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Abstract: Full-duplex (FD) is a promising technology for increasing the spectral efficiency of next-
generation wireless communication systems. A major technical challenge in enabling FD in a real
network is to remove the self-interference (SI) caused by simultaneous transmission and reception at
the transceiver, and the SI cancellation performance depends significantly on the estimation accuracy
of the SI channel. In this study, we proposed a novel partial SI channel training method for minimizing
the residual SI power for FD massive multiple-input multiple-output (MIMO) systems. Based on
an SI channel training framework under a limited training overhead, using the proposed scheme,
the BS estimates only a part of the SI channel vectors, while skipping the channel training for the
other remaining SI channel vectors by using their last estimates. With this partial training framework,
the proposed scheme finds the optimal partial SI channel training strategy for pilot allocation to
minimize the expected residual SI power, considering the time-varying Rician fading channel model
for the SI channel. Therefore, the proposed scheme can improve the sum-rate performance compared
with other simple partial training schemes for FD massive MIMO systems under a limited training
overhead. Numerical results confirm the effectiveness of the proposed scheme for FD massive MIMO
systems compared with the full training scheme, as well as other partial training schemes.

Keywords: full-duplex; massive MIMO; self-interference; channel estimation; partial training

1. Introduction

Fifth-generation (5G) wireless communication systems, called new radio (NR), have
been successfully commercialized at a global level [1,2]. The 5G NR provides a wide range
of services with various requirements such as enhanced mobile broadband (eMBB), ultra-
reliable low-latency communications (URLLC), and massive machine-type communications
(mMTC) [3]. Despite the remarkable improvement in 5G NR in terms of performance and
functionalities, there are extensive ongoing studies and standardization efforts to shape
next-generation wireless communication systems, namely the sixth-generation (6G) [4].
It is expected that 6G will provide an ultimate experience beyond even that of 5G NR
by enabling new services and applications such as multisensory extended reality, mobile
holograms, connected robotics, autonomous systems, and wireless brain-computer interac-
tions [5–7]. To meet the explosive data traffic expected in the 6G era, massive multiple-input
multiple-output (MIMO) [8–13] and full-duplex (FD) [14–16] are indispensable technologies
for improving the network capacity.

In massive MIMO systems, the base station (BS) is equipped with a large number of
antennas, and the spectral efficiency can be significantly increased by simultaneously serv-
ing frequency resources and a large amount of user equipment (UE) concurrently [8–13].
Meanwhile, in FD systems, downlink (DL) and uplink (UL) transmissions occur simul-
taneously at the transceiver at the same time and frequency resource [14,15]. Thus, FD
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systems can theoretically double the spectral efficiency compared with conventional half-
duplex (HD) systems such as time division duplex (TDD) and frequency division duplex
(FDD) [16]. Therefore, the joint utilization of FD and massive MIMO can significantly
improve the system capacity.

The main challenge for FD systems is the self-interference (SI) phenomenon, in which
the signal transmitted from the BS or UE becomes an unwanted interference to the trans-
mitter [17]. In the case of FD-BS, unattenuated DL signals incur SI for UL signals at the
BS, where the power of the SI is significantly larger than that of the UL signals attenu-
ated by the path loss. Therefore, to make the FD technique feasible, extensive studies
have been conducted on SI cancellation (SIC) schemes. In general, both analog-domain
SIC [18–23] and digital-domain SIC [24–28] are required. Regarding analog SIC schemes,
radio frequency (RF) and baseband (BB) tapping approaches were studied in [18,19], re-
spectively. Furthermore, a two-stage cancellation architecture that combines RF and BB
tapping approaches was proposed in [20,21]. In [22], a time-varying least mean square
(LMS) adaptive filtering scheme with step-size parameters decreasing with time was devel-
oped. In [23], a practical structure for an analog LMS (ALMS)-based analog SIC scheme
was investigated. Regarding digital SIC schemes, the removal of both the fundamental
and harmonic components of the SI based on the least square (LS) estimation of an SI
channel was investigated in [24]. In [25], a digital SIC scheme that eliminates all transmitter
impairments to mitigate the receiver phase noise and nonlinearity effects was proposed.
Furthermore, in [26], a hybrid beamforming-based SIC scheme was proposed for FD MIMO
systems in millimeter-wave communications. In [27], a digital SIC scheme based on an
independent component analysis was proposed. In [28], an iterative nonlinear method was
studied for FD systems under mixer imbalance and amplifier nonlinearity.

The level of SI cancellation and suppression depends highly on the estimation accuracy
of the SI channel [29–31]. Therefore, improving the SI channel estimation accuracy is a key
technical issue for FD systems, and several related studies have been conducted [32–36].
In [32,33], a joint estimation of the SI and data channels based on the maximum-likelihood
(ML) approach was studied. In [34], a frequency-domain LS channel estimator was pro-
posed, and an optimal pilot pattern was derived to minimize the sum of the mean squared
error (MSE). In [35,36], channel estimation methods for FD systems with large-scale anten-
nas were investigated.

Despite such studies on SI channel estimation, little effort has been made to investigate
the SI channel training strategy when considering the training overhead problem for FD
massive MIMO systems. Unfortunately, prior works such as [35–38] focused on the full
training strategy for the SI channel estimation where all elements of the entire SI channel
matrix are estimated. For the FD-BS, the size of the SI channel matrix at the BS increases
with the number of BS antennas. In other words, assuming orthogonal training for SI
channel estimation, the full training strategy requires the training overhead to linearly
increase with the number of BS antennas [39,40]. As a result, a large training overhead is
required for full SI channel training in FD massive MIMO systems. This not only decreases
the duration of the data transmission phase in each transmission block for a potential
spectral efficiency reduction, but also delays the beginning of the data transmission phase
in each transmission block, which can be a crucial problem in latency-sensitive services
such as URLLC. Therefore, the amount of training overhead for the SI channel can be strictly
limited according to the system environment and services, which makes it impossible to
apply the full SI channel training strategy. In this case, the BS can simply choose only a
part of the SI channel vectors for training in either a random or round-robin manner under
a limited training overhead. For random training, the BS arbitrarily chooses a part of the
antennas for SI channel training at a given time instance, whereas for the round-robin
training, the BS antenna is sequentially selected in a round-robin manner according to
previous selections. However, because no optimization is considered for allocation, both
partial training strategies can yield poor throughput performance. Thus, an optimized
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partial SI channel training strategy needs to be developed instead of an infeasible full
training strategy and non-optimized partial training strategies.

Therefore, in this study, we propose an efficient SI channel estimation framework
based on a partial training strategy for FD massive MIMO systems. In the proposed scheme,
the pilot signals for SI channel training are allocated to a number of massive BS antennas
to satisfy the limited training overhead constraint, and only a part of the SI channel vectors
among the entire SI channel matrix corresponding to the allocated BS antennas is estimated
for each transmission block. Considering that the SI channel can be modeled as a slowly
varying Rician fading channel [17,30,38,41,42], we formulated an optimization problem
to find an optimal pilot allocation strategy that minimizes the residual SI power after the
SIC operation for a given Rician fading channel model. For this purpose, a closed-form
expression for the residual SI power after the SIC operation was derived in terms of pilot
resource allocation, and a comprehensive algorithm to solve the optimization problem
was developed.

The contributions of this study are summarized as follows:

• We developed an efficient partial SI channel training framework for FD massive MIMO
under limited training overhead. Considering that the SI channel can be modeled as a
quasi-static channel, it is possible to reduce the training overhead by estimating only
some of the SI channel vectors corresponding to a set of selected BS antennas, whereas
the previous estimates are utilized for the SI channel vectors corresponding to the
unselected BS antennas. This can improve the effective throughput in FD massive
MIMO systems for a given training overhead.

• To find an optimal training strategy under the proposed SI channel training frame-
work, we formulated an optimization problem to minimize the expected residual SI
power after the SIC operation. To this end, we analyzed and derived a closed-form
expression of the expected residual SI power in terms of pilot allocation. Based on the
reformulated optimization problem, a simple algorithm to find the optimal allocation
was applied, where the optimal allocation can be simply conducted through the BS
antenna selection and pilot resource allocations.

• The effectiveness of the proposed scheme was verified based on extensive numerical
results. It is shown that the proposed scheme can improve the UL sum-rate by
approximately 116.7% and 57.8% at a maximum compared with the cases in which
the pilot signals for the SI channel training are allocated randomly or in a round-robin
manner, respectively. In addition, because the required training overhead for the SI
channel training to achieve a given target UL sum-rate is decreased, the duration of
the simultaneous DL and UL data transmission phase in each transmission block can
be increased using the proposed scheme. As a result, for a given target UL sum-rate,
the proposed scheme can also improve the DL sum-rate by approximately 13.2% at a
maximum compared with the round-robin training.

The remainder of this paper is organized as follows. Section 2 describes the system
model, including the channel model and basic communication procedure for FD massive
MIMO systems. Section 3 presents the optimization problem for minimizing the residual
self-interference power and provides a simple algorithm for training optimization based on
joint antenna selection and pilot allocation. Section 4 provides numerical results to verify
the effectiveness of the proposed method compared with other partial training methods.
Finally, Section 5 concludes the paper.

Notations: In this paper, matrices and vectors are denoted in bold upper and lower
cases, respectively. In addition, (·)∗ and (·)H denote the conjugate and conjugate-transpose
operations, respectively; xi and xij denote the ith column vector and the (i, j)th element of
X, and E[·] denotes the expectation operator. Moreover, tr{·} is the trace operator. IN is an
N × N identity matrix. [IN ]n is the nth column vector of IN . |S| indicates the cardinality of
the set S , and diag{ · } and sort{·} represent the diagonalization and ordering operations,
respectively. CN (0, 1) represents a complex Gaussian random variable with zero mean
and unit variance.
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2. System Model

We considered a unidirectional FD system consisting of an FD-BS and HD-UE, as
shown in Figure 1 [17]. It was assumed that the FD-BS is equipped with M shared antennas,
such that the SI is composed of self-talk and cross-talk [14]. We considered K(= Ku + Kd)
HD-UEs with a single antenna in which there are Ku UL and Kd DL UEs in the system.

Self-talk

Cross-talk

FD BS

Downlink UEs

Uplink UEs

Data

Self-talk

Figure 1. FD massive MIMO system model.

A block-fading channel model was considered, where the channel was assumed
to be static during a coherence block of length T channel uses [40]. We denote Hu =[

hu
1 , . . . , hu

Ku

]
, Hd =

[
hd

1, . . . , hd
Kd

]
, and Hs =

[
hs

1, . . . , hs
M
]

as an M × Ku UL channel
matrix from the UEs to the BS, an M × Kd DL channel matrix from the BS to the UEs,
and an M × M SI channel matrix at the BS, respectively. In addition, hu

k , hd
k , and hs

m
are the channel vectors for the kth UL UE, the channel vector for the kth DL UE, and
the SI channel vector from the mth BS antenna element to all BS antennas, respectively.
The desired data signal channels, Hu and Hd, are modeled as Rayleigh fading, that is
hu

ij ∼ CN (0, 1) and hd
ij ∼ CN (0, 1), where hu

ij and hd
ij are the (i, j) elements of Hu and

Hd, respectively. Moreover, Hu and Hd vary independently between two consecutive
blocks. The SI channel matrix Hs is typically modeled as Rician fading [17,30,38,41,42].
The SI channel is composed of two parts: (i) a strong near-field SI channel representing
line-of-sight (LOS) paths and (ii) a weak far-field SI channel representing the reflected
non-line-of-sight (NLOS) paths [38,41]. In addition, the NLOS paths are typically slowly
changed because the BS is deployed at a high position and does not move. With the Rician
fading model, the SI channel element hs

ij is given by the following:

hs
ij =

√
κij

κij + 1
h

s
ij +

√
1

κij + 1
h̃s

ij, (1)

where κij is the Rician K factor, h
s
ij is the deterministic part with |hs

ij|2 = 1, and h̃s
ij is a

random variable that follows the Rayleigh distribution as h̃s
ij ∼ CN (0, 1). It is assumed

that h̃s
ij varies between two consecutive blocks, with the following correlation:

h̃s
ij(n) =

√
(cij)

n′ h̃s
ij
(
n− n′

)
+
√

1− (cij)
n′qij, (2)



Sensors 2021, 21, 3250 5 of 19

where h̃s
ij(n) is the random part of the nth block, cij is the correlation coefficient between

two consecutive blocks, and qij is a new random component, where qij ∼ CN (0, 1).
We considered a communication procedure that follows the frame structure illustrated

in Figure 2. According to the channel model, the channels were assumed to be invariant
during a coherent block of T channel uses. During a coherent block, τ channel uses are
consumed for SI channel training, and the remaining (T − τ) channel uses are consumed
for the FD data transmission of both the UL and DL. Without loss of generality, to study the
effect of knowledge on the SI channel, it was assumed that the BS has perfect knowledge of
Hu and Hd [17].

SI channel training Data transmission

1st block 2nd block 3rd block n-th block

T

T – ττ

Figure 2. Frame structure for FD massive MIMO systems.

During the SI channel training phase, the BS transmits τ × 1 pilot sequences ψm to
obtain ĥs

m, which is the estimate of the mth SI channel vector hs
m. The pilot sequences are

pairwise orthogonal, that is ψH
m ψm = 1 and ψH

m ψm′ = 0, where m 6= m′.
After the SI channel training phase, the data transmission phase begins for FD trans-

mission. The BS receives UL data from the Ku UL UEs and transmits DL data to the Kd DL
UEs simultaneously. For the UL signal, the FD-BS conducts a series of signal processing
procedures to eliminate the SI. In general, the FD receiver is composed of an analog SIC,
analog-to-digital conversion (ADC), and digital SIC [14,15]. By passing through the FD
receiver, the received UL signal is gradually restored. The received UL data signal vector
for the Ku UEs before SIC is given by:

yu =
√

ρuHuxu︸ ︷︷ ︸
desired signal term

+
√

ρsHsWxd︸ ︷︷ ︸
SI term

+zu, (3)

where xu = [xu
1 , . . . , xu

Ku
]T is a UL data signal vector, ρu is the UL received power, xd =

[xd
1 , . . . , xd

Kd
]T is a DL data signal vector, ρs is the DL power received at the BS (i.e., SI power),

W =
[
w1, . . . , wKd

]
with ||wk||2 = 1 a DL precoding matrix, and zu =

[
zu

1 , . . . , zu
M
]T is a

Gaussian noise vector with zero mean and unit variance. After SIC, the received UL signal
can be expressed as:

yu,SIC = yu − α
√

ρsĤsWxd

=
√

ρuHuxu + α
√

ρs
(
Hs − Ĥs)Wxd︸ ︷︷ ︸

residual SI term

+z̃u, (4)

where Ĥs =
[
ĥs

1, . . . , ĥs
M

]
is the estimated SI channel matrix, α is the analog SIC gain, and

z̃u = [z̃1, . . . , z̃M]T is the effective Gaussian noise, including the quantization error with
zero mean and σ2

z̃ variance. By applying the MIMO linear receiver to yu,SIC, we obtain
the following:

yu,rec = GHyu,SIC

=
√

ρuGHHuxu + α
√

ρsGH(Hs − Ĥs)Wxd + GH z̃u, (5)
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where G = [g1, . . . , gKu ] with ||gk||2 = 1 is the MIMO receiver matrix. Accordingly, the
received UL signal for the kth UE is given by:

ru,k =
√

ρugH
k hu

k xu
k +
√

ρugH
k ∑j 6=k hu

j xu
j + α

√
ρsgH

k
(
Hs − Ĥs)Wxd + gH

k z̃u. (6)

The UL SINR for the kth UE is obtained by the following:

γu,k =
ρu
∣∣gH

k hu
k

∣∣2
ρu ∑

j 6=k

∣∣∣gH
k hu

j

∣∣∣2 + α2ρs
∥∥gH

k
(
Hs − Ĥs

)
W
∥∥2

+ σ2
z̃

, (7)

and the UL achievable rate for the kth UE is given by:

Ru,k = log2(1 + γu,k). (8)

Meanwhile, the received DL data signal for the kth UE is given by:

rd,k =
√

ρd(h
d
k)

Hwkxk +
√

ρd ∑j 6=k (h
d
k)

Hwjxj + zd,k, (9)

where ρd and zd,k are the DL power received at the kth UE and Gaussian noise with zero
mean and unit variance, respectively. Thus, the DL SINR for the kth UE is obtained
as follows:

γd,k =
ρd

∣∣∣(hd
k)

Hwk

∣∣∣2
ρd ∑j 6=k

∣∣(hd
k)

Hwj
∣∣2 + 1

, (10)

and the corresponding DL achievable rate is given by:

Rd,k = log2(1 + γd,k). (11)

Finally, the total sum-rate reflecting the SI channel training overhead can be written
as follows:

ηsum = ηu + ηd

=
(

1− τ

T

)( Ku

∑
k=1

Ru,k +
Kd

∑
k=1

Rd,k

)
. (12)

3. Proposed Self-Interference Channel Training

SIC performance at the FD receiver relies heavily on the accuracy of the SI channel
estimation. To achieve a better SI channel estimation performance, a larger training over-
head is required. However, increasing the training overhead for the SI channel reduces the
duration of the data training phase, which can cause a large throughput loss for a large
training overhead. The SI channel estimation issue is more problematic for massive MIMO
systems because the training length for SI channel estimation based on orthogonal training
linearly increases with the number of antennas [8]. For a massive MIMO, it is infeasible to
employ full training overhead for SI channel estimation, where the training length is larger
than or equal to the number of BS antennas. Therefore, we considered a more practical
scenario for SI channel estimation at the FD-BS, where the training length is smaller than
the number of BS antennas, that is τ < M. Considering the limited training overhead, we
developed a partial SI channel training framework.

3.1. Partial Self-Interference Channel Training Framework

Figure 3 illustrates an example of the proposed partial SI channel training method for
FD massive MIMO systems under a limited training overhead. Because τ < M at a given
transmission block, it is possible to estimate at most τ SI channel vectors among the M
vectors in the entire SI channel matrix. Let Str(n) = {i1, i2, . . . , iL} be the set of antenna
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indices for SI channel vectors estimated at the nth block and Sno(n) =
{

i′1, i′2, . . . , i′M−L
}

be the set of antenna indices for SI channel vectors not estimated at the nth block, where
the number of estimated SI channel vectors L = |Str(n)| is no greater than τ because
multiple training overhead can be used for a given SI channel vector. We can then write
Hs

tr(n) =
[
hi1(n), hi2(n), . . . , hiL(n)

]
as the M × L aggregated SI channel matrix to be

estimated and Hs
no(n) =

[
hi′1

(n), hi′2
(n), . . . , hi′M−L

(n)
]

as the remaining M × (M − L)
aggregated SI channel matrix not to be estimated at the nth block. As shown in Figure 3, the
BS consumes τ channel uses to estimate a set of SI channel vectors in Hs

tr(n) by properly
transmitting pilot signals. In contrast, the BS skips the channel estimation operation for the
other remaining SI channel vectors included in Hs

no(n). Instead, it is possible to reuse the
last estimations of SI channel vectors obtained during the SI training phase in the previous
transmission blocks.

tr

no

SI channel training 

for n-th block

τ

1st channel use 2nd channel use τ-th channel use

( )1
ˆ s

nh ( )2
ˆ s

nh

( )ˆ s
nth

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2

1 1

ˆ ˆ ˆ ˆ, ,...,

ˆ ˆ ˆ,...,

ˆ ˆ ˆ,

s s s s

tr

s s s

no M M

s s s

tr no

n n n n

n n n n n

n n n

t

t t+ +

é ù= ë û

é ù= - -ë û

é ù= ë û

H h h h

H h h

H H H

Figure 3. An example of partial SI channel training with limited training length, assuming τ = L
for simplicity.

To estimate Hs
tr(n), the BS can transmit τ× L pilot sequences Ψ = [ψ1, . . . , ψL], where

ΨHΨ = IL. The M× τ signal matrix received during the training phase is then given by
the following:

Ys
tr(n) =

√
ρpHs

tr(n)PΨH + Zs, (13)

where ρp is the pilot power, P = diag(p1, . . . , pL) is an L × L matrix representing the
pilot allocation with ∑L

i=1 pi = τ, and Zs is an M× τ noise matrix with Gaussian elements
of CN (0, 1). According to P, the BS can consume pi channel uses for transmitting ψi.
From (13), the BS can obtain Ĥs

tr(n), which is the estimate of Hs
tr(n), by applying the exist-

ing conventional linear estimator in the manner of the LS or minimum MSE (MMSE) [40,43].
For the other remaining SI channel vectors in Hs

no(n), by using the nature of slowly-varying
SI channels [29–35], the BS can reuse the previous estimated SI channel vectors, i.e.,

Ĥs
no(n) =

[
ĥs

i′1
(n), ĥs

i′2
(n), . . . , ĥs

i′M−L
(n)
]

=
[
ĥs

i′1

(
n− ni′1

)
, hs

i′2

(
n− ni′2

)
, . . . , hs

i′M−L

(
n− ni′M−L

)]
, (14)

where ni is the number of blocks passed after the last estimation of the ith SI channel vector.
Consequently, the total estimated SI channel matrix at the nth block for the proposed partial
training method is given as follows:

Ĥs(n) = sort
{[

Ĥs
tr(n), Ĥs

no(n)
]}

. (15)



Sensors 2021, 21, 3250 8 of 19

3.2. Problem Formulation

To further maximize the throughput, the set of SI channel vectors to be estimated at
the given block should be appropriately selected. To formulate an optimization problem
with explicit optimization parameters, we define an M× L selection matrix M, where the
elements mij = 1 if i is the jth element of Str(n), and mij = 0, otherwise. Then, (13) can be
reformulated as:

Ys
tr(n) =

√
ρpHs(n)MPΨH + Zs

=
√

ρpHs(n)M̃ΨH + Zs, (16)

where M̃ ∆
= MP is an M× L matrix representing the antenna selection with a pilot allocation.

By considering the residual SI term in (4) as the metric, after removing the constant
parameters α and

√
ρs, an optimization problem to minimize the expected residual SI

power can be formulated as follows:

arg minE
M̃

[∥∥∥GH(n)
(
Hs(n)− Ĥs(n)

)
W(n)xd(n)

∥∥∥2
]

, (17)

subject to ∑i ∑j m̃ij = τ.
To solve the optimization problem in (17), we analyzed the expected residual SI power

and derived a closed-form expression of the expected residual SI power in terms of the SI
channel estimation error as the following lemma.

Lemma 1. Let vij be the (i, j) element of V = WWH , uij be the (i, j) element of U = GGH,
and ε2

ij be the channel estimation error variance, defined as ε2
ij = E[(hs

ij − ĥs
ij)(h

s
ij − ĥs

ij)
∗]. The

expected residual SI power is then given as follows:

E
[∥∥∥GH(Hs − Ĥs)Wxd

∥∥∥2
]
=

M

∑
i=1

vii ·
(

M

∑
j=1

ε2
ijujj

)
. (18)

Proof. See Appendix A.

As shown in Lemma 1, the residual SI power is determined based on the coefficients of
the DL precoder vii, the coefficients of the UL receiver ujj, and the channel estimation error
variance ε2

ij. The BS already has knowledge of vii and ujj for a given transmission block,

and thus, vii and ujj are deterministic. In contrast, ε2
ij varies depending on the SI channel

training methodology. Given that a partial training strategy is employed, the channel
estimation error variance for a given SI channel vector becomes different depending on
whether the SI channel vector corresponds to the antenna in Str or Sno. To quantify the
estimation error variance, we derived the following lemma:

Lemma 2. Assuming the LS estimator, the SI channel estimation error variance at the nth trans-
mission block is given by:

ε2
ij(n) =


1

∑j m̃ij(n)·ρp
for i ∈ Str(n)

2−2
√
(cij)

ni

κij+1 + 1
∑j m̃ij(n−ni)·ρp

for i ∈ Sno(n)
. (19)

Proof. See Appendix B.

Figure 4 compares the simulation results for the error variance ε2
ij with Lemma 2

when M = 64. It is shown that the analysis in Lemma 2 is correctly matched with the
simulations. According to the results in Figure 4, it is shown that the estimation error
variance decreases as the Rician factor increases because the effect of the deterministic part
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increases as the Rician factor increases. In addition, the estimation error variance decreases
as the correlation factor increases. Therefore, we can conclude that our proposed SI channel
estimation framework is a feasible solution for FD massive systems because the SI channel
typically has a semi-static characteristic with large Rician and correlation factors.
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Figure 4. Comparison of the analyzed error variance in (19) and simulated values with M = 64. The
channel correlation factor along the x-axis corresponds to (cij)

ni .

Next, we reformulated the optimization problem to find an optimal pilot allocation
M̃∗ by substituting (18) and (19) into (17) as:

arg min
M̃(n)

M

∑
i=1

vii(n) f (ai(n), i), (20)

where:

f (ai(n), i) =


M
∑

j=1

(
1

ai(n)·ρp

)
· ujj(n), ai(n) > 0

M
∑

j=1

(
2−2

√
(cij)

ni

κij+1 + 1
ai(n−ni)·ρp

)
· ujj(n), ai(n) = 0

(21)

subject to ∑i ai(n) = τ, where ai(n) = ∑j m̃ij(n) represents the number of allocated channel
uses to estimate the ith SI channel vector.

3.3. Proposed Optimal SI Channel Training Strategy

The optimization problem in (20) is a mixed-integer nonlinear programming (MINLP)
problem, which is generally difficult to solve [44]. To find an optimal solution of (20),
an exhaustive search with a computational complexity of O

(
2ML) is required, which

is infeasible considering a large M of massive MIMO. Therefore, as an alternative, we
proposed a simple step-by-step algorithm to solve the optimization problem in (20), which
is summarized as follows:

• Step 0 (preparation): Obtain V(n) and U(n) for the current transmission block. It
is assumed that the BS already has knowledge of the Rician factors (κij), channel
correlation coefficients (cij), and the previous optimal pilot allocation strategy, that is
M̃∗(1), . . . , M̃∗(n− 1).

• Step 1 (initialization): Initialize the parameter ai(n) = 0 for 1 ≤ i ≤ M.
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• Step 2 (calculation): Calculate the decrease in the residual SI power based on the
objective function in (20) when the number of allocated channel uses increases by
one, i.e.,

∆i(n) = vii(n) f (ai(n), i)− vii(n) f (ai(n) + 1, i)

for all antennas, 1 ≤ i ≤ M. Find the antenna index that maximizes the decrement
∆i(n), that is,

i∗ = arg max
i

∆i(n). (22)

Increase the allocated channel uses for the i∗th antenna by:

ai∗(n) = ai∗(n) + 1.

• Step 3 (next allocation) : Repeat Step 2 until ∑i ai(n) = τ.

The proposed algorithm jointly finds the set of antenna indices to be estimated at the
nth block and the number of channel uses for the corresponding pilot allocation. Owing to
the closed-form expression of the objective function, it is possible to conjecture that the SI
channel vector mostly contributes to the minimization of the residual SI power according
to the pilot allocation without any trial on the real SI channel estimation. To obtain the
initial sets of M̃∗(1), . . . , M̃∗(n− 1), the BS can simply estimate the SI channel vectors in a
round-robin manner to ensure that the SI channel matrix has been estimated at least once
before the nth block.

It is worth mentioning that the proposed algorithm was designed to find an optimal
solution in a greedy manner for low complexity. In each iteration of the algorithm, it is
ensured that there always exists only one solution i∗ to maximize ∆i. In addition, whenever
an optimal i∗ is determined at a given iteration, the metric of the optimization problem
in (20) decreases because i∗ is selected to reduce the metric based on (22). Consequently,
the proposed algorithm always converges. Furthermore, the computational complexity
of the proposed algorithm is dominated by the computational complexity of the matrix
multiplication to obtain V(n) and U(n), that is max

(
O
(

M2Kd
)
,O
(

M2Ku
))

. Therefore, al-
though the proposed algorithm has a higher computational complexity compared with the
simple random and round-robin training strategies, the proposed algorithm entails a signif-
icantly smaller computational complexity from an exhaustive search with a computational
complexity of O

(
2ML).

4. Simulation Results

In this section, the results of the numerical evaluation are presented to verify the
performance benefits of the proposed scheme. Random and round-robin training schemes
were considered in addition to the proposed scheme. The BS antenna and pilot resource
allocations were arbitrarily applied for every transmission block during random training,
whereas the BS antenna was sequentially selected in a round-robin manner according to
the selection of the last transmission block during the round-robin training. Furthermore,
it was assumed that the BS has the outdated SI channel information before the initial
transmission block. The LS channel estimator was considered for the SI channel estimation.
Further, the zero-forcing (ZF) beamformer was employed for DL transmission, whereas
the ZF receiver was employed for UL reception. In addition, unless specified otherwise,
the following parameters were considered: M = 64, T = 128, ρp = 40 dB, ρd = 30 dB,
ρu = 15 dB, cij = 0.9, and 10 bit quantization for ADC [17,41,45]. Finally, considering
the limited resources for the training overhead, the maximum τ was set to 48 among the
T(= 128) channel uses for each transmission block [46].
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Figure 5 shows the UL sum-rate (∑k Ru,k) of the training strategies per channel use ac-
cording to the number of UEs (Ku) and the SI training overhead (τ), where α = 70 dB [47,48]
and κij = 3 [38], and an 80 dB path loss (obtained by assuming a 100 m distance between the
BS and UE with a path loss exponent of four [17]) between the BS and UE was considered.
The UL sum-rates per channel use in Figure 5 are not normalized by the amount of training
overhead τ, and the SI channel estimation accuracy improves regardless of the training
strategy as τ increases. Therefore, the UL sum-rates per channel use in Figure 5 improve
regardless of the training strategy as τ increases. Nevertheless, by considering the pilot
resource allocation to minimize the residual SI power, the proposed scheme outperforms
the random and round-robin schemes. Furthermore, because the minimization of the
residual SI power can be more effectively performed, the performance gap of the proposed
scheme over the other schemes increases with τ. Specifically, when τ = 48, the UL sum-rate
increments of the proposed scheme over the random training are approximately 3.69, 5.29,
and 8.15 bits/s/Hz for Ku = 2, 4, and 8, respectively, whereas those of the proposed scheme
over the round-robin training are approximately 2.51, 2.98, and 3.61 bits/s/Hz for Ku = 2,
4, and 8, respectively.
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Figure 5. UL sum-rate (∑k Ru,k) per channel use according to the number of UEs (Ku) and SI training
overhead (τ): α = 70 dB, κij = 3, and 80 dB path loss between the BS and UE.

Figure 6 shows the normalized UL sum-rate (ηu) of the training strategies per channel
use according to the number of UEs (Ku) and the SI training overhead (τ), where the system
parameters are identical to those in Figure 5. Unlike the results in Figure 5, the UL sum-rate
of the random training decreases as τ increases because of the arbitrary pilot allocation
in each transmission block. Meanwhile, as the estimation of each SI channel vector is
sequentially applied in each block, the round-robin training can prioritize the update
of more outdated estimated SI channel vectors, which results in a gradual performance
improvement for a larger τ. In contrast, for the given τ and Ku, the proposed scheme
outperforms the round-robin training, as well as the random training, which implies
that the pilot resource allocations for the minimization of the residual SI power are more
effective than those for an update of more outdated SI channel information. When τ = 48,
the normalized UL sum-rate improvements of the proposed scheme over the random
training are approximately 116.7%, 84.7%, and 67.3% for Ku = 2, 4, and 8, respectively,
and those of the proposed scheme over the round-robin training are approximately 57.8%,
34.7%, and 21.7% for Ku = 2, 4, and 8, respectively.
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In Figure 7, the effects of the Rician factor (κij) on the normalized UL sum-rate of
the partial training strategy are shown, where Ku = 8, α = 70 dB, and 80 dB path loss
between the BS and UE are considered. Because the SI channel becomes more deterministic
as κij increases, the utilization of the previous estimates yields fewer errors, which leads
to a performance improvement of the partial training strategy for a larger κij. Meanwhile,
as κij decreases, the residual SI power can be significantly affected by the pilot resource
allocations, and the performance improvement ratio of the proposed scheme over the
other schemes can be increased for a smaller κij. Specifically, when τ = 48, the normal-
ized UL sum-rate improvements of the proposed scheme over the random training are
approximately 92.1%, 64.0%, and 54.2% for κij = 0, 4, and 8, respectively, and those of the
proposed scheme over the round-robin training are approximately 29.4%, 20.7%, and 18.1%
for κij = 0, 4, and 8, respectively.
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Figure 6. Normalized UL sum-rate (ηu) per channel use according to the number of UEs (Ku) and SI
training overhead (τ): α = 70 dB, κij = 3, and 80 dB path loss between the BS and UE.
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Figure 7. Normalized UL sum-rate (ηu) per channel use according to the Rician factor (κij) and SI
training overhead (τ): Ku = 8, α = 70 dB, and 80 dB path loss between the BS and UE.

In Figure 8, the effects of the path loss between the BS and UE on the normalized
UL sum-rate of the partial training strategy are illustrated, where Ku = 8, α = 70 dB, and
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κij = 3. As the path loss increases, more DL power is required to achieve the same ρd,
which results in severe SI problems owing to the increased SI power. Therefore, as the path
loss increases, the UL sum-rates of FD massive MIMO systems are significantly degraded,
although the minimization of the residual SI power becomes more important. Therefore,
the normalized UL sum-rate improvement ratios of the proposed scheme over the other
schemes are more significant as the path loss increases.

Figure 9 shows the normalized UL sum-rates per channel use according to the analog
SIC gain (α), where Ku = 8, κij = 3, τ = 48, and 80 dB path loss between the BS and UE
is considered. It is shown that the proposed scheme obtains better UL sum-rates than
the other schemes regardless of α. The performance improvement ratios of the proposed
scheme increase for a smaller α, because a smaller α indicates more severe SI problems at
the FD-BS, similar to the case of the larger path loss shown in Figure 8.
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Figure 8. Normalized UL sum-rate (ηu) per channel use according to the path loss between the BS
and UE and SI training overhead (τ): Ku = 8, α = 70 dB, and κij = 3.
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Figure 9. Normalized UL sum-rate (ηu) per channel use according to the analog SIC gain (α): Ku = 8,
κij = 3, τ = 48, and 80 dB path loss between the BS and UE.

The results in Figures 5–9 show that the proposed scheme can achieve a larger UL sum-
rate for a given SI channel training length compared to the other training schemes. This
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implies that, to achieve a target UL sum-rate, a smaller training overhead for the SI channel
is required for the proposed scheme compared to the other training schemes. Because the
proposed scheme requires a smaller training overhead to estimate the SI channel for a given
target UL sum-rate, by having a larger data transmission phase, the proposed scheme can
also achieve a larger normalized DL sum-rate than the other training schemes.

Therefore, in Figure 10, the required training overhead and corresponding normalized
DL sum-rate according to the target normalized UL sum-rate are shown for the proposed
scheme and round-robin training. The results for the random training were omitted because
they cannot meet the target normalized UL sum-rate of interest. As shown in Figure 10,
to achieve a given target normalized UL sum-rate, the proposed scheme requires approx-
imately 26.1% to 76.2% smaller training overhead (τ) compared with the round-robin
training. That is, the portion of the data transmission phase (1− τ/T) in each symbol block
can also be increased by the proposed scheme. As a result, for a given target normalized UL
sum-rate, the proposed scheme can achieve a maximum improvement of approximately
13.2% on the normalized DL sum-rate from the round-robin training.
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Figure 10. Required training overhead (τ) and normalized DL sum-rate (ηd) per channel use according
to the target normalized UL sum-rate: Ku = 8, κij = 3, and 80 dB path loss between the BS and UE.

Finally, in Figure 11, the normalized DL and UL sum-rate (ηsum) of the partial training
strategies per channel use according to the number of BS antennas (M) is compared with
that of the full training strategy. Because the full training requires τ = M to estimate
all SI channel vectors, the portion of the data transmission phase, which is used for the
full-duplex data transmission of both DL and UL, in each symbol block decreases as M
increases. As a result, the normalized sum-rate of full training rapidly decreases for a larger
M and approaches zero when M = T. In contrast, in cases of partial training strategies,
the portion of the data transmission phase decreases as τ increases instead of M in full
training. Therefore, although the normalized UL sum-rate of the partial training strategies
increases with τ for a given M and T as shown in Figures 5–9, the normalized DL and UL
sum-rate of the partial training strategies can be decreased for a larger τ. This implies that
the selection of τ for the proposed scheme should be decided based on the target service
application with a given requirement for the UL and DL rates.
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Figure 11. Normalized DL and UL sum-rate (ηsum) per channel use according to the BS antenna (M):
Ku = 8, α = 70 dB, κij = 3, and 80 dB path loss between the BS and UE.

5. Conclusions

In this study, we investigated a novel SI channel training framework for FD massive
MIMO systems with limited training overhead. The proposed scheme enables a partial
training strategy to minimize the expected residual SI power, and it is shown that the
objective function of the optimization problem can be reformulated in terms of the param-
eters of antenna selection and pilot resource allocations. From numerical evaluations, it
was verified that the proposed scheme is an effective SI channel training strategy for FD
massive MIMO systems, particularly when the system suffers from severe SI signals. In
this study, it was assumed that the training overhead and pilot power are already provided
by the system. Thus, the proposed scheme can be extended to jointly optimize the train-
ing overhead and pilot power with antenna selection and pilot resource allocation. This
remains within the scope of future studies.
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Appendix A. Proof of Lemma 1

By defining E ∆
= Hs − Ĥs, the expected residual SI power is calculated as follows:

E
[∥∥∥GHEWxd

∥∥∥2
]
= E

[
tr
(
(xd)

H
WHEHGGHEWxd

)]
= E

[
tr
(

Wxd(xd)
H

WHEHGGHE
)]

= tr
(
E[W]E

[
xd(xd)

H]E[WH
]
E
[
EHGGHE

])
(a)
= tr

(
WWHE

[
EHGGHE

])
, (A1)

where (a) is from E
[
xd(xd)

H
]
= IKd . Let U ∆

= GGH , and the term E
[
EHUE

]
in (A1) can

then be formulated as follows:

E
[
EHUE

]
= E


 εH

1
...
εH

M

U
[

ε1 · · · εM
]

= E

 εH
1 Uε1 · · · εH

1 UεM
...

. . .
...

εH
MUε1 . . . εH

MUεM


(b)
= E

 εH
1 Uε1 · · · 0

...
. . .

...
0 . . . εH

MUεM

, (A2)

where (b) is derived from the fact that the estimation errors for the different channel vectors
are uncorrelated. Here, E

[
εH

i Uεi
]

for 1 ≤ i ≤ M can be calculated as follows:

E
[
εH

i Uεi

]
= E

[
tr
(

εH
i Uεi

)]
= E

[
tr
(

εiε
H
i U
)]

= tr
(
E
[
εiε

H
i

]
U
)

= tr

E

 εi1ε∗i1 · · · εi1ε∗iM
...

. . .
...

εiMε∗i1 · · · εiMε∗iM

U


(c)
= tr

E

 εi1ε∗i1 · · · 0
...

. . .
...

0 · · · εiMε∗iM

U


=

M

∑
j=1

ε2
ijujj, (A3)

where (c) is derived from the fact that the estimation errors for different channel elements
are uncorrelated. By substituting (A2) and (A3) into (A1), we obtain Lemma 1.

Appendix B. Proof of Lemma 2

For i ∈ Str(n), the ith SI channel vector for the nth block is estimated based on
the LS estimation. In this case, the channel estimation error variance ε2

ij is given by the
following [43]:

ε2
ij =

1
ai(n)ρp

, (A4)
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where ai(n) = ∑j m̃ij(n) is the number of channel uses consumed for transmitting the pilot
signal to estimate the ith SI channel vector.

For i ∈ Str(n), the BS skips the estimation of the ith SI channel vector for the nth block.
Instead, the previously estimated ith SI channel vector, that is ĥs

i (n− ni), replaces ĥs
i (n).

Therefore, the error variance is defined as follows:

ε2
ij(n) = E

[(
hs

ij(n)− ĥs
ij(n− ni)

)∗(
hs

ij(n)− ĥs
ij(n− ni)

)]
. (A5)

By substituting the channel characteristics defined in (1) and (2) into (A5), we obtain:

E
[(

hs
ij(n)− ĥs

ij(n− ni)
)∗(

hs
ij(n)− ĥs

ij(n− ni)
)]

=
(1− (cij)

ni )

κij + 1
E
[
q∗ijqij

]

+E

 (hs
ij(n− ni)− ĥs

ij(n− ni) +
√

1
κij+1 (

√
(cij)

ni − 1)h̃s
ij(n− ni))

∗

×(hs
ij(n− ni)− ĥs

ij(n− ni) +
√

1
κij+1 (

√
(cij)

ni − 1)h̃s
ij(n− ni))


=

(1− (cij)
ni )

κij + 1
+E

[
(hs

ij(n− ni)− ĥs
ij(n− ni))

∗
(hs

ij(n− ni)− ĥs
ij(n− ni))

]

+
(
√
(cij)

ni − 1)
2

κij + 1
E
[
(h̃s

ij)
∗
(n− ni)h̃s

ij(n− ni)
]

+

√
1

κij + 1
(
√
(cij)

ni − 1)

 E
[
(hs

ij(n− ni)− ĥs
ij(n− ni))

∗
h̃s

ij(n− ni)
]

+E
[
(h̃s

ij)
∗
(n− ni)(hs

ij(n− ni)− ĥs
ij(n− ni))

] 
(a)
=

(1− (cij)
ni )

κij + 1
+

1
ai(n− ni) · ρp

+
(
√
(cij)

ni − 1)
2

κij + 1

+

√
1

κij + 1
(
√
(cij)

ni − 1)
(
E
[
(δij(n− ni))

∗ h̃s
ij(n− ni)

]
+E

[
(h̃s

ij)
∗
(n− ni)δij(n− ni)

])
(b)
=

(1− (cij)
ni )

κij + 1
+

1
ai(n− ni) · ρp

+
(
√
(cij)

ni − 1)
2

κij + 1

=
2− 2

√
(cij)

ni

κij + 1
+

1
ai(n− ni) · ρp

. (A6)

In (A6), (a) is derived from E
[(

hs
ij(n− ni)− ĥs

ij(n− ni)
)∗(

hs
ij(n− ni)− ĥs

ij(n− ni)
)]

=

1
ai(n−ni)·ρp

and E
[
(h̃s

ij)
∗
(n− ni)h̃s

ij(n− ni)
]
= 1, and (b) is derived from E

[
δij(n− ni)

]
= 0

with δij(n− ni)
∆
= hs

ij(n− ni)− ĥs
ij(n− ni). Consequently, we obtain Lemma 2.
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