stroma
compartment at the single cell level via single-cell RNA
sequencing could provide critical information to clarify the role
of the microenvironment in shaping distinct tumour phenotypes.
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