
pathogens

Review

Structural and Functional Aspects of Ebola Virus Proteins

Sahil Jain 1,2, Ekaterina Martynova 3, Albert Rizvanov 3, Svetlana Khaiboullina 3 and Manoj Baranwal 1,*

����������
�������

Citation: Jain, S.; Martynova, E.;

Rizvanov, A.; Khaiboullina, S.;

Baranwal, M. Structural and

Functional Aspects of Ebola Virus

Proteins. Pathogens 2021, 10, 1330.

https://doi.org/10.3390/

pathogens10101330

Academic Editor: Melinda Brindley

Received: 18 September 2021

Accepted: 14 October 2021

Published: 15 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India;
drsahiljain88@gmail.com

2 University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
3 Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Tatarstan, Russia;

katerinamarty@yandex.ru (E.M.); albert.rizvanov@kpfu.ru (A.R.); sv.khaiboullina@gmail.com (S.K.)
* Correspondence: manoj.baranwal@thapar.edu

Abstract: Ebola virus (EBOV), member of genus Ebolavirus, family Filoviridae, have a non-segmented,
single-stranded RNA that contains seven genes: (a) nucleoprotein (NP), (b) viral protein 35 (VP35),
(c) VP40, (d) glycoprotein (GP), (e) VP30, (f) VP24, and (g) RNA polymerase (L). All genes encode for
one protein each except GP, producing three pre-proteins due to the transcriptional editing. These
pre-proteins are translated into four products, namely: (a) soluble secreted glycoprotein (sGP), (b)
∆-peptide, (c) full-length transmembrane spike glycoprotein (GP), and (d) soluble small secreted
glycoprotein (ssGP). Further, shed GP is released from infected cells due to cleavage of GP by tumor
necrosis factor α-converting enzyme (TACE). This review presents a detailed discussion on various
functional aspects of all EBOV proteins and their residues. An introduction to ebolaviruses and
their life cycle is also provided for clarity of the available analysis. We believe that this review will
help understand the roles played by different EBOV proteins in the pathogenesis of the disease.
It will help in targeting significant protein residues for therapeutic and multi-protein/peptide
vaccine development.

Keywords: Ebola virus; Ebola virus proteins; Ebola virus protein functions

1. Introduction

The genus Ebolavirus belongs to the family Filoviridae and consists of six identified
species. Schematic taxonomy classification of Filoviridae according to the International
Committee on Taxonomy of Viruses (ICTV) is presented in Figure 1 [1,2]. Recently, a
new genus, Dianlovirus, has been proposed by Yang and co-workers, including the virus
circulating in Chinese bats, named Měnglà virus (MLAV) (Figure 1) [3,4]. According to the
current terminology, the Ebola virus (EBOV) is a Zaire ebolavirus species in the Ebolavirus
genus. Most of the members of the genus Ebolavirus, except Reston virus (RESTV) and
Bombali virus (BOMV), cause severe and frequently fatal hemorrhagic fever in humans
and non-human primates (NHPs). In contrast, BOMV infects bats exclusively while RESTV
is known to be pathogenic for humanized mice, though no human infection has been
detected as yet [1,2,5].

EBOV has a thread-like shape virion, which can be changed to circular or filamentous [6].
The filamentous shape could appear as long, short, branched, unbranched, or forming “6”
and “U” configurations [7]. The viral genome is 19 kb long, linear, non-segmented negative
sense (NNS), single-stranded RNA, encoding seven genes [8,9] (Table 1). Each gene, except
GP, contains a single open reading frame (ORF). In contrast, the GP gene consists of three
overlapping ORFs [10,11]. During the assembly, viral RNA forms a ribonucleoprotein (RNP)
complex with NP, L, VP30, VP35 and VP24 [12], which appears as a helical nucleocapsid
(NC) [13,14]. NC protects the viral RNA from degradation by endonucleases and hosts immune
response [14,15].
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In the last 45 years, ebolavirus outbreaks with varying fatalities have been documented
mainly in Africa, resulting in over 15,200 deaths [16]. The rising frequency of episodes
has led to better disease management measures and vaccine development efforts world-
wide [17–21]. On 19 December 2019, the Ervebo vaccine, based on recombinant vesicular
stomatitis virus (VSV) expressing EBOV GP, received approval from the Food and Drug
Administration (FDA) as the first licensed vaccine against EBOV [22,23]. However, multiple
obstacles, such as high frequency side effects, difficulties to manufacture, high cost, low
immunogenicity, and lack of a global outreach, interfere with efficacy of EBOV outbreak
control [24,25]. This review will provide a comprehensive analysis of all EBOV proteins
functions and enlist the protein residues involved. This review will identify therapeutic
and multi-protein/peptide vaccine development targets by understanding viral proteins’
role in the replication cycle.

Table 1. Ebola virus genes and their products.

Genes Pre-Proteins Proteins Length of Protein
(aa)

Weight of Protein
(kDa) Reference

Nucleoprotein
(NP) NP 739 83.31 [26]

* VP35 VP35 340 37.37 [8,27]
VP40 VP40 326 40 [28]

Glycoprotein (GP)

pre-sGP
Soluble secreted

glycoprotein (sGP) 364 50 [29,30]

∆-peptide 40 10–14 [30]

pre-GP0

Full-length
transmembrane spike

glycoprotein (GP)
676 150 [29,31]

pre-ssGP Soluble small secreted
glycoprotein (ssGP) 298 30 [10,32]

VP30 VP30 288 30 [33]
VP24 VP24 251 24 [34,35]

RNA polymerase
(L) L 2212 253 [36,37]

* VP: Viral protein.

2. Ebola Virus Life Cycle

A schematic depiction of the viral life cycle is presented in Figure 2.

2.1. Attachment and Entry

To enter the host cell, EBOV can use several attachment factors, such as human folate
receptor- α [38], β1 integrins [39], TYRO3 receptor tyrosine kinase family members [40],
T-cell immunoglobulin, and mucin domain 1 (TIM1) [41]. Additionally, various lectins,
such as dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-
SIGN), liver/lymph node-specific ICAM-3 grabbing non-integrin (L- SIGN), and human
macrophage galactose and N-acetylgalactosamine-specific C-type lectin (hMGL) [42–44]
were shown to serve as entry receptors. None of these receptors are indispensable for
EBOV attachment [45–47], which could include explainability of the virus to target various
cell types.

Upon binding to the receptor, EBOV enters the host cells via three mechanisms: (a)
Macropinocytosis [48], (b) Clathrin-mediated endocytosis [49,50], and (c) caveolin-mediated
endocytosis [51]. The internalization mechanism appears related to the shape of the virus.
Currently, macropinocytosis is believed to be the primary uptake mechanism [52–54], while a
combination of different mechanisms is also suggested [55–58].
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EBOV GP consists of two subunits, GP1 and GP2 (discussed later). After uptake, proteoly-
sis of EBOV GP1 appears significant for viral entry [47]. The mechanism of proteolysis varies
depending on the host cell type [59] and can be carried out by cathepsin B, cathepsin L [60,61],
as well as thermolysin [62]. This EBOV GP1 proteolysis is essential for viral interaction with the
obligate host receptor cholesterol transporter Niemann-Pick C1 (NPC1), a step critical for viral
entry [63,64]. This interaction initiates the fusion of viral and host cell membrane, leading to the
release of viral RNP into the cytoplasm (Figure 2) [46].
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Figure 2. A simple diagrammatic representation of various steps in the EBOV life cycle. 1. Attachment—EBOV can interact
with different host cell receptors, and none of the receptors is indispensable for attachment. In the Figure, DC-SIGN receptor
is shown as an example. 2. Uptake—Uptake mainly occurs by micropinocytosis, as shown, though other methods such as
clathrin-mediated endocytosis and caveolin-mediated endocytosis are also contemplated. 3. Entry—GP1 proteolysis inside
endosome enables viral interaction with obligate host receptor cholesterol transporter Niemann-Pick C1 (NPC1; shown in
red color). 4. Release—After membrane fusion, the viral genome is released in the host cell cytoplasm. 5. Transcription and
Replication—Primary transcription occurs in the host cell cytoplasm followed by a translation. Antigenome is used as a
template for synthesis of progeny genomes. 6. Transport—Various proteins are transported near the plasma membrane. 7.
Assembly and Budding—VP40 plays a crucial role in assembly, virus-like particle (VLP) formation and budding.

2.2. Transcription and Replication

NP encapsidates both, filoviral genome, as well as anti-genome [65]. NP associated
RNA acts as a template for viral RNA transcription and replication [66]. Primary tran-
scription and translation take place in the host cell cytoplasm (Figure 2). Accumulation of
NP and other EBOV proteins results in the formation of inclusion bodies, which serve as
additional sites for transcription and replication [67–69]. Replication is initiated at a pro-
moter region of viral RNA that flanks the transcription initiation sequence of the first EBOV
gene [70]. Many host factors, such as DNA topoisomerase I (TOP1) [71], RNA-binding
protein Staufen 1 [72], and RNA splicing and export factors Nuclear RNA export factor
1 (NXF1) and TEDx-box helicase 39B (DDX39B) [73], are essential for transcription and
replication. Importantly, transcription and replication is regulated by the phosphorylated
state of VP30 (discussed later).

Transcriptional editing of the GP gene [29] results in the generation of three transcripts,
pre-sGP, pre-GP, and pre-ssGP (Figure 3), which are translated into pre-sGP pre-GP0 and
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pre-ssGP, respectively [74]. Pre-sGP is cleaved post-translationally by furin into sGP and
∆-peptide [30]. Pre-GP0 forms GP post-translationally, cleaving furin into GP1 and GP2
subunits linked by disulfide bonds (Figure 3) [31,75,76]. Shed GP is released from infected
cells due to cleavage of GP at aa 637 by tumor necrosis factor α-converting enzyme (TACE)
(Figure 3) [77]. GP is heavily glycosylated (discussed later), a phenomenon significant for
EBOV pathogenesis.

2.3. Assembly and Budding

At the late stage of transcription, the RNP complex, GP, and VP40 are transported to
the cell surface via different mechanisms. Transport of RNP employs actin [78,79], while
GP is carried to the cell surface via secretory pathway, where it is glycosylated [80], as
well as cleaved into GP1 and GP2 subunits [76]. VP40 trafficking requires interaction with
IQ motif containing GTPase activating protein 1(IQGAP1) [81], coat protein complex II
(COPII) [82], microtubules [83,84], or actin [85,86].
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3. Ebola Virus Proteins and Their Functions
3.1. Nucleoprotein (NP)

EBOV NP is a multifunctional protein, contributing to NC and RNP formation [12–14].
It was shown that aa 1–600 (Figure 4) are crucial for NC formation and viral replication [87].
Additionally, aa 1–450 are involved in RNA encapsidation/ssRNA binding [12,13,88] and
NP oligomerization [13,87,89] (Table 2). NP oligomerization facilitates NP-ssRNA interac-
tion, which is essential for NC formation [89,90]. A recent study indicated the significance
of aa 111 in NP oligomerization, viral transcription, and replication [91]. Another study
highlighted the significance of NP C-terminal domain (CTD) aa 641–739 (Figure 4) in-
formation of inclusion bodies and infectious virus-like particle (VLP) production [92].
Interestingly, laboratory data indicate that only point mutations in NP and L are required
for virus adaptation to different species [93].

Additionally, various post-translational modifications of NP are documented. It was
shown that NP undergoes O-glycosylation and sialylation, which are significant for NC
formation [87,94] as they facilitate direct NP-VP35 and NP-VP24 interaction [94]. NP-VP35
interaction involves aa 1–450 of NP (Table 2) [88,90]. This interaction regulates viral RNA
synthesis by chaperoning NP in a monomer state, preventing its binding to ssRNA [88,90].
Recently, NP central domain aa 481–500 (Figure 4) were also suggested to be essential
for NP-VP35 interaction [92]. Additionally, NP aa 2–150 and 601–739 were shown to
be involved in NP-VP40 interaction, which is significant for the recruitment of NP into
VLP [95]. Additionally, the PPxPxY motif, especially aa residues 600–617 (Figure 4), is
responsible for NP-VP30 interaction, which is essential for viral RNA transcription [96,97].

Recent studies indicate that NP could interact with host cell proteins to facilitate
virus transcription and replication. It was shown that NP recruits host factor carbamoyl-
phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase in an RNA-
independent manner to facilitate EBOV genome transcription and replication [98]. Addi-
tionally, LxxIxE motif of NP (aa 562–567) interacts with host PP2A-B56 phosphatase, which
dephosphorylates NP-bound-VP30 and enables viral transcription [99]. Another NP motif,
SxPxLE (aa 581–591) (Figure 4), recruits host SET and MYND domain-containing protein
3 (SMYD3), which regulates viral transcription by increasing the NP-VP30 interaction
in a dose-dependent manner [100]. Additionally, Wendt et al. proposed that NP could
recruit host nuclear RNA export factor 1 (NXF1), a component of nuclear mRNA export
pathway, to facilitate viral mRNA transport from inclusion bodies [101]. Another host
protein, HSP70, was reported to maintain NP stability, enabling viral replication, as NP
degraded in its absence [102]. NP also interacts with RUVBL (RuvB-like) 1 and RUVBL2
proteins in an RNA-independent manner forming the R2TP complex required for capsid
assembly [103].

The critical NP residues discussed above are summarized in Table 2. It could be suggested
that NP is essential for viral replication and transcription. Additionally, NP is vital for RNA
encapsidation, NC formation and capsid assembly. NP, in part, completes these functions via in-
teraction with EBOV (except GP) and host proteins. Therefore, a therapeutic or peptide/protein
vaccine candidate targeting critical NP aa and motifs (Table 2, Figure 4) could hinder NC
formation and NP-host protein interactions, abrogating virus transcription and virus assembly.
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Table 2. A summary of various critical functions performed by various EBOV proteins and their amino acids involved.

Protein Amino Acids (aa) Function Reference

NP

1–450, especially 160, 171, 174, 298, 310 and 401 RNA encapsidation/ssRNA binding [12,13,88]
1–450, especially 110, 349, 373, 374, 382 and 383 NP oligomerization; significant for nucleocapsid (NC) formation [13,87,89]

1–450 (especially 244–383, critically 240, 248 and 252) and 481–500 NP-VP35 interaction; significant for viral RNA synthesis regulation [88,90]
2–150 and 601–739 NP-VP40 interaction; significant for recruiting NP into VLP [95]

562–567 NP-PP2A-B56 phosphatase interaction; significant for enabling viral transcription [99]

581–591 Recruiting host SET and MYND domain-containing protein 3 (SMYD3); significant for viral transcription
regulation [100]

600–617 NP-VP30 interaction; significant for viral RNA transcription [96,97]
641–739 Inclusion body and virus-like particle (VLP) formation [92]

VP35

20–48, 225, 248 and 251 VP35-NP interaction; significant for viral RNA synthesis regulation [88,104]
82–118 VP35 homo-oligomerization; significant for VP35-L interaction [105]

221–340, especially 239, 312 and 322 Interaction with protein activator of IFN-induced protein kinase (PACT); significant to prevent activation
of PACT-induced RIG-I ATPase [106]

225, 248, 251, 282, 283, 298 and 300 Enable VP35 to function as a non-enzymatic co-factor for the L protein [104,107]
304–340 Inactivating protein kinase R (PKR); significant for continuous viral protein synthesis [108]

305, 309, 312, 319, 322 and 339 Binding to dsRNA; significant to protect dsRNA from recognition by host immune receptors [107,109,110]

VP40

52–65, 95, 108–117 and 160 VP40 dimerization; significant for VP40 cellular trafficking [111,112]
125 and 134 Octameric VP40 and ssRNA binding; significant for negative transcription regulation [112,113]

127, 129, 130 and 212–214 Significant for VP40 localization to the plasma membrane, oligomerization and budding [114,115]
221, 224, 225, 270, 274 and 275 VP40 interaction with plasma membrane [112]

241 and 307 VP40 filaments formation; significant for assembly and budding [112]
292–295 Significant for VLP production and controlled viral transcription inhibition [116]
303–307 VP40-Sec24C interaction; significant for internal trafficking of VP40 to plasma membrane [82]

GP

43, 52, 54, 56, 57, 60, 61, 63, 64, 66, 79, 82, 88, 95, 114, 115, 140, 143,
146, 147, 153, 154, 159, 170 and 181 Significant for viral entry [117–121]

54–201 Receptor-binding site [122]
55, 57, 63 and 64 Involved in membrane fusion-mediated conformational changes [123]

159, 160, 162, 170 and 214–270 GP stability [119,120]
190–213, especially aa 190, 193 and 194 Cathepsin cleavage site; significant for viral interaction with the obligate host receptor [123,124]

529, 531, 533, 534, 535 and 537 Hydrophobic residues which insert into the target cell membrane [123]
563 and 618 2 N-linked glycosylation sites; significant for GP processing, oligomerization and functioning [75,125]

585–609 Immunosuppressive motif; cause lymphocyte apoptosis and cytokine dysregulation. [29,31,126]

VP30

27–40 VP30-ssRNA interaction [127]
68–95 Zinc-binding site; significant for transcription regulation [128]

140–266 VP30-NP interaction; significant for viral transcription [96,97,129]
179, 180 and 183 Significant for transcription initiation [129]

VP24

96–98 and 106–121 VP24-unphosphorylated STAT1 interaction [130,131]
115, 121, 124, 125, 128–131, 135, 137, 138, 140, 184–186, 201, 203–205

and 207 VP24-KPNA5 interaction [131]

142–147 and 26–50, especially 36–45 VP24-KPNA1 interaction [132]
169–173, critically 170 and 171 VP24-NP interaction; significant for NC formation and viral replication [133]
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3.2. Viral Protein 35 (VP35)

Tetrameric VP35 is functionally analogous to other NNS RNA viruses [8,27,134].
VP35 is crucial for viral transcription and replication [134] and possesses NTPase and
helicase activities, suggesting that it could affect transcription via NTP hydrolysis and
NTP-dependent unwinding of RNA helices, respectively [135]. VP35 also contributes to
genome packaging [136] and nucleocapsid assembly [13,14] as it binds the monomeric state
of NP to prevent premature and non-specific encapsidation of viral RNA.

VP35 is crucial for host immune response evasion, where host anti-viral defense is inhibited
in multiple ways. It can suppress host interferon (IFN) response in both dsRNA-binding-
dependent and dsRNA-binding-independent manners. In this respect, the VP35 CTD region, in
particular aa 221–340, were shown to function as IFN inhibitory domain (IID) [109] or RNA-
binding domain (RBD) [110] (Figure 5). It was demonstrated that specific residues within
IID (Table 2, Figure 5) are required to bind VP35 to viral dsRNA [107,110]. This interaction is
crucial for the IFN inhibiting function of VP35, as it blocks viral dsRNA recognition by retinoic-
acid-inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA-5), the
intracellular pattern recognition receptors [109].

It was shown that VP35 could also inhibit IFN regulatory factor 3 (IRF-3) dimerization,
phosphorylation and nuclear localization [137]. VP35 can do it by impairing the ability
of TANK-binding kinase 1 (TBK-1) and IκB kinase epsilon (IKKε) kinases to interact with
IRF-3 [138]. VP35 can also suppress IFN transcription by increasing SUMOylation of IRF-7
via interaction with protein inhibitors of activated STATs 1 (PIAS1) [139]. IID of VP35,
especially aa 239, 312, and 322, also blocks the protein activator of IFN-induced protein
kinase (PACT), thus, preventing activation of PACT-induced RIG-I ATPase [106]. Further,
VP35 aa 304–340 (Figure 5) can inactivate protein kinase R (PKR; an antiviral protein),
which enables continuous viral protein synthesis [108].

Interaction of VP35 with other viral proteins is significant for multiple purposes.
VP35-L interaction requires VP35 homo-oligomerization, completed by N-terminal aa
82–118 (Figure 5) [105]. VP35 could also function as a non-enzymatic co-factor for the L
protein [107], where several IID constituent residues are critical (Table 2, Figure 5) [104].
It appears that the co-factor function is independent of IID binding to dsRNA [107], but
the latter can still modulate VP35-NP interaction [104]. VP35 residues 20–48, 225, 248,
and 251 (Table 2) are significant for VP35-NP complex formation and regulate viral RNA
synthesis [88,104]. A recent study reported the role of VP35 phosphorylation, especially at
aa 210 (Figure 5), in the regulation of VP35-NP interaction, as well as viral transcription
and replication [140].

To conclude, VP35 plays a chief role in host immune evasion by blocking viral dsRNA
recognition by host immune receptors, inhibiting IRF-3 and TBK-1/ IKKε complex forma-
tion, increasing IRF-7 SUMOylation, preventing RIG-I ATPase activation and inactivating
PKR (Table 2, Figure 5). Moreover, VP35 is suggested to play a role in NC formation, viral
transcription, replication, and genome packaging. Therefore, targeting VP35 might enable
the host to mount a more robust immune response and disturb the viral structural integrity.
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3.3. VP40

VP40, the most abundantly expressed protein [28], is essential for viral assembly and
budding [141]. VP40 aa 292–295 (Table 2) were reported as critical for VLP production
and controlled inhibition of viral transcription, as a mutation in 292–295 aa sequence
altered these functions [116]. A recent study suggested that aa 326 (Figure 6) is involved
in SUMO–VP40 interaction which is significant for VP40 stability [142]. Additionally,
VP40 contains two late budding domains (L-domains) located at aa 7–10 (PTAP) and aa
10–13 (PPEY) (Figure 6) [143], interacting with host proteins. PTAP makes a complex with
tumor susceptibility gene 101 protein (tsg101) [144], while PPEY binds to ubiquitin ligase,
neuronal precursor cell-expressed developmentally downregulated 4 (Nedd4) [145], as
well as to ITCH E3 ubiquitin ligase [146]. The PTAPtsg101 interaction helps recruit VP40
into lipid raft domains on the plasma membrane [143], while the PPEY–Nedd4 complex
covalently ubiquitinates viral matrix proteins, which is required for virus budding [145].
These data strongly suggest that L-domains are essential for budding [147] but limited in
viral replication [148].

VP40 is classified as a transformer protein [149,150], as it could obtain multiple con-
formational states: dimers, hexamers, filaments and octamers [151]. VP40 dimerizes in
solution with the help of aa 95 and 160 [111], as well as NTD aa 52–65 and 108–117 [112]
(Table 2, Figure 6). Dimerized confirmation is essential for proper trafficking of VP40,
where aa 303–307 (Figure 6) form VP40-Sec24C complex facilitating intracellular transport
to the plasma membrane [82]. Dimers can also assemble into filaments via CTD interactions
between two dimers, where aa 241 and 307 (Table 2) are shown to be critical. This state is
essential for proper matrix assembly and budding [112].

NTD aa 127, 129 and 130 [114] and aa 212–214 [115] (Figure 6) are required for proper
VP40 localization to the plasma membrane, oligomerization and budding. The interaction
with the plasma membrane is mediated by various VP40 CTD residues (Table 2, Figure 6) [112].
Additionally, aa 213, 295, and 298 facilitate deep penetration of VP40 into the plasma mem-
brane [152]. The VP40 dimers at the plasma membrane are then oligomerized into linear VP40
hexamers [112,153]. Both deep penetration and hexamer formation are critical to viral assembly
and budding [112,152]. A recent study highlighted the significance of aa 191 for effective VP40
localization to the plasma membrane, oligomerization and VLP formation [154].

In addition to dimers, filaments, and hexamers, VP40 can form an octameric ring
configuration where NTD plays the leading role [112]. This configuration and aa 125 and
134 (Figure 6) were essential for VP40-ssRNA binding [112,113]. The latter is implicated in
the negative regulation of transcription [111].

These data indicate that the main function of VP40 is in viral assembly and budding
(Table 2, Figure 6). Therefore, targeting critical VP40 aa might help suppress viral spread
after infection by hindering the budding process. Additionally, it is suggested to play a
role in viral transcription inhibition and interaction with the host cell plasma membrane.
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3.4. Glycoprotein
3.4.1. GP

GP is a type I transmembrane fusogenic protein, which is translated only 20% of time by
the GP gene as it can be cytotoxic to certain cell types [29,31]. As the only EBOV protein present
on the viral surface, GP is responsible for pathogenic differences of ebolaviruses [123]. In 2010,
it was reported that GP could cause “steric occlusion”, a phenomenon which interferes with
immune recognition of HLA class I and II molecules [155]. In other studies, it was shown that
aa 159, 160, 162, 170 [120], and 214–270 [119] (Table 2) provide protein stability, while aa 55,
57, 63, and 64 are involved in membrane fusion-mediated conformational changes [123]. GP
has a cathepsin cleavage site at aa 190–213 (Table 2, Figure 7) [123,124], which is proteolyzed
inside the endosome, a step critical for viral infection [60,61]. GP is post-translationally cleaved
by furin at aa residue 501 (Figure 7), resulting in GP1 and GP2 subunits linked by disulfide
bonds [31,75,76]. These heterodimers form trimeric viral peplomer [31].

GP1 mediates attachment to host cells using the receptor-binding site (RBS) located
at aa 54–201 (Figure 7) [122]. Studies have identified multiple aa (Table 2) as critical for
viral entry [117–121,156]. Among these, aa 64, 95 [121] and 114, 115, 140 [124] are involved
in direct contact with host cell receptors while aa 43, 54, 56, 60, 61 and 79 contribute to
post-binding steps of viral entry [121]. A Mucin-like domain (MLD) was identified in aa
313–464 (Figure 7) [120], which does not directly impact viral entry [32] but can stimulate
host dendritic cells by activation of mitogen-activated protein kinase (MAPK) and nuclear
factor kappa B (NF-κB) pathways [157].

GP2 contributes to the fusion of viral and host cell membranes [158]. An internal
fusion loop at aa 511–556 position (Figure 7) [120] consists of hydrophobic residues (Table 2)
inserted into the target cell membrane [123]. GP2 also has a transmembrane anchor domain
(TMD; aa 650–672) (Figure 7) [31] which helps to tether GP onto the viral surface [74]. Inter-
estingly, GP2 also has the anti-tetherin activity, promoting VP40-mediated viral budding by
the host cell and disabling the immune response stimulation via NF-κB signaling [159,160].
An immunosuppressive motif (aa 585–609; Figure 7) located near the C-terminal [29,31]
can cause lymphocyte apoptosis, as well as cytokine dysregulation during EVD [126].

Post-translational N-linked glycosylation of GP results in a thick coating of oligosac-
charides, protecting viral GP against host humoral immune response [123] and promoting
protein expression and function [161]. In total, 15 N-linked and 80 O-linked glycosylation
sites have been identified in GP1 [32,161]. GP2 has 2 N-linked glycosylation sites (aa 563
and 618; Table 2) [75] critical for GP processing, oligomerization and confirmation [125].
Once a threshold amount of viral GP is present on the host cell plasma membrane, the
highly glycosylated MLD masks specific cell-surface proteins, such as major histocompati-
bility complex (MHC) class I, αVβ3, etc., in a cell-dependent manner [155,162–164]. MHC
class I masking protects the virus from host CD8+ T cell recognition [155]. Additionally,
MLD masks self GP epitopes, shielding GP from the host immune recognition [155,162].

3.4.2. Soluble Secreted Glycoprotein (sGP)

sGP is the primary GP gene product, sharing 295 N-terminal aa with the full-length
transmembrane spike glycoprotein (GP) [31]. Six N-glycosylation sites (aa 40, 204, 228, 238,
257, and 268) [165] and one C-mannosylation site (aa 288) [166] have been identified in
sGP. It is a non-structural protein (NSP) [4], though a structural role was contemplated in
a study, wherein sGP substituted for GP1, producing a functional sGP-GP2 protein [167].
A potential contribution of sGP in viral dissemination was suggested by Bradley et al.,
demonstrating inhibition of pro-inflammatory cytokines production from non-infected
macrophages and impairing chemotaxis of activated macrophages [168]. sGP also has an
anti-inflammatory capacity to restore the endothelial cell barrier function dysregulated by
GP [165,169]. It was also shown that sGP contributes to host immune evasion by acting
as a decoy for anti-GP antibodies [170]. In a recent study, detection of serum sGP was
suggested as a biomarker for Ebola virus disease (EVD) diagnosis as large quantities of
this protein are found in blood at the early stages of the disease [171].
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3.4.3. ∆-Peptide

∆-peptide is a non-structural, secretory product of the GP gene, composed of 40 aa [30].
It is a O-glycosylated, sialylated peptide [30] rich in cationic and aromatic residues [172]. It
can inhibit viral entry into filovirus-permissive cells, preventing superinfection [172,173].
In 2015, Gallaher et al. reported the role of ∆-peptide as a viroporin, based on presence of a
lytic sequence motif [172,174]. In another study, ∆-peptide was shown to indiscriminately
permeabilized mammalian cells in culture, supporting its role as a viroporin [175].

3.4.4. Shed GP

Like sGP, shed GP is believed to function as “antibody sinks” [32] as they compete with
GP for antibody binding [176]. It is also believed that shed GP helps to reduce the cellular
cytotoxicity caused by GP [177]. Additionally, shed GP activates non-infected dendritic cells
and macrophages [177], leading to massive cytokine production and increased vascular
permeability [177].

3.4.5. Soluble Small Secreted Glycoprotein (ssGP)

ssGP is an NSP composed of 298 aa [32] (Table 1), with 295 N-terminal aa identical to
sGP and GP [10]. It is secreted as a N-glycosylated homodimer formed by intermolecular
disulfide bond at aa 53 [10]. Function of ssGP still remains unknown [171].

To summarize, GP, as the only protein on the viral surface, is responsible for viral
entry, i.e., attachment to host cells and fusion of viral and host cell membrane. GP–NPC1
interaction is an indispensable step for viral infection, and, therefore, targeting GP shall
hinder the viral infection. Additionally, GP assists in viral budding, while GP and shed
GP contribute to the cytokine storm. Further, GP, sGP, and shed GP enable host immune
evasion, while sGP contributes to viral spread and may be used as a biomarker for early
diagnosis of EVD. Therefore, targeting various GP gene products might be beneficial in the
development of an effective vaccine.
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Figure 7. A schematic representation of EBOV glycoprotein (GP). GP aa 54–201 form the receptor-binding domain (RBD) or receptor binding site (RBS) responsible for attachment to host
cell-surface receptors. Cathepsin cleavage site is present in aa 190–213, and proteolysis via cathepsins is significant for viral infectivity. GP is cleaved at aa 501 by furin into GP1 and GP2
subunits. The immunosuppressive motif (aa 585–609) plays a role in bystander lymphocyte apoptosis and cytokine dysregulation. The transmembrane anchor domain (TMD; aa 650–672)
helps tether GP onto the viral surface.
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3.5. VP30

VP30 is a structural, hexameric phosphoprotein composed of three dimers [33,129].
Dimers are formed by aa 142–264, while aa 94–112 (Figure 8) are required to produce
hexameric form [129,178]. VP30 aa 27–40 (Figure 8) form a disordered, non-hydrophobic,
arginine-rich region interacting with viral RNA [127]. VP30 is indispensable for RNA
transcription initiation [128]. Interestingly, mutations at aa 179, 180, and 183 render VP30
incapable of transcription initiation, suggesting their importance in this process [129].

Factors impacting the role of VP30 in transcription initiation are RNA secondary
structure formation, VP30–NP interaction, zinc-binding and VP30 phosphorylation. The
NP gene transcription starts signal forms a stem-loop like secondary structure, essential for
VP30-dependent transcription initiation [179]. The VP30 aa 140–266 (Table 2, Figure 8) are
responsible for VP30–NP complex formation [96,97,129], and a threshold level of interaction
is required for optimal viral transcription, below and beyond which transcriptional activity
is flawed [96]. Further, VP30 role in regulating viral RNA transcription requires a zinc-
binding site located at aa 68–95 (Figure 8) [128].

VP30 phosphorylation mainly occurs at serine (aa 29–31, 42, 44, and 46) and threonine
(aa 52, 143, and 146) residues (Figure 8) [33,180]. Low or un-phosphorylated VP30 seems
responsible for transcription initiation of all seven genes in the EBOV genome [181,182].
Whether low or un-phosphorylated VP30 is required as a transcription factor depends
on the virus replication stage. Additionally, if low phosphorylated, a constant phos-
phorylation/dephosphorylation within the same VP30 molecule is required for effective
transcription initiation [183]. Amongst the phosphorylation sites, aa 29 seems to be the
most critical as it can solely execute all VP30 transcription functions [183]. Complete VP30
phosphorylation at all serine residues between aa 29–46 abrogates transcription initiation
function [184].

The impact of phosphorylation on VP30-NP interaction was extensively debated
over the past two decades [33,181,182]. The latest consensus states that phosphorylation
leads to a more robust interaction with NP which allows VP30 to be associated with NC
and enter newly synthesized virus particles, wherein the un-phosphorylated VP30 can
initiate transcription [182,183]. Overall, it is accepted that the phosphorylation state of
VP30 is dynamic and modulated by the virus to achieve an intricate balance between
transcription and replication processes, which happen simultaneously during the EBOV
life cycle [181,184].

The above discussion suggests that VP30 chiefly plays a role in viral transcription
initiation via its zinc-binding, NP interaction and phosphorylation characteristics (Table 2,
Figure 8). Abrogating this function shall hinder the production of multiple RNA copies.
Therefore, VP30 is a plausible candidate for therapeutic and vaccine development studies
targeting primary transcription in the host cell cytoplasm.
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interaction via VP30 RNA binding site (aa 27–40). aa 143 and 146 are involved in three roles: (a) phosphorylation sites, (b) dimerization (aa 142–264), and (c) VP30–NP interaction (aa
140–266).
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3.6. VP24

VP24 makes up approximately 7.5% of total EBOV proteins and is one of the five
proteins involved in EBOV NC formation. VP24 aa 169–173 (Table 2, Figure 9) interact
with NP, which is indispensable for NC formation and completion of the EBOV replication
cycle [133]. Additionally, VP24, together with VP35 and NP, is responsible for packaging
NC into virions as it induces favorable conformational changes in the NC. This structural
change also signals the end of replication and the beginning of the egress phase [133,185].

Like VP35, VP24 inhibits host immune response using several mechanisms [186]. VP24
inhibits IFN responses by blocking p38 phosphorylation and hampering the p38 MAPK
pathway [187]. It can also block activation of NF-κB, which has multiple IFN responsive
genes targeted downstream [188]. IFN inducible pathways could also be inhibited by
arresting the nuclear translocation of tyrosine-phosphorylated STAT1 via VP24 interaction
with NPI-1 subfamily members of karyopherin-α (KPNA, also called importin-α) [132].
Additionally, the role of aa 96–98 and 106–121 (Figure 9) indirect interaction of VP24 with
un-phosphorylated STAT1 was reported [130,131]. VP24 aa 142–147 and 26–50 (Table 2)
were reported as necessary to facilitate binding to KPNA1 [130,132]. Multiple other aa
(Table 2, Figure 9) were also shown responsible for VP24–KPNA5 interaction [131]. Further,
it was reported that oxidative stress effects the VP24 modulation of the host response,
facilitating recovery of infected cells from stress [189].

It appears that the central role of VP24 is in host immune evasion, carried out by
inhibiting p38 MAPK and NF-κB pathway activation. VP24 also seems critical to viral
replication and is involved in budding viral initiation. Therefore, targeting these residues
(Table 2) during vaccine development may hinder viral replication.

3.7. L Protein

L, a part of the RNP complex [36], is the largest, multi-subunit and multifunctional
EBOV protein composed of 2212 aa [36] (Table 1). There are five domains in L protein
(Figure 10), namely, (a) RNA-dependent RNA polymerase (RdRp) domain with transcrip-
tion/replication and polyadenylation activity, (b) capping domain with polyribonucleotidyl
transferase (PRNTase) activity, (c) connector domain (CD) with an organizational role, (d) a
methyltransferase domain with MTase activity, and e) a small C-terminal domain (Table 3,
Figure 10) [190]. In addition, EBOV L residues 1–450 contain a homo-oligomerization
domain (Figure 10) [105]. L protein aa 1–380 (Figure 10) are involved in L-VP35 in-
teraction, which happens in a non-competitive manner and does not require L homo-
oligomerization [105]. The L-VP35 binding enables re-localization of L into viral inclusion
bodies. In addition to VP35, The RESTV L protein was shown to interact with VP30 [191].

L protein is essential for virus replication, yet little is known about its other func-
tions, mainly due to its large size and lack of specific antibodies [192,193]. The current
understanding of this protein’s function comes from studies using vesicular stomatitis
virus (VSV), as L protein is highly conserved and homologous amongst Mononegavirales
members [65,190,194,195]. Therefore, the L domains functions presented here are based on
reports made using VSV L and not always the EBOV.
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cycle and egress phase. Tyrosine-phosphorylated STAT1, hnRNP C1/C2 and VP24 interact with KPNA at the same position; therefore, upon VP24–KPNA interaction, transport of
tyrosine-phosphorylated STAT1 to the nucleus is stopped as well as translocation of hnRNP C1/C2 from the cytoplasm to the nucleus is partially prevented.
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Figure 10. A schematic representation of EBOV L protein. It has five domains, namely, (a) RdRp domain responsible for polyadenylation and transcription/replication (via GDNQ motif),
(b) capping domain with PRNTase activity which caps mRNA co-transcriptionally via transfer of a GDP molecule, (c) connector domain, (d) methyltransferase domain involved in
methylation of capped mRNA, as well as cap-independent methylation of internal mRNA adenosine, and (e) C-terminal domain responsible for the regulation of methylation activities of
methyltransferase domain. L aa 1–380 are involved in L-VP35 interaction, enabling L’s re-localization into viral inclusion bodies.
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Table 3. Various domains of L protein and their functions.

Domain Function

RNA-dependent RNA polymerase (RdRp) domain Transcription/replication and polyadenylation activity
Capping domain Polyribonucleotidyl transferase (PRNTase) activity

Connector domain (CD) Organizational role
Methyltransferase domain MTase activity

C-terminal domain RNA methylation regulation

A GDNQ motif has been reported as a catalytic center in several negative sense RNA
polymerases. In 2017, The EBOV RdRp domain was also reported to consist of the GDNQ
motif within aa residues 741–744 (Figure 10), which is crucial for viral replication and tran-
scription [193]. The RdRp domain is involved in the polyadenylation of L mRNA [196]. The
capping of viral transcripts occurs co-transcriptionally via the transfer of a GDP molecule
by PRNTase to 5′ phosphate of mRNA [197]. Then, the first nucleotide and guanosine of the
capped mRNA become methylated at 2′-O and N-7 positions, respectively, by MTase activ-
ity [198]. Additionally, a cap-independent, internal adenosine 2′-O methylation activity of
methyltransferase domain in SUDV L protein (aa 1693–2036) was demonstrated [194,199].
The small CTD of SUDV L protein located at aa 2037–2210 plays a critical role in RNA
recruitment for methylation [194]. It also regulates cap methylation (aa 2043, 2067, 2068,
2118, 2189, and 2193) and internal methylation (aa 2043, 2067, 2068, 2112, 2113, 2118, 2189,
and 2193) activities of methyltransferase domain [194].

4. Conclusions and Future Perspectives

It is imperative to understand proteins functions with respect to the EBOV life cycle
and pathogenesis to identify practical and specific protein therapeutic targets. This review
summarizes data on aa residues of EBOV proteins involved in essential functions, such as
viral entry, host immune evasion, replication, transcription, and budding. A cross-reactive,
multi-protein/peptide vaccine candidate developed by utilizing the information presented
in this review could help curb various characteristic EVD symptoms and affect different
stages of the EVD life cycle.

Multiple proteins and aa sites were highlighted in our review, which have a high po-
tential for vaccine development. For instance, NC formation and viral replication could be
hindered by collectively targeting NP aa 110–400 and VP24 aa 169–173. Replication and its
regulation could also be affected by targeting VP35 aa 210 and L aa 741–744. Viral transcrip-
tion could be affected by targeting NP aa 562–567, NP aa 600–617, and VP30 aa 140–266,
while transcription regulation can be blocked by collectively targeting NP aa 240–383, VP35
aa 20–48, and VP30 aa 29–183. Moreover, targeting NP aa stretch 550–600 might disable
multiple NP-host-protein interactions significant for transcription and regulation. Viral
ingress may be blocked by targeting GP aa 54–213 as it affects GP stability, interaction with
obligate host receptor (NPC1) and membrane-fusion mediated conformational changes. A
critical step for viral spread is host immune evasion, accomplished with the help of VP35,
sGP, shed GP and VP24 proteins. This could be prevented by targeting specific regions
of these proteins, such as VP30 aa 221–340 and VP24 aa 120–190. Moreover, as aa 1–295
are identical in GP, sGP, and ssGP; therefore, therapeutic or vaccine candidates against
GP aa 54–213 could prove effective against sGP (primary GP gene product), as well as
ssGP. This will be effective in preventing viral entry, as well as in curbing host immune
evasion. Three proteins contribute to viral egress: VP40, GP, and VP24. GP2 displays
anti-tetherin activity, while VP24 causes favorable structural changes in NC to signal viral
egress initiation. As VP40 is primarily involved in assembly and budding, targeting aa
212–275, a region significant for localization to and interaction with the plasma membrane
(Table 2), may hinder the budding process.
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Multiple studies have analyzed EBOV proteins viz., NP [20,200–202], VP35 [203,204],
VP40 [203], GP [21,205–213], and VP24 [214,215] potential as therapeutics and vaccine
candidates. In December 2019, Ervebo, a recombinant vesicular stomatitis virus (VSV)
vector-based vaccine, was approved by FDA as the first vaccine against the Ebola virus [216].
Currently, nearly 14 potent Ebola vaccine candidates are in various phases of clinical tri-
als [217]. Still, the presence of non-immunogenic, unwanted components in traditional
vaccines, allergic, toxic, or autoimmune reactions, the requirement for BSL-4 facility and
probability of a reversal of attenuated virus state [218–220] impede EBOV vaccine develop-
ment efforts. Clearly, GP has been the major focus for vaccine development, while less focus
was placed on other viral proteins. Therefore, further studies will facilitate our understand-
ing of the EBOV proteins potentials to protect from infection. Key motifs of these proteins
might be analyzed to find potential epitopes. These identified epitopes might be estimated
for the generation of T and B cell immune response and their binding affinity with human
leukocyte antigen (HLA). Further, immunodominant epitopes belonging to different EBOV
proteins may be linked to form one multi-peptide vaccine construct. The immunogenic
potential of the construct might be validated in different animal models, before considering
it for clinical trials. Targeting the key domains of EBOV proteins outlined in this review or
their combination could be an approach for development of future EBOV vaccine which is
globally effective.
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