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Ultra‑broadband, wide‑angle 
plus‑shape slotted metamaterial 
solar absorber design 
with absorption forecasting using 
machine learning
Shobhit K. Patel1*, Juveriya Parmar2 & Vijay Katkar1

Energy utilization is increasing day by day and there is a need for highly efficient renewable energy 
sources. Solar absorbers with high efficiency can be used to meet these growing energy demands by 
transforming solar energy into thermal energy. Solar absorber design with highly efficient and Ultra‑
broadband response covering visible, ultraviolet, and near‑infrared spectrum is proposed in this paper. 
The absorption response is observed for three metamaterial designs (plus‑shape slotted design, plus‑
shape design, and square‑shape design) and one optimized design is used for solar absorber design 
based on its high efficiency. The design results are compared with AM 1.5 spectral irradiance response. 
The electric field response of the plus‑shape slotted metamaterial design is also presented which 
matches well with the absorption results of different solar spectrum regions. The results proved that 
the attained absorption response showing wide angle of incidence. Machine learning is also used to 
examine the design data in order to forecast absorption for various substrate thickness, metasurface 
thickness, and incidence angles. Regression and forecasting simulations based on machine learning 
are used to try to anticipate absorber behaviour at forthcoming and intermediate wavelengths. 
Simulation results prove that Machine Learning based methods can lessen the obligatory simulation 
resources, time and can be used as an effective tool while designing the absorber. The proposed highly 
efficient, wide‑angle, ultra‑broadband solar absorber design with its behavior prediction capability 
using machine learning can be utilized for solar thermal energy harvesting applications.

With the advancement in science and technology and rapid decrease in the cost of electrical, electronic equip-
ment, energy demand is increased rapidly over the period. It is very difficult and not advisable to meet this 
requirement using conventional energy production methods. Renewable energy is a good solution to this problem 
as it will not hinder the environment and its ecosystem. Sun provides a gargantuan amount of light and heat 
energy to earth which can be used to generate clean renewable energy and satisfy the increased energy demand. 
Three approaches for solar energy harvesting are: (a) Photovoltaic approach: Use the photovoltaic device to 
convert photon energy into electricity (b) Photochemical approach: Convert solar energy into storable chemi-
cal fuel (c) Photothermal approach: Use solar thermal absorber to convert photon energy into thermal energy.

Solar absorbers are designed using conventional materials like Au, Ti-Al2O3 that cannot attain tunable per-
formance. However, the use of carbon-based materials provides benefits like admirable thermal and chemical 
stability, first-rate thermal  conductivity1,2. For the first time in the history of science, graphene has been dis-
covered to be an atom-thick, 2D) carbon substance with exceptional electrical, crystallographic, and optical 
 properties3. One layer of graphene is able to absorb 2.3 percent of white light with 0.1 percent  refractivity4. It is 
further demonstrated that as the number of layers of graphene grows, so does the absorption, demonstrating the 
linear  relationship5. As result graphene is used by many researchers for designing the solar  absorber6–9.

Metamaterials is another excellent artificial material which can be used in designing absorber, sensors, etc. 
Metamaterials, which are purposefully constructed structures, have attracted a lot of consideration due to their 
outstanding qualities, such as symmetric  transmission10, and negative refractive  index11, and so on. The first 
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MA (metamaterial absorber) was created by Landy et al.12, which achieved nearly complete absorption. The 
initial layer of these absorbers had a patterned metallic design to provide impedance matching and reduce light 
reflection. Using a resonant cavity design, the second dielectric layer allows electromagnetic waves to disperse 
before reaching the metallic plate layer, which stops  transmission13. Absorption response is narrowband, with 
either single, double or, multiple peaks whose absorption response is  unity14–18 and this is the only drawback of 
these absorbers. Solar absorbers must be very efficient in all wavelength ranges, including terahertz, ultraviolet, 
visible infrared and  microwave19–21. Solar absorbers are used in a variety of applications, including solar energy 
harvesting, superlenses, and optical structure  design22–24. The use of machine learning approaches like regression 
analysis, neural networks for pattern and behavior prediction is an active area of research in recent  times25–27 and 
this techniques has also been applied for photonics devices  in28–31. Regression analysis is a statistical approach in 
which a relationship between a dependent variable (in our case absorption value) and an independent variable 
(in our case wavelength value) is discovered. Time series analysis is used to discover the pattern of change in 
data values over a time period (in our case change in values of absorption over a change in wavelength values) 
under assorted conditions.

In this paper, we have proposed three metamaterial solar absorbers for the ultra-broadband range that 
includes ultraviolet, visible, and near-infrared. Section II contains the design, modeling, and results of these 
designs. The absorption analysis, graphene conductivity model, and shape analysis are also included in this 
section. Section III includes the parametric analysis of the design and electric field analysis. Section IV includes 
the machine learning analysis. Concluding notes are reported in section V.

Design, modelling, and results
The solar absorber design (Fig. 1) is made by placing a plus-shape slotted gold resonator layer over  SiO2 substrate 
and separated by graphene spacer. The gold ground plane is placed at the bottom of the structure to avoid trans-
mittance. The thickness of the metamaterial resonator and substrate is kept at 0.5 µm and 8 µm subsequently. The 
graphene monolayer is 0.34 nm thick. The other dimensions regarding the length and width of the plus layer are 
shown in Fig. 1a–c. The metamaterial solar absorber design is simulated using COMSOL Multiphysics simulator 
through Finite Element Method (FEM) and the absorption result is presented in Fig. 1d. The designing of the 
graphene layer and absorption analysis is numerically presented here. The plus-shape slotted metamaterial solar 
absorber attains 91%, 97%, and 86% average absorption in the ultraviolet, visible, and NIR region, subsequently 
giving the ultra-broadband absorption response as observed in Fig. 1d.

Absorption analysis. The absorption analysis for different angles of incidence can be calculated based on 
the following Eqs. (1–8) which calculated the reflectance for different angles and from reflectance the absorp-
tion can be calculated as there is almost no transmittance because of the gold ground plane. The dependence of 
absorption is on graphene’s conductivity (σ) and angle of incidence (θi), as presented in Eqs. (1–8)32. In these 
equations ω is the angular frequency, ℏ is reduced plank constant, k is the wave vector

As already stated, the transmittance is considered zero because of the gold ground plane. The Eq. (7) now 
becomes.

The graphene conductivity model is very important in getting high absorption and is presented here.

Graphene conductivity model. The intramodal and intermodal conductivity equations are presented in 
Eqs. (9–12)30,33,34
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Parametric analysis and electric field results
The detailed analysis of the high-performing design of plus-shape slotted metamaterial-based solar absorber is 
carried out by varying various physical parameters such as metasurface thickness, substrate thickness, and angle 
of incidence. The corresponding results are presented in Fig. 2a–c.

Figure 2a illustrates the variation in absorption response with respect to variation in metasurface thickness. 
The metasurface thickness is varied from 0.5 to 2.5 µm with a step increase of 0.5 µm. It is visible that the absorp-
tion response is not very much affected by this change. So, we can deduce that to make the solar absorber cost-
effective, the metasurface thickness is kept at 0.5 µm. Figure 2b illustrates the variation in absorption response 
w.r.t to increment in substrate thickness. It is observed that the absorption starts to increase as we increase the 
substrate thickness. The absorption response is excellent in the wavelength region of 0.2 µm to 1 µm. But for 
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Figure 1.  Plus-shape metamaterial-based solar absorber design (a) 3D view, (b) Top view, (c) Front view, (d) 
Ultra-broadband absorption response of plus-shape slotted metamaterial-based solar absorber design with AM 
1.5. The parameters are: L = 3 µm,  L1 = 1.9 µm,  L2 = 1.4 µm,  L3 = 1 µm,  St = 8 µm,  Gt = 0.5 µm,  Rt = 0.5 µm. The 
figure is not up to the scale.
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lower values of substrate thickness, we attain less absorption in the wavelength span of 1 µm to 1.5 µm as we can 
observe in Fig. 2b. But the absorption response in this particular area starts to increase as the substrate thick-
ness rises to 8 µm. So, to achieve the high absorption, efficient, and ultra-broadband solar absorber we kept 
the substrate thickness at 8 µm. Figure 2c proves the wide-angle, angle insensitivity features of the proposed 
plus-shape slotted metamaterial solar absorber. As it is reported in Fig. 2c, the absorption response is identical 
for most of the angles except for the angle of incidence of 30°. But still, for 30°, we achieve average absorption 
of about 60% for the whole region covering from 0.2 to 1.5 µm. And for the rest of the angle of incidence, the 
attained average absorption response is above 90%. So we can state that the proposed solar absorber is wide-
angle sensitive for 0° to 70°.

The electric field intensity response of the proposed solar absorber is presented in Fig. 3 for various wavelength 
values so that it covers all the covered regions from 0.2 to 1.5 µm. The electric field response is attained for the 
wavelength values of 0.3 µm, 0.5 µm, 0.7 µm, 0.9 µm, 1.1 µm, and 1.3 µm. It represents that as we increase the 
wavelength the electric field intensity starts to decrease. The highest value of electric field intensity is achieved 
for 0.3 µm indicating the highest absorption that is of around 0.997 at that particular wavelength. So, the electric 
field intensity reported in Fig. 3 validates the absorption response achieved in Fig. 1d.

Furthermore, we have also compared our proposed solar absorbers with previously published work and the 
results are presented in the table format in Table 1.

Figure 2.  Absorption response of plus-shape slotted metamaterial solar absorber design while varying several 
physical parameters (a) Variation in absorption response while varying metasurface thickness. (b) Variation 
in absorption response while varying substrate thickness, (c) Absorption response while varying the angle of 
incidence.
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Machine learning analysis
Weighted KNN-Regression is one of the widely used approaches for discovering the association amid independent 

Figure 3.  Electric field intensity of plus-shape slotted metamaterial solar absorber (a) 0.3 µm, (b) 0.5 µm, (c) 
0.7 µm, (d) 0.9 µm, (e) 1.1 µm, (f) 1.3 µm.
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and dependent  variables35. The proficiency of a regression model is determined using a metric  R2 score. This 
metric is calculated using Eq. (13).

Here, actual target value is actual absorption value, and predicted target value refers to anticipated absorption 
capacity by regression model after training.

Weighted KNN‑regression. Working of Weighted KNN-Regression is explained with the help of follow-
ing algorithm.

Algorithm: Weighted KNN-Regression.
Input:
TD: Training Data.
K: Value of ‘K’.
x: Value of the independent variable for prediction.
Procedure:
Step 1: Compute distances amid ‘x’ and value of independent variable for every d ∈ TD.
Step 2: Select top ‘K’ items from TD with smallest distance from ‘x’.
Step 3: Compute predicted value using Eq. (16)

where wi =
1

distance(x,di)
2

Here, f(di), gives the value of dependent variable corresponding to training sample  di. Euclidian distance is 
most widely used distance measure.

Time series analysis. It is used to discover the pattern of change in data values over a time period (in our 
case change in values of absorption over a change in wavelength values) under assorted conditions. This estab-
lished pattern is then utilised to forecast future values (in our case absorption for forthcoming wavelengths). 
Mean Absolute Percentage Error (MAPE) is utilised to quantify the precision of time series models. Method to 
calculate MAPE is shown in Eq. (17):

where,  Fi,  Ai is Forecasted values of absorption and Actual/Simulated values of absorption, and Count of fore-
casted values by model after training is ‘n’.

Time Series analysis model built using Long Short Term Memory (LSTM) is Neural Network based model 
for  forecasting36 which can reminisce the values from preceding stage of Neural Network. Supplementary Fig. S1 
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Table 1.  Comparison of the developed solar absorber with the available structures.

Design

Average absorption (%)

Angle insensitiveUltraviolet Visible Near-infrared

Plus-shape slotted metamaterial design 91 97 86 0° to 70°

Ref.37 – 71.1 – 0° to 40°

Ref.38 92.99 86.5 86.1 –

Ref.39 – – 90% –

Ref.40 – Above 90% Above 90% –

Ref.41 – 92 – 0° to 90°

Ref.42 – 70 – –

Ref.43 – 80 – –

Ref.44 89.57 97.51 85.48 –

Ref.45 74.1 92.1 – 0° to 30°
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depicts the memory cell unit of LSTM. It has self-connections to remember the state of memory cells based on 
time and multiplicative units (gates) to regulate how information flows. Input gate and output gate control the 
stream of input activation, cell activation subsequently. The internal state of the cell is scaled by forget gate and 
is added back to the cell as input through a self-recurrent connection. In supplementary Fig. S1,  xt shows the 
input to a memory cell at time t.  ct and  ct-1 show the next cell state and the earlier cell state, correspondingly.  ht, 
 ht-1 stand for the hidden layer’s output at times t and t − 1.

Predicting future values or missing interval values is possible with regression analysis. It has a high degree of 
accuracy in predicting the values of missing intervals. Time series analysis, on the other hand, is more accurate 
at predicting future values than regression analysis. Simulators can save time and resources by employing the 
following strategy during runtime:

Step 1: Perform Simulation using higher step size for values of wavelength.
Step 2: Train Regression and Time Series model using simulated data.
Step 3: Use regression analysis to envisage values of absorption of in-between/ intermediate wavelengths 
(which are omitted during the simulation process).
Step 4: Use the Time Series model to envisage values of absorption for forthcoming wavelengths.

Regression analysis and time series analysis can be used to figure out what the absorption values will be for 
intermediate wavelength and forthcoming wavelength subsequently after performing the simulation on limited 
wavelength values in assorted conditions. Here time and resource requirements for simulation are reduced as 
the simulation is performed for fewer wavelength values.

Simulation using machine learning. Python 3.8 and the scikit-learn library version 0.23.1 are used to 
implement weighted KNN-regressor models. LSTM model for time series analysis is implemented and trained 
using python 3.8 and tensorflow library version 2.4.

Intermediate wavelength’s absorption value prediction using regression analysis. Four Test 
Cases (TCs), Test-0.6, Test-0.5, Test-0.4, and Test-0.3, are made to find out how much simulation time and 
resources can be cut. In test case TC-M, uniform random sampling is used to randomly select (1 − M) × 100 
percent records from simulation data to train the regression analysis model, and remaining M × 100% simulated 
data points are used to test regression model’s prediction effectiveness after training.

Prediction effectiveness  (R2 Score) of trained weighted KNN-regressor models for numerous values of meta-
surface thickness and Test-0.6, Test-0.5, Test-0.4, Test-0.3 is depicted in Fig. 4a–d subsequently with the help 
of heat map. A heat map demonstrates that howbeit only half of the simulation data points are used to train the 
weighted KNN-regressor model (Test-0.5), the model is still able to accurately  (R2 score > 0.9) estimates the 
values of absorption for the other half of the wavelength values.

Scattergrams of estimated values of absorption by trained weighted KNN-regressor model vs simulated/actual 
values of absorption accomplished at the time of simulation for thickness of metasurface 0.5 µm and Test-0.6, 
Test-0.5, Test-0.4, Test-0.3 are revealed in Fig. 5a–d subsequently. Similarly, for thickness of metasurface 1.0 µm 
and Test-0.6, Test-0.5, Test-0.4, Test-0.3 are revealed in Fig. 5e–h subsequently. Results portrayed in Figs. 4 and 
5 attests that trained weighted KNN-regressor model could cut the simulation resource and time requirement 
by half in this test situation.

Scattergrams of estimated values of absorption by trained weighted KNN-regressor model vs simulated/
actual values of absorption accomplished at the time of simulation for thickness of metasurface 1.5 µm, 2 µm 
and Test-0.6, Test-0.5, Test-0.4, Test-0.3 are revealed in supplementary Fig. S2a–h subsequently.

Prediction effectiveness  (R2 Score) of trained weighted KNN-regressor models for numerous values of angle 
of incidence and Test-0.6, Test-0.5, Test-0.4, Test-0.3 is depicted in supplementary Fig. S3a–d subsequently with 
the help of heat map. A heat map demonstrates that even though only 60% of the simulation records are used to 
train the weighted KNN-regressor model (Test-0.6), the model is still able to accurately  (R2 score > 0.9) estimate 
the values of absorption for the outstanding wavelength values.

Scattergrams of estimated values of absorption by trained weighted KNN-regressor model vs simulated/
actual values of absorption accomplished at the time of simulation for Incidence angle 0° and Test-0.6, Test-0.5, 
Test-0.4, Test-0.3 are revealed in supplementary Fig. S4a–d subsequently. Similarly, for incidence angle of 10° and 
Test-0.6, Test-0.5, Test-0.4, Test-0.3 are revealed in supplementary Fig. S4e–h subsequently. Results portrayed 
in Supplementary Figs. S3 and S4 attests that trained weighted KNN-regressor model could cut the simulation 
resource and time requirement by 60% in this test situation.

Scattergrams of estimated values of absorption by trained weighted KNN-regressor model vs simulated/actual 
values of absorption accomplished at the time of simulation for incidence angle 20°, 30° and Test-0.6, Test-0.5, 
Test-0.4, Test-0.3 are revealed in supplementary Fig. S5a–h subsequently. Scattergrams of estimated values of 
absorption by trained weighted KNN-regressor model vs simulated/actual values of absorption accomplished at 
the time of simulation for angle of incidence 40°, 50° and Test-0.6, Test-0.5, Test-0.4, Test-0.3 are revealed in Sup-
plementary Fig. S6a–h subsequently. Scattergrams of estimated values of absorption by trained weighted KNN-
regressor model vs simulated/actual values of absorption accomplished at the time of simulation for incidence 
angle 60°, 70° and Test-0.6, Test-0.5, Test-0.4, Test-0.3 are revealed in Supplementary Fig. S7a–h subsequently.

Prediction effectiveness  (R2 Score) of trained weighted KNN-regressor models for numerous values of sub-
strate thickness and Test-0.6, Test-0.5, Test-0.4, Test-0.3 is depicted in supplementary Fig. S8a–d subsequently 
with the help of heat map. A heat map demonstrates that howbeit only half of the simulation data points are 
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used to train the weighted KNN-regressor model (TC-0.5), the model is still able to accurately  (R2 score > 0.9) 
estimate the values of absorption for the other half of the wavelength values.

Scattergrams of estimated values of absorption by trained weighted KNN-regressor model vs simulated/
actual values of absorption accomplished at the time of simulation for thickness of substrate 4 µm and Test-0.6, 
Test-0.5, Test-0.4, Test-0.3 are revealed in Supplementary Fig. S9a–d subsequently. Similarly, for thickness of 
substrate 5 µm and Test-0.6, Test-0.5, Test-0.4, Test-0.3 are revealed in Supplementary Fig. S9e–h subsequently. 
Results portrayed in supplementary Fig. S8 and S9 attests that trained weighted KNN-regressor model could cut 
the simulation resource and time requirement by half in this test situation.

Scattergrams of estimated values of absorption by trained weighted KNN-regressor model vs simulated/actual 
values of absorption accomplished at the time of simulation for thickness of substrate 6 µm, 7 µm and Test-0.6, 
Test-0.5, Test-0.4, Test-0.3 are revealed in Supplementary Fig. S10a–h subsequently.

Figure 4.  Prediction effectiveness (R2 Score) of traine Weighted KNN-regressor models for numerous values of 
Metasurface Thickness (µm) and (a) Test-0.6 (b) Test-0.5 (c) Test-0.4 (d) Test-0.3
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Scattergrams of estimated values of absorption by trained weighted KNN-regressor model vs simulated/
actual values of absorption accomplished at the time of simulation for metasurface width 1.9 µm, 2.0 µm and 
Test-0.6, Test-0.5, Test-0.4, Test-0.3 are revealed in Supplementary Fig. S11a–h subsequently. Scattergrams of 
estimated values of absorption by trained weighted KNN-regressor model vs simulated/actual values of absorp-
tion accomplished at the time of simulation for metasurface width 2.1 µm, 2.2 µm and Test-0.6, Test-0.5, Test-0.4, 
Test-0.3 are revealed in Supplementary Fig. S12a–h subsequently. Scattergrams of estimated values of absorption 
by trained weighted KNN-regressor model vs simulated/actual values of absorption accomplished at the time of 
simulation for metasurface width 2.3 µm, 2.4 µm and Test-0.6, Test-0.5, Test-0.4, Test-0.3 are revealed in Sup-
plementary Fig. S13a–h subsequently.

Scattergrams of estimated values of absorption by trained weighted KNN-regressor model vs simulated/
actual values of absorption accomplished at the time of simulation for metasurface length 1.9 µm, 2.0 µm and 
Test-0.6, Test-0.5, Test-0.4, Test-0.3 are revealed in Supplementary Fig. S14a–h subsequently. Scattergrams of 
estimated values of absorption by trained weighted KNN-regressor model vs simulated/actual values of absorp-
tion accomplished at the time of simulation for metasurface length 2.1 µm, 2.2 µm and Test-0.6, Test-0.5, Test-0.4, 
Test-0.3 are revealed in Supplementary Fig. S15a–h subsequently. Scattergrams of estimated values of absorption 
by trained weighted KNN-regressor model vs simulated/actual values of absorption accomplished at the time 
of simulation for metasurface length 2.3 µm, 2.4 µm and Test-0.6, Test-0.5, Test-0.4, Test-0.3 are revealed in 
Supplementary Fig. S16a–h subsequently.

Regression analysis for predicting the values of absorption of forthcoming wavelengths. The 
layer structure of neural network-based LSTM forecasting model is shown in Supplementary Fig. S17. It contains 

Figure 5.  Predicted values of absorption by trained weighted KNN-regressor vs simulated/actual values of 
absorption for Metasurface Thickness (µm) (a) 0.5 (TC-0.6), (b) 0.5 (TC-0.5), (c) 0.5 (TC-0.4), (d) 0.5 (TC-0.3), 
(e) 1.0 (TC-0.6), (f) 1.0 (TC-0.5), (g) 1.0 (TC-0.4), (h) 1.0 (TC-0.3).
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one LSTM layer with 10 neurons and has a dense connection with other neurons in the neural network. During 
simulations, initial 80% simulation records are used to train the LSTM based forecasting models, and remaining 
20% records are used to test the prediction effectiveness of forecasting models. Simulations are performed using 
different lengths of preceding inputs (7–13)  used to forecast the absorption value for forthcoming wavelengths.

Training loss, MAPE, and predicted values of absorption by LSTM vs simulated values of absorption for 
Metasurface thickness 0.5 µm is revealed in Fig. 6a–c subsequently. Likewise Fig. 6d–i depicts the alike informa-
tion for Metasurface thickness 1.0 µm, 1.5 µm.

It can be simply detected from Fig. 6a,b,d,e,g,h that training loss reached zero after 4 training epoche and 
MAPE during the testing phase is around 1.0 percent. Scattergrams of predicted values of absorption by LSTM 
models vs simulated values of absorption in Fig. 6c,f,i show that, predicted values are very close to actual val-
ues of absorption. This in sequence supports that, forecasting models implemented using LSTM could cut the 
simulation resources and time by 20%.

Training loss, MAPE and predicted values of absorption by LSTM vs simulated values of absorption for 
metasurface thickness of 2 µm is shown in Supplementary Fig. S18a–c subsequently. Likewise Supplementary 
Fig. S18d–f depicts the alike information for angle of incidence 2.5 µm.

Figure 6.  (a) Training Loss of LSTM model for Metasurface Thickness 0.5 µm (b) MAPE of LSTM model for 
Metasurface Thickness 0.5 µm (c) Predicted values of absorption by LSTM vs simulated values of absorption for 
Metasurface Thickness 0.5 µm (d) Training Loss of LSTM model for Metasurface Thickness 1.0 µm (e) MAPE of 
LSTM model for Metasurface Thickness 1.0 µm (f) Predicted values of absorption by LSTM vs simulated values 
of absorption for Metasurface Thickness 1.0 µm (g) Training Loss of LSTM model for Metasurface Thickness 
1.5 µm (h) MAPE of LSTM model for Metasurface Thickness 1.5 µm (i) Predicted values of absorption by LSTM 
vs simulated values of absorption for Metasurface Thickness 1.5 µm.
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Training loss, MAPE and predicted values of absorption by LSTM vs simulated/actual values of absorption 
for metasurface width of 1.9 µm is shown in Fig. 7a–c subsequently. Likewise, Fig. 7d–i depicts the alike infor-
mation for metasurface width 2.0 µm and 2.1 µm. It can be simply detected from Fig. 7a,b,d,e,g,h that training 
loss reached zero after 4 training epoche and MAPE during the testing phase is around 1.0 percent. Scattergrams 
of predicted values of absorption by LSTM models vs simulated values of absorption in Fig. 7c,f,i show that, 
predicted values are very close to actual values of absorption. This in sequence supports that, LSTM based fore-
casting models could cut the simulation resources and time by 20%.

Training loss, MAPE and predicted values of absorption by LSTM vs simulated values of absorption for 
metasurface width of 2.2 µm is shown in Supplementary Fig. S19a–c subsequently. Likewise, Supplementary 
Fig. S19d–i depicts the alike information for metasurface width 2.3 µm and 2.4 µm.

Training loss, MAPE and predicted values of absorption by LSTM vs simulated values of absorption for 
metasurface length of 1.9 µm is shown in Supplementary Fig. S20a–c subsequently. Likewise, Supplementary 

Figure 7.  (a) Training Loss of LSTM model for Metasurface Width 1.9 µm (b) MAPE of LSTM model for 
Metasurface Width 1.9 µm (c) Predicted values of absorption by LSTM vs simulated values of absorption for 
Metasurface Width 1.9 µm (d) Training Loss of LSTM model for Metasurface Width 2.0 µm (e) MAPE of 
LSTM model for Metasurface Width 2.0 µm (f) Predicted values of absorption by LSTM vs simulated values of 
absorption for Metasurface Width 2.0 µm (g) Training Loss of LSTM model for Metasurface Width 2.1 µm (h) 
MAPE of LSTM model for Metasurface Width 2.1 µm (i) Predicted values of absorption by LSTM vs simulated 
values of absorption for Metasurface Width 2.1 µm.
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Fig. S20d–i depicts the alike information for metasurface length 2.0 µm and 2.1 µm. It can be simply detected 
from Supplementary Fig. S20a,b,d,e,g,h that training loss reached zero after 4 training epoche and MAPE dur-
ing the testing phase is around 1.0 percent. Scattergrams of predicted values of absorption by LSTM models vs 
simulated values of absorption in Supplementary Fig. S20c,f,i show that, predicted values are very close to actual 
values of absorption. This in sequence supports that, forecasting models implemented using LSTM could cut the 
simulation resources and time by 20%.

Training loss, MAPE and predicted values of absorption by LSTM vs simulated values of absorption for 
metasurface length of 2.2 µm is shown in Supplementary Fig. S21a–c subsequently. Likewise, Supplementary 
Fig. S21d–i depicts the alike information for metasurface length 2.3 µm and 2.4 µm.

Training loss, MAPE and predicted values of absorption by LSTM vs simulated values of absorption for Angle 
of Incidence 0° are shown in Supplementary Fig. S22a–c subsequently. Similarly, Supplementary Fig. S22d–i 
depicts the alike information for angle of incidence 10° and 20°.

It can be easily observed from Supplementary Fig. S22a,b,d,e,g,h that training loss reached zero after 5 training 
epoche and MAPE during the testing phase is around 1.0 percent. Scattergrams of predicted values of absorption 
by LSTM models vs simulated values of absorption in Supplementary Fig. S22c,f,i show that, predicted values are 
very close to actual values of absorption. This in sequence supports that, forecasting models implemented using 
LSTM could cut the simulation resources and time by 20% as initial 80% simulation records are used to train 
the LSTM based forecasting models, and remaining 20% records are predicted by models with high accuracy.

Training loss, MAPE and predicted values of absorption by LSTM vs simulated values of absorption for Angle 
of Incidence  300 is shown in Supplementary Fig. S23a–c subsequently. Similarly Supplementary Fig. S23d–i 
depicts the alike information for angle of incidence 40°, 50° and Supplementary Fig. S24a–f depicts the alike 
information for angle of incidence 60°, 70°.

Training loss, MAPE, and predicted values of absorption by LSTM vs simulated values of absorption for sub-
strate thickness 7 µm is shown in Supplementary Fig. S25a–c subsequently. Likewise, supplementary Fig. S25d–f 
depicts the alike information for substrate thickness 8 µm.

It can be easily observed from Supplementary Fig. S25a,b,d,e that training loss reached zero after 4 training 
epoche, and MAPE during the testing phase is around 1.0 percent. Scattergrams of predicted values of absorption 
by LSTM models vs simulated values of absorption in Supplementary Fig. S25c,f show that, predicted values are 
very close to actual values of absorption. This in sequence supports that, forecasting models implemented using 
LSTM could cut the simulation resources and time by 20%.

Training loss, MAPE and predicted values of absorption by LSTM vs simulated values of absorption for 
substrate thickness of 4 µm is shown in Supplementary Fig. S26a–c subsequently. Likewise Supplementary 
Fig. S26d–f depicts the alike information for substrate thickness of 5 µm. Training loss, MAPE and predicted 
values of absorption by LSTM vs simulated values of absorption for substrate thickness of 6 µm is shown in 
Supplementary Fig. S26g–i subsequently.

Conclusion
Three metamaterial solar absorbers are analyzed for the ultra-broadband range of 0.2 µm to 1.5 µm including 
ultraviolet, visible, and near-infrared range. The highest average absorption of 91%, 97%, and 86% in the ultra-
violet, visible, and near-infrared range for plus-shape slotted metamaterial solar absorber design is obtained. The 
overall average absorption of 90% is achieved. The shape of the metasurface is varied to check its effect on absorp-
tion response and the results show the absorption slightly reduces for the other two designs of plus-shape and 
square-shape metamaterial solar absorber designs. The detailed analysis of the best performing design is carried 
out by varying the physical parameters such as metasurface thickness, and substrate thickness to check its effect 
on absorption response. It is reported that the metasurface thickness has very less effect on absorption whereas 
the increment in substrate thickness increases the absorption response. The achieved absorption response is also 
angle insensitive for 0° to 70°. We can conclude that the proposed solar absorber is giving absorption response 
for ultra-broadband range and it is wide-angle. Simulations are performed using weighted KNN-regression and 
LSTM-based time series analysis model to predict the behavior of absorber for intermediate and forthcoming 
wavelength values. Simulation results illustrates that forecasting and regression models can predict the values 
of absorption with good efficiency/accuracy and could cut obligatory simulation resources, time, by 60% (40% 
by use of regression model and 20% by use of forecasting model).

Data availability
The data will be made available at a reasonable request to the corresponding author.
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