
brain
sciences

Article

Tablet Use Affects Preschoolers’ Executive Function:
fNIRS Evidence from the Dimensional Change Card Sort Task

Hui Li 1,* , Dandan Wu 1, Jinfeng Yang 2, Jiutong Luo 3, Sha Xie 4 and Chunqi Chang 2,*

����������
�������

Citation: Li, H.; Wu, D.; Yang, J.; Luo,

J.; Xie, S.; Chang, C. Tablet Use Affects

Preschoolers’ Executive Function:

fNIRS Evidence from the Dimensional

Change Card Sort Task. Brain Sci.

2021, 11, 567. https://doi.org/

10.3390/brainsci11050567

Academic Editor: Kurtulus Izzetoglu

Received: 25 March 2021

Accepted: 27 April 2021

Published: 29 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Education, Macquarie University, Sydney, NSW 2109, Australia; dandan.wu4@students.mq.edu.au
2 School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518061, China;

yangjinfeng2017@email.szu.edu.cn
3 Center for Educational Science and Technology, Beijing Normal University at Zhuhai, Zhuhai 519085, China;

jtluo@bnu.edu.cn
4 Normal College, The GBA Institute of Educational Research, and The Institute of KEEP

Collaborative Innovation, Shenzhen University, Shenzhen 518061, China; xiesha@szu.edu.cn
* Correspondence: philip.li@mq.edu.au (H.L.); cqchang@szu.edu.cn (C.C.)

Abstract: This study aims to examine the impact of heavy use of tablets on preschoolers’ executive
function during the Dimensional Change Card Sort (DCCS) task using the functional near-infrared
spectroscopy (fNIRS). Altogether, 38 Chinese preschoolers (Mage = 5.0 years, SD = 0.69 years, 17 girls)
completed the tasks before the COVID-19 lockdown. Eight children never used tablets, while 16 chil-
dren were diagnosed as the ‘heavy-user’. The results indicated that: (1) the ‘non-user’ outperformed
the ‘heavy-user’ with a significantly higher correct rate in the DCCS task; (2) the two groups differed
significantly in the activation of the prefrontal cortex (BA 9): the ‘non-user’ pattern is normal and
healthy, whereas the ‘heavy-user’ pattern is not normal and needs further exploration.

Keywords: pad use; executive function; fNIRS evidence; Dimensional Change Card Sort (DCCS)
task; preschoolers

1. Introduction

Rapidly advancing information and communication technologies (ICT) have nur-
tured a brand-new generation of ‘digital children’ in this ‘digital age’. Infants and young
children are exposed to more technologies than before as they have more devices and
apps readily available for their use, resulting in increased screen time and tablet use [1].
This phenomenon has worried public health organizations, parents, and scholars who
are seriously concerned about the benefits and damages of tablet use in the early years
(ages 0–5) [2]. So far, many studies have examined the impact of tablet use on young
children’s brain development, but the results are still mixed [3]. These inconclusive results
have created difficulties in making policies for early ICT use and education and have
caused heated debates between the advocates and dissenters of the ‘digital child’ and tablet
use [4]. Therefore, there is an urgent need for rigorous neuroimaging evidence to settle the
debate. To fill this research gap, this article explored the impact of heavy use of tablets on
young children’s executive function in the prefrontal cortex using functional near-infrared
spectroscopy (fNIRS).

1.1. Tablet Use and Early Childhood Development

Touchscreen tablet computers, hereafter referred to as ‘tablets’, are lightweight, mobile
devices with a flat, panel screen used for both display and input [5,6]. Tablets feature
multimedia playback, digital photography, multitouch interface, long battery life, instant
start-up, and wireless Internet connectivity, thus have been easily and frequently used by
young children as tools for entertainment and education [7]. A recent study found that
tablets were especially popular for viewing videos, learning, and gaming in young children,
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and the number of users increased with age [8]. For instance, according to Lawrence [9],
about 80% of top-selling paid educational apps in Apple’s App Store were marketed for
young children’s consumption in 2017. Recently, the COVID-19 lockdown in 2020 has
caused a sudden increase in tablet use among preschoolers, who had to do online learning
at home [7].

Tablet use in the early years might have posited both benefits and risks in early child-
hood development, thus deserves empirical studies. Rocha and Nunes reviewed 11 studies
and found that the damages were superior to the benefits, especially when screen time
increased [2]. They also underscored the difficulties in finding studies directed to the
desired age and type of electronic device, which is a potential cause of bias. Small et al.
conducted another systematic review and reported harmful effects such as heightened
attention-deficit symptoms, impaired emotional and social intelligence, technology addic-
tion, social isolation, impaired brain development, and disrupted sleep [3]. Meanwhile,
they also found that various apps, videogames, and other online tools might benefit brain
health in adulthood. However, no neuroimaging studies have explored tablet use’s impact
on young children’s executive function, as indicated by the following review.

1.2. Neuroimaging Studies on Early Executive Function

Executive function (EF) refers to the brain’s specific cognitive, transactional, self-
regulating functions that can control and direct one’s attention amid distractions, regulate
emotional reactivity, inhibit behavior from responding to environmental demands and
fulfill goals [10,11]. Miyake et al. identified three core components of EF: inhibition, working
memory, and cognitive shifting [12]. The Dimensional Card Change Sort (DCCS) task
requires inhibition, working memory, and cognitive shifting to complete the card sorting,
thus providing insights into the wide spectrum of EF processes and the associated neural
changes in early childhood [13].

However, young children might have difficulties in taking functional magnetic reso-
nance imaging (fMRI) because they cannot stay still in the tube for a long time. Therefore,
very few neuroimaging studies had explored preschoolers’ EF during the DCCS task un-
til Moriguchi and Hiraki conducted the fNIRS study for the first time. This success has
inspired more fNIRS studies to examine EF using the DCCS task [14]. The results jointly
indicated that the prefrontal area was substantially involved in the cognitive shifting [15].
Recently, Xie et al. found that the children in the DCCS pass group (with cognitive shifting)
significantly activated the prefrontal cortex than those in the perseverate group who did not
complete the cognitive shifting, and the activation in the prefrontal region was significantly
correlated with children’s executive function [10]. Very recently, Li et al. proposed and
confirmed the ‘V-shape curve’ theory by identifying a significant decrease–increase cycle
in BA 9, the neural correlate of cognitive shifting [11]. In conclusion, the existing fNIRS
studies have jointly confirmed the prefrontal cortex (e.g., BA 9), which is also the region of
interest in this study, was the neural correlate of cognitive shifting during the DCCS tasks.

EF develops rapidly during the preschool years and is sensitive to environmental
influences and learning experiences [16]. Since the early 2010s, tablet use has become
increasingly prevalent in young children’s daily life and has prompted substantial public
concerns about its impact on children’s brain development [17,18]. Most of the existing
studies have reported survey and behavioral evidence [2,3], yet no neuroimaging evidence
has been reported. This study was thus dedicated to filling this research gap by conduct-
ing the DCCS task with fNIRS to understand the impact of heavy use of tablets on EF.
Accordingly, the following research questions guided this study.

1. Will the heavy users perform significantly differently from the non-users in the
DCCS task?

2. What are the significant differences in prefrontal activation as evidenced by fNIRS
between the heavy-users and non-users in the DCCS task?
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2. Materials and Methods
2.1. Participants

Originally, 64 right-handed Chinese preschoolers and their parents consented to
participate in this study. All the parents of participating children provided written consent
and were informed verbally of the study’s purpose and the fNIRS experiments’ safety.
The University Ethics Committee approved the experiments. Because of the unexpected
COVID-19 lockdown, only 42 of them completed this study. Four failed to complete the
experiments, thus were excluded from this study, resulting in a final sample of 38 children
(ages 4 to 6.3 years, Mage = 5.0 years, SD = 0.69 years, 17 girls, 21 boys). A post hoc power
analysis was conducted on G*Power 3.1 (https://www.psychologie.hhu.de) to test the
difference between two independent group means, using a two-tailed test, a medium effect
size (d = 0.50), and an alpha of 0.05. The result showed that the t-test between heavy-users
and non-users groups could achieve a power of 0.32. This limited statistical power was
caused by the modest sample size in the present study (Ntotal = 38), thus might have limited
the significance of some of the statistical comparisons conducted.

2.2. Measures
2.2.1. Home Learning Environment and Practice Survey (HLEP)

This survey was used to collect information about young children’s formal and infor-
mal learning activities at home. HLEP was developed from the Home Literacy Environment
Index (HLEI) [19] and modified for early learning in the Chinese contexts [20]. HLEP had
29 questions about family background, household income, parental education level, occu-
pation, home language, and learning environment, home learning activities, and bilingual
parenting (TV watching time, parent–child talk time, storytelling time, parent–child shared
reading time, the teaching of Chinese or English reading and writing, early bilingual
literacies and so on). Some items were rated on a 5-point scale, while most asked for the
real number of books, hours, frequencies, or ages, such as frequency of reading to the
child per week, quantity, and variety of books in Chinese. In particular, four questions
were asked about the child’s tablet use at home. “Q15: Is your child allowed to use tablets
(smartphone) at home? (yes; no)”, “Q16: What does your child do with tablets? (1) watch
cartoons or videos; (2) listen to music; (3) play game; (4) chat with friends or others; (5) oth-
ers”, “Q17: Your child’s total screen time is ___ minute/day”, and “Q18: When does your
child use tablets? (1) bedtime; (2) time assigned by the parent; (3) time chosen by the
child; (4) when parents are busy”. If the answer to Q15 is “no” and that to Q17 is “0 or
Not/Applicable”, the child will be regarded as ‘non-user’ of tablets. Accordingly, eight
children were included in the ‘non-user’ group (2 girls, 6 boys). Among the 30 tablet users,
16 (12 girls, 4 boys) were classified into the ‘heavy-user’ group because: (1) their daily
screen time was more than the mean level (M = 17.98 min, SD = 14.29); (2) their use was
neither controlled nor limited; and (3) they did multiple activities with tablets. In addition,
the rest was classified into the ‘low-user’ group (n = 14, 3 girls, 11 boys), thus was removed
from the comparative analysis.

2.2.2. The Dimensional Change Card Sort (DCCS) Tasks

A set of white paper cards (3.5 cm × 7.0 cm) were used as the stimuli. The stimuli
had two dimensions: shape and color. The DCCS task included target cards and test
cards, which were matched in one dimension but did not match the other dimension (e.g.,
a red boat, a blue rabbit). Further, the rule for matching was changed according to the
experimenter’s instruction. The present experiments included two target cards and 18 test
cards, each of which was different in shape and color. One pair of target trays was used for
the three consecutive test sessions, as shown in Figure 1. Each session consisted of a rest
(20 s) phase and mix (25 s) phase, as shown in Figure 2. During the rest phase, children
were asked to be still, doing nothing. During the mix phase, the children were asked to sort
the cards according to the instructed rule (color or shape). In each phase, the children were
given the rule before each trial. The rule order was fixed: shape, shape, color, shape, shape,

https://www.psychologie.hhu.de
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color, shape, shape. The percentage of correct responses for each subject was recorded
and analyzed. Each participant underwent a training session and three rounds of DCCS
tasks. The training included six trials and allowed correction when children misunderstood
the rules.
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2.2.3. The fNIRS Examination

In this study, a multiple-channel fNIRS system (Oxymon Mk III, Artinis, The Nether-
lands) was used to simultaneously measure the concentration changes of oxygenated
hemoglobin (HbO), deoxygenated hemoglobin (HbR), and total hemoglobin (HbT) in
the participants. Two wavelengths in the near-infrared range (i.e., 760 and 850 nm) were
used to measure the changes in optical density and then converted into changes in the
concentration of HbO and HbR using the modified Beer–Lambert law. The 17 channels
were located following the international 10/20 system for EEG, with a 2.5 cm distance
between each paired emitters and detectors. The region of interest (ROI) was located at
Brodmann areas (BAs) 6/8/9/10/40/44 (Figure 3). Previous studies have shown that these
areas were involved in EF in preschool children [10,11]. In particular, channels 1 and 9
were located in BA 6, channels 13, 15, 17 were located in BA 10, channel 10 was located
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in BA 8, channels 11, 12, 14, 16 were located in BA 9, channel 4 was located in BA 40, and
channels 2, 3, 5, 6, 7, and 8 were located in the right IFC (BA 44).
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2.3. Procedure

The study was conducted according to the guidelines of the Declaration of
Helsinki, and was approved by the Ethics Committee of Shenzhen University (No. 2018005;
January 2018).

2.3.1. Data Collecting

The child caps accompanied with the NIRS instrument have digitized the optode
positions. Both S and XS size of NIRS caps were used in this study to fit the head size of
Chinese preschoolers. An experienced NIRS technician conducted cap placement, hair
manipulation and tossing, and optodes installation (based on the 10/20 system). This
process usually took 10 min, during which the participant was engaged in story-book
reading with an experienced preschool teacher.

2.3.2. Data Processing

A subject-specific differential path-length factor (DPF) constant was calculated based
on each subject’s age, and the sampling rate was set at 50 Hz for data acquisition [21]. Each
child’s DPF value was calculated according to the formula (DPF = 4.99 + 0.0678 Age0.814),
which is more conducive to the data’s accuracy. The trials that contained deformity or
noisy data were treated as incorrect trials and were discarded in advance of the formal
analysis. The raw optical intensity data series were converted into changes in optical
density (OD). The discrete wavelet transform was applied to every channel data series to
remove motion artifacts, with the tuning parameter (α) of wavelet filtering set at 0.1. The
bandpass filter (third-order Butterworth filter) with cut-off frequencies of 0.01–0.3 Hz was
applied to reduce slow drifts and high-frequency noise. The OD data were then converted
into concentration changes of HbO and HbR.

2.3.3. Data Analysis

HbO and HbR concentration was converted into z-scores and calculated in the fol-
lowing analysis. Individual data were processed using MATLAB 2013b (Mathworks, MA,
USA) and analyzed using the Homer2 NIRS processing package. The mean of z-scores
(HbO and HbR) was calculated for each DCCS task block separately for each participant.
Then, the mean of z-scores (HbO and HbR) was calculated by averaging across the three
task blocks for each participant. Finally, the mean of z-scores (HbO and HbR) across all
channels were compared using t-tests between ‘non-user’ and ‘heavy-user’ groups using
SPSS. The General Linear Model (GLM) analysis predicting z-scores (HbO and HbR) in
channel 16 was conducted in R (Y∆HbO = aXtime + b + ε).
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3. Results
3.1. Behavioral Results

We compared the ‘non-user’ and ‘heavy-user’ groups’ behavioral performance in the
DCCS task (See Table 1). First, t-tests indicated that there were no significant differences in
age between the ‘non-user’ (MNon-user = 5.03, SD = 0.41) and ‘heavy-user’ (MHeavy-user = 4.80,
SD = 0.68) groups, t = 0.85, p > 0.001. Second, all the ‘non-user’ children passed all the
testing items, Mcorrect rate = 1. In contrast, not all the 16 ‘heavy-user’ children passed all the
testing items, Mcorrect rate = 0.922, SD = 0.14. The t-test results indicated that the ‘non-user’
group significantly outperformed the ‘heavy-user’ group, t = 2.256, p < 0.05.

Table 1. Comparison of behavioral performance (correct rate) in the DCCS task.

Non-Users Mean (SD) Heavy Users Mean (SD) t p

Age 5.03 (0.41) 4.80 (0.68) 0.850 0.404
DCCS Score 1 (0) 0.922 (0.14) 2.256 0.039 *

Note: * p < 0.05.

3.2. fNIRS Results

First, a set of independent-samples t-tests were conducted to determine whether there
were significant differences in HbO increases in the 17 channels between the ‘non-user’
and ‘heavy-user’ groups. As multiple channels were involved in this type of t-tests, all the
results were corrected for multiple comparisons using the false discovery rate (FDR), and
the adjusted significance level of p-value was set at 0.05. As shown in Table 2 and Figure 4,
significant differences were found only in BA 9 (ch 16) (t = 2.285, p < 0.05) between the
‘non-user’ (MHbO = 1.17, SD = 2.02) and the ‘heavy-user’ (MHbO = −0.62, SD = 1.70) groups.
This result indicated that the ‘non-user’ group had significantly more activation in BA 9
than the ‘heavy-user’ group.

Table 2. Comparison of HbO increase between ‘non-user’ (N1 = 8) and ‘heavy-user’ (N2 = 16) groups.

Group M SD t p

Channel 1
Non-user −0.692 2.045 −0.511 0.615

Heavy-user −0.248 1.989

Channel 2
Non-user −1.414 1.630 −1.468 0.156

Heavy-user −0.105 2.230

Channel 3
Non-user −1.024 1.454 0.011 0.991

Heavy-user −1.034 2.297

Channel 4
Non-user −0.269 1.550 −0.178 0.86

Heavy-user −0.146 1.628

Channel 5
Non-user −0.439 2.180 −0.318 0.753

Heavy-user −0.176 1.767

Channel 6
Non-user −0.460 0.698 −1.162 0.258

Heavy-user −0.045 0.877

Channel 7
Non-user −0.660 1.699 −0.803 0.431

Heavy-user 0.111 2.423

Channel 8
Non-user −1.198 2.068 −0.633 0.533

Heavy-user −0.603 2.222

Channel 9
Non-user −0.356 0.603 −1.534 0.139

Heavy-user −0.015 0.466

Channel 10
Non-user 0.360 1.667 −0.172 0.865

Heavy-user 0.465 1.256

Channel 11
Non-user 0.052 1.322 −1.287 0.211

Heavy-user 0.761 1.247

Channel 12
Non-user 0.406 2.823 0.502 0.621

Heavy-user −0.044 1.606

Channel 13
Non-user 0.790 3.030 0.457 0.652

Heavy-user 0.352 1.702
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Table 2. Cont.

Group M SD t p

Channel 14
Non-user −0.804 0.984 −0.772 0.448

Heavy-user −0.142 2.304

Channel 15
Non-user 0.444 2.123 0.48 0.636

Heavy-user 0.037 1.882

Channel 16
Non-user 1.166 2.019 2.285 0.032 *

Heavy-user −0.623 1.699

Channel 17
Non-user 0.391 1.057 0.724 0.477

Heavy-user −0.140 1.920
Note: * p < 0.05.
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Second, a set of independent-sample t-tests were conducted to determine whether
there were significant differences in HbR increases in the 17 channels between the ‘non-user’
and ‘heavy-user’ groups. As shown in Table 3 and Figure 5, no significant differences were
found in any channel, ts < 1.441, ps > 0.164, after corrected with FDR.

Table 3. Comparison of HbR increase between ‘non-user’ (N1 = 8) and ‘heavy-user’ (N2 = 16) groups.

Group M SD t p

Channel 1
Non-user −0.305 1.768 0.604 0.552

Heavy-user −0.895 2.452

Channel 2
Non-user 0.583 2.760 0.307 0.762

Heavy-user 0.282 1.990

Channel 3
Non-user 0.304 1.521 0.647 0.524

Heavy-user −0.139 1.609

Channel 4
Non-user −0.083 2.041 −0.041 0.967

Heavy-user −0.045 2.186

Channel 5
Non-user 0.486 2.210 0.014 0.989

Heavy-user 0.472 2.306
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Table 3. Cont.

Group M SD t p

Channel 6
Non-user 0.277 0.734 1.339 0.194

Heavy-user −0.055 0.479

Channel 7
Non-user −0.289 1.472 −0.566 0.577

Heavy-user 0.178 2.076

Channel 8
Non-user −0.482 2.949 0.162 0.872

Heavy-user −0.702 3.215

Channel 9
Non-user −0.212 0.631 −0.637 0.530

Heavy-user −0.062 0.497

Channel 10
Non-user 0.470 1.988 −0.253 0.802

Heavy-user 0.634 1.186

Channel 11
Non-user 1.233 1.060 1.441 0.164

Heavy-user 0.178 1.914

Channel 12
Non-user 0.203 1.020 0.329 0.745

Heavy-user 0.027 1.327

Channel 13
Non-user 0.683 2.835 −0.042 0.966

Heavy-user 0.724 1.848

Channel 14
Non-user 1.378 1.535 1.107 0.280

Heavy-user 0.536 1.851

Channel 15
Non-user 1.276 1.816 0.519 0.609

Heavy-user 0.699 2.846

Channel 16
Non-user −0.167 2.602 −0.072 0.943

Heavy-user −0.109 1.395

Channel 17
Non-user 0.391 1.784 0.127 0.900

Heavy-user 0.298 1.651
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Third, a set of GLM analyses were conducted to model the changes in HbO in channel
16 based on experiment time for the ‘non-user’ and ‘heavy-user’ groups, respectively.
As shown in Table 4 and Figure 6, during the DCCS task, significant HbO increase was
observed in BA 9 (channel 16) for the ‘non-user’ group, β = 0.94, ∆R2 = 0.89, F = 803.45 (for
the model), t = 28.35 (for β), p < 0.001. In contrast, significant decreases were found in BA
9 (channel 16) for the ‘high-use’ group, β = −0.33, ∆R2 = 0.10, F = 12.17 (for the model),
t = −3.49 (for β), p < 0.01. However, after the 12th second, there was an increase in HbO in
the ‘heavy-user’ group. These results indicated that BA 9 was significantly activated in the
‘non-user’ group during the DCCS task.

Table 4. Predicting HbO increase for the ‘non-user’ and ‘heavy-user’ groups in BA 9.

Group β ∆R2 F t

Non-user 0.944 0.890 803.452 *** 28.345 ***
‘Heavy-user’ −0.332 0.101 12.171 ** −3.489 **

Note: ** p < 0.01; *** p < 0.001.
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Last, a set of GLM analyses was conducted to model the changes in HbR in Channel
16 based on experiment time for the ‘non-user’ and ‘heavy-user’ groups, respectively.
As shown in Table 5 and Figure 6, during the DCCS task, significant HbR increase was
observed in BA 9 (channel 16) for both ‘non-user’ [β = 0.76, ∆R2 = 0.58, F = 134.99 (for the
model), t = −3.49 (for β), p < 0.01] and ‘heavy-user’ groups [β = 0.81, ∆R2 = 0.65, F = 182.73
(for the model), t = 13.52 (for β), p < 0.01]. In particular, a significant decrease in HbR could
be observed in the ‘non-user’ group before the 7th second. A significant decrease was
observed in the ‘heavy-user’ group during 12th to 20th second.

Table 5. Predicting HbR increase for the ‘non-user’ and ‘heavy-user’ groups in BA 9.

Group β ∆R2 F t

Non-user 0.761 0.575 134.987 *** 11.618 ***
Heavy-user 0.807 0.647 182.730 *** 13.518 ***

Note: *** p < 0.001.

4. Discussion
4.1. ‘Non-User’ Outperformed ‘Heavy-User’ Group in the DCCS

This study found that the young children who never used tablets had a 100% correct
rate in the DCCS task, significantly outperforming those ‘heavy-users’. This finding is
consistent with Horowitz–Kraus and Hutton [22], who found that increased screen time
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was associated with poorer executive functioning in very young children. In a systematic
review, Small et al. also found that frequent tablet use might negatively affect brain function
and behavior [3]. All these findings have jointly confirmed that tablet use has adversely
impacted young children’s executive function. For the first time, this study provides fNIRS
evidence to demonstrate the negative impact of tablet use, as discussed in the next section.

4.2. Two Activation Patterns in BA 9

This study found two distinctive activation patterns in BA 9 when processing the
DCCS tasks. First, the ‘non-user’ pattern features a significant increase in HbO and a
significant decrease in HbR before the 7th second during the task. This indicates a typical
activation of BA 9, as an increase in HbO and a decrease in HbR are required to make
a functional activation. Although the link to blood flow is only indirect and should be
treated with care, this paired increase–decrease change in HbO and HbR demonstrates a
complete hemodynamic picture. In fNIRS research, HbO is mainly linked to the tissue’s
oxygen inflow, while HbR is linked to the amount of oxygen absorbed by the tissue [23].
In homeostasis, both the inflow of HbO and the formation of HbR should be constant, as
the amount of oxygen being consumed by the tissue is equal to the amount of oxygen
being carried towards the tissue. During the activation of BA 9, oxygen is consumed within
the tissue, and hemodynamically, the tissue responds by increasing blood flow toward
that area [24]. Therefore, this ‘non-user’ activation pattern could be regarded as normal
and healthy.

Second, the ‘heavy-user’ pattern features a significant decrease in HbO and an increase
in HbR in BA 9. However, a remarkable increase in HbR (since 8th second) and HbO (since
12th second) was also found. According to the hemodynamic rule, the concentration of
HbO is expected to rise after the activation of the prefrontal cortex due to the higher
blood flow. In contrast, HbR is washed out, and its concentration should decrease [23].
Therefore, the ‘heavy-user’ pattern has two unexpected features observed in the DCCS
task. The first unusual feature is the significant decrease in HbO before the 12th second,
reflecting BA 9 might not be activated during this period. The second unusual feature is
the synchronous increase in HbO and HbR after the 12th second, which is inconsistent
with the hemodynamic rule [24]. During activation of BA 9, there should be an increase in
HbO but a decrease in HbR [24]. However, this unexpected synchronous increase in HbO
and HbR was also found by Nguyen et al. during epileptic seizures [25]. They found that
an initial decrease in HbR was followed by its increase, indicating an increase in oxygen
metabolism is not sufficiently compensated during the epileptic seizures. Therefore, we
tend to suggest that this ‘heavy-user’ activation pattern might be abnormal and very likely
unhealthy, demonstrating the negative impact of tablet use on young children’s executive
function. However, future studies are needed to further explore this synchronous increase
phenomenon and its hemodynamic mechanisms.

5. Conclusions, Limitations, and Implications

This study adopted fNIRS technology to explore the impact of heavy use of tablets
on preschoolers’ executive function. It found that the ‘non-user’ group outperformed the
‘heavy-user’ with a significantly higher correct rate in the DCCS task. The ‘non-user’ brain
activation pattern in BA 9 is normal and healthy, whereas the ‘heavy-user’ pattern is not
normal and deserves further studies.

However, this study did have four major limitations. First, fNIRS data acquisition
could have been disturbed by movement during the DCCS task. Fortunately, the prefrontal
cortex is associated with little movement and consists mainly of executive function. In the
future, EEG-fNIRS signals should be simultaneously collected to further understand the
activation pattern in BA 9 for those heavy users. The second limitation is the small sample
size. Due to the unexpected lockdown caused by the COVID-19 outbreak in China, we had
to stop the experiment after testing the 38 samples. This problem might have limited the
significance of some of the statistical comparisons in this study. Third, although the total
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sample was balanced in gender, the different groups had an unbalanced allocation of boys
and girls. Future studies should consider this variable if aiming to examine the gender
difference in brain activation. Fourth, although there is evidence of a brain activation
pattern similar to that of seizures, there is no indication of any permanent damage in
BA 9 for those heavy users. All these limitations jointly imply that further studies are
necessary to study the consequences of heavy use of tablets, using both longitudinal and
EEG-NIRS data.
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