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Abstract: The Arrhenius plot (logarithmic plot vs. inverse temperature) is represented by a straight
line if the Arrhenius equation holds. A curved Arrhenius plot (mostly concave) is usually described
phenomenologically, often using polynomials of T or 1/T. Many modifications of the Arrhenius
equation based on different models have also been published, which fit the experimental data better
or worse. This paper proposes two solutions for the concave-curved Arrhenius plot. The first is
based on consecutive A→B→C reaction with rate constants k1 � k2 at higher temperatures and
k1 � k2 (or at least k1 > k2) at lower temperatures. The second is based on the substitution of the
temperature T the by temperature difference T − T0 in the Arrhenius equation, where T0 is the
maximum temperature at which the Arrheniusprocess under study does not yet occur.

Keywords: Arrhenius equation; curved Arrhenius plot; curved Kissinger plot; austenitization
kinetics; crystallization kinetics; food spoilage kinetics; growth rate of bacterial cultures; plant leaf
respiration rate; temperature dependence of ant creeping; temperature dependence of heartbeat rate

1. Introduction

The Arrhenius equation was published in 1889 [1]. It describes very accurately the
temperature dependence of the kinetics of chemical reactions of simple chemicals (cane
sugar was studied in the cited paper). According to the Arrhenius equation, the reaction
rates at very low temperatures are very small but non-zero. The Arrhenius equation is also
used in materials science and biology, for example in describing the kinetics of austenitiza-
tion [2], the respiration rate of plant leaves [3], or the heartbeat rate of terrapins [4]. In these
cases, kinetics at low temperatures are meaningless: austenitization can only take place at
temperatures above Ac1 and many living organisms die or at least their bodily processes
stop at body temperatures below freezing. This seems to be one of the main reasons for the
invalidity of the Arrhenius equation, which is manifested by the curved Arrhenius plot.

The Arrhenius equation for rate constant k is

k = k∞ exp
(
− E

RT

)
(1)

where pre-exponential factor k∞ is formally rate constant for infinite temperature, E is
the activation energy, R is the universal gas constant and T is the absolute temperature.
After logarithmization

ln k = − E
R
· 1

T
+ ln k∞ (2)

a linear dependence of lnk on 1/T with slope −E/R is obtained, which is represented
graphically is called the Arrhenius plot.

Differential scanning calorimetry (DSC) is used in many phase transformations studies
when samples are heated (or cooled) over a wide range of heating (or cooling) rates.
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Maximum heat flow for different rates β is obtained at different “peak” temperatures Tp.
The dependence of β on Tp is described by the Kissinger equation (see e.g., [5])

ln
β

T2
p
= − E

R
· 1

Tp
+ C (3)

where C is a constant coefficient. From a formal point of view, the Kissinger and the Arrhe-
nius equations are the same types of dependence, so the results of the DSC examination,
which are readily available, can be used for further considerations.

The Kissinger equation, published in 1957 [6], received many thousands of citations
and Kissinger became probably the most important figure in the field of differential thermal
analysis (DTA) [7]. Šesták et al. [8,9] accounted for the thermal inertia component of the
heat flow omitted by Kissinger, leading to a more accurate determination of the activation
energy and to distinguish the temperature of the extreme deviation of the DTA from the
temperature at which the reaction rate is maximum. For the purposes of the presented
paper, Equation (3) is sufficient. Temperatures corresponding to the maximum reaction
rates would be useful, but unfortunately, the authors of the papers whose data are used for
regression calculations presented here have not mentioned their values.

Zhou et al. [5] studied the kinetics of martensitic transformations in Ni-Mn-In-Mg
shape memory alloys and obtained a curved Kissinger (Arrhenius) plot. They decided to
fit it using two straight lines, see Figure 1 (solid line).
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Figure 1. “Double” Kissinger plot for Ni-Mn-In-Mg shape memory alloy (see [5], Figure 7, solid line)
and Kissinger plot based on the analogy of the Equation (5) (dashed line).

This is the simplest approach, giving two very different activation energy values,
156 kJ/mol and 402 kJ/mol. However, it raises more questions than answers:

• In terms of materials science: why is the activation energy for heating rates higher
than 9.2 K/min 2.5 times lower than for heating rates lower than 9.2 K/min? What is
the reason for this step change?

• In terms of regression: is it correct to replace an almost smooth arc with two straight
lines? If, in a study [5], the heating at heating rates of, e.g., 40 K/min and 35 K/min is
not performed and heating at, e.g., 2 K/min and 1 K/min is added, then very likely
the straight lines in the Kissinger plot will change their positions substantially, i.e., not
only the two values of activation energy will change substantially, but also the value
of heating rate separating these straight lines. What is the usefulness of the results
obtained in this way?

Deviation from the linear shape of the Arrhenius plot (from “Arrhenius behaviour”)
is often referred to as the “non-Arrhenius behaviour” [10] and is distinguished into the
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“super-Arrhenius behaviour” (concave curve) and “sub-Arrhenius behaviour” (convex
curve), e.g., [10,11]. Many authors distinguish only between “concave Arrhenius plot”
and “convex Arrhenius plot”, but some of them interchange the terms “concave” and
“convex”, e.g., [12]. Many models have been published, especially recently, but almost
without exception they are extremely complicated, designed for a very specific scientific
problem, without any generality. The aim of this paper is to find a model or relation with
similar generality to the original Arrhenius equation.

One of the classical approaches to describing curved Arrhenius plots consisted in a
phenomenological description of their shape, mostly using several initial terms of con-
vergent mathematical series in the Arrhenius equation. These were sometimes called
“extended Arrhenius equations”, e.g., in [13]. Dozens of papers with extended Arrhenius
equations were published especially in the 1970s and 1980s. For example, a logarithmic
equation with coefficients A to E (or more) was published by Kanerva et al. [14]:

ln k = A + B/T + C ln T + DT + ET2 + . . . (4)

where the extension consisting in the polynomial of T is supplemented by a ClnT term
leading to a multiplicand TC in the original equation. Yang et al. [15] also published a
logarithmic equation

ln k = ln A +
B

RT
+

C

(RT)2 (5)

where the extension consists of an additional term of the polynomial of 1/T. All of these
equations containing three or more parameters usually give a very good fit, but their
regression parameters have no physical meaning, i.e., their meaningful interpretation is
virtually impossible. An example application of Equation (5) (in fact, its analogy) is given
in Figure 1 (dashed line).

Some authors have tried to solve the curvature of the Kissinger plot theoretically.
Elder [16,17] suggested adding a term Tm in the Kissinger equation to obtain the so-called
generalized Kissinger equation:

dα

dt
= ATm exp

(
− E

RT

)
f (α) (6)

where α is the dimensionless degree of reaction or transformation and f (α) is the suitable
function that can be described by a suitable dependence on T, R, and E. Parameter m can
take the following values [16,17]:

• m = 0 leads to the standard Kissinger equation (the Arrhenius assumption is fol-
lowed [16])

• m = 0.5 is predicted by collision theory in the homogeneous gas phase and
• m = 1 is predicted by transition state theory.

The author of this paper attempted to use Equation (6) as a regression function in
many cases of curved Arrhenius or Kissinger plots, but values of m = 0.5 or m = 1 did
not noticeably change the linearity of these plots. Some curvature appeared for values
of m in the tens, hundreds, or even thousands, but such values of m have no physical
meaning. Formally, Equation (6) corresponds to the Equation (4) in which the first three
terms are considered.

Norwisz [18] and, apparently independently, Dutta and Ryan [19] modified the
Kissinger equation into the form:

dα

dt
= A exp

(
− E

RT

)[
1 +

E
RT

(
1− T0

T

)]
f (α) (7)

for DSC linear heating with time t:

T = T0 + βt (8)
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where the initial temperature of heating T0 is taken into account. This modification is
indeed able to curve the Arrhenius plot, but it contains one logical weakness: if the heating
starts sufficiently low below the temperatures at which the reaction or transformation
under study takes place, the initial heating temperature T0 may have hardly any noticeably
effect on the kinetics of the process, whereas it plays a crucial role in Equation (7). To clarify
the role of T0 in Equation (7), the experimental data from [5] were fitted using Equation (7)
as a regression function where T0 is the calculated regression parameter. The successful
regression is shown in Figure 2 whereas the calculated value of parameter T0 is quite
surprising: T0 = 396 K. Figure 6 in [5] shows that this temperature value T0 cannot be
the initial temperature of heating, but it is the temperature at which the heat flux in DSC
returns to its constant value after reaching the maximum value, namely for the highest
heating rate. In other words, this temperature characterizes the end of the transformation
process. From this point of view, Equation (7) can hardly be considered a useful result of
theoretical derivation, rather it is a phenomenological equation of the type:

dα

dt
= A exp

(
− E

RT

)
·
(

1 +
E

RT
− B

T2

)
f (α) (9)

or:

ln k = ln A− E
RT

+ ln
(

1 +
E

RT
− B

T2

)
(10)

representing only another variant of phenomenological Equations (4) and (5).
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regression function.

A possible explanation for the deviation from the Arrhenius equation is that the

reaction A k→ C does not proceed through a single-step rate-determining mechanism, but
proceeds through an intermediate B, e.g., as follows [12]:

A
k1
�
k−1

B
k2→ C (11)

Then for the rate constant k of the reaction as a whole, one can write [12,20]:

k =
k1k2

k−1 + k2
(12)
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This equation can be simplified:

k = k1 for k2 � k−1

k = k1k2
k−1

for k2 � k−1
(13)

The reaction scheme (11) is probably the simplest published scheme used for this reason; a
number of more complex schemes can be found in some papers.

Based on Equations (11)–(13), the author of this paper proposed a simpler scheme:

A
k1→ B

k2→ C (14)

where:
k = k1 for k2 � k1
k = k2 for k2 � k1

(15)

Then the analogy of the Equation (12) can be reconstructed retrospectively:

k =
k1k2

k1 + k2
(16)

where the Arrhenius equation can be used for k1 and k2. The resulting regression function
then contains the four regression parameters k∞1, k∞2, E1, and E2. However, for better
stability of regression calculations, it is better to write the relations for rate constants k1 and
k2 in the form:

ki = k12 exp
[
−Ei

R

(
1
T
− 1

T12

)]
, i = 1 and 2 (17)

where T12 is the temperature at which k1 = k2 = k12. For a concave-curved Arrhenius plot
(super-Arrhenius behavior) E1 < E2, then k1 < k2 for T < T12 and k1 > k2 for T > T12. Then the
resulting regression function contains the four regression parameters k12, T12, E1, and E2.

Again, the experimental data from [5] were fitted to validate the presented approach,
see Figure 3. As it can be seen, the fitting is successful in this case as well, similar to Figure 2.
The regression calculations give a value of temperature T12 = 372 K, which characterizes
the position of the curve bending. The calculated activation energies of 143 kJ/mol and
799 kJ/mol can be compared with the values of 156 kJ/mol and 402 kJ/mol [5] obtained by
fitting with two straight lines (see also Figure 1): while the E1 values are comparable, the E2
values are in a 2:1 ratio. The sensitivity to adding or removing experimental points at the
edges of the test temperature range was also modeled. While the fit with two straight lines
is extremely sensitive to such changes, the sensitivity of the fit using regression function
(16) is substantially lower, but far from negligible.
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Formally, the same procedure can be used for a convexly curved Arrhenius plot
(sub-Arrhenius behavior), only the regression function (16) must be replaced by k = k1 + k2.

2. Derivation of the Modified Arrhenius Equation

The linearization plot is used not only in the case of the Arrhenius equation. The
cumulative distribution function (cdf) of the Weibull distribution used in survival analysis,
reliability engineering, failure analysis, etc., is as follows:

F(x; a, b) = 1− exp
[
−
( x

a

)b
]

(18)

where a is the scale parameter and b is the shape parameter. This cdf can be linearized:

ln{− ln[1− F(x)]} = b ln x− b ln a (19)

that is, the term on the left side of this equation is a linear function of ln x. The plot
with axes:

ln x versus ln
{
− ln

[
1− F̂(x)

]}
(20)

where F̂(x) is empirical cdf, is called the Weibull plot. If in a concave-curved Weibull
plot, its left-end points to the lnx0 on the x-axis, it is an unmistakable indication that the
three-parameter Weibull distribution:

F(x; a, b, x0) = 1− exp

[
−
(

x− x0

a

)b
]

(21)

should be used, i.e., formally x is replaced by x − x0. By analogy, if in a concave-curved
Arrhenius plot its right end tends towards the 1/T0 on 1/T-axis, the replacement of
the temperature T by the temperature difference T − T0 should be considered in the
Arrhenius equation:

k = k∞ exp
[
− E

R(T − T0)

]
(22)

For a three-parameter Weibull distribution, the relation x > x0 must be held. According
to Equation (22), k = 0 for T→T0 but for many reasons it should be zero even for T < T0.
Then Equation (22) must be replaced by the more accurate equation:

k = k∞ exp
[
− E

R(T−T0)

]
for T > T0

k = 0 for T ≤ T0
(23)

Before discussing the newly derived regression function (23), let it be used for fitting
the experimental data from [5], see Figure 4. It can be seen that the regression is again
very successful. The regression calculations give T0 = 363 K. Figure 6 in [5] shows that
at this temperature the heat flux in DSC starts to increase from its constant values at all
heating rates. This means that this temperature is the initial temperature of the described
transformation, in this case austenitization. Thus, only one parameter with a well-defined
physical meaning has been added to the original Arrhenius equation (in the previous case
they were two parameters), which causes the required curvature of the Arrhenius plot.
This achieved the desired goal of this paper. It now remains to verify the suitability of the
regression function (23) in the widest possible range of scientific research. Therefore, some
specific cases will be presented.
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Formally, for convexly curved Arrhenius plot (sub-Arrhenius behavior) the
regression function:

k = k∞ exp
[
− E

R(T + T0)

]
(24)

can be applied (some of the first attempts look very promising). However, the physical
interpretation of temperature T0 is likely to be a very difficult problem in this case.

3. Verification of the Suitability of the Modified Arrhenius Equation
3.1. Materials Science

The austenitization kinetics of SA 508 Gr.3 steel was studied by Luo et al. [2] using an
isoconversional method. They described the dependence of the phase transformation rate
on temperature using the Arrhenius equation (see Figure 5 in [2]):

dα

dt
= A exp

(
− E

RT

)
f (α) (25)

where α is the extent of conversion. The authors replaced the product Af (α) by a new
pre-exponential factor B(α) and took into account the dependence of effective activation
energy on the extent of conversion E(α):

dα

dt
= B(α) exp

[
−E(α)

RT

]
(26)

Results of regression using the modified regression function:

dα

dt
= B(α) exp

[
− E(α)

R(T − T0)

]
(27)

are shown in Figure 5; the temperature T0 values (means and standard deviations) for
different extents of conversion α are given in Table 1.

Plots in Figure 5 show certain curvatures. However, a closer look at the figure reveals
that every third and fifth lowest experimental point for all conversions appear to be outliers.
Without performing any statistical test for outliers, these eight points (i.e., the points with
y-values ≈ −6.3 and ≈ −7.5) were removed and the previous regression calculations were
repeated. The results are shown in Figure 6 and Table 2.
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Figure 5. Arrhenius plot for austenitization of SA 508 Gr.3 steel using isoconversional method [2] 
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Table 1. T0 temperatures for different conversions corresponding to the plots in Figure 5. 

Conversion α 0.1 0.35 0.5 0.7 Mean ± s.d. 
temperature T0 [K] 801 943 959 753 864 ± 51 
temperature T0 [°C] 528 670 686 480 591 ± 51 
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Figure 5. Arrhenius plot for austenitization of SA 508 Gr.3 steel using isoconversional method [2]
based on the modified Arrhenius equation in the form of Equation (27).

Table 1. T0 temperatures for different conversions corresponding to the plots in Figure 5.

Conversion α 0.1 0.35 0.5 0.7 Mean ± s.d.

temperature T0 [K] 801 943 959 753 864 ± 51
temperature T0 [◦C] 528 670 686 480 591 ± 51
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Figure 6. Arrhenius plot for austenitization of SA 508 Gr.3 steel using isoconversional method [2]
(reduced data) based on the modified Arrhenius equation in the form of Equation (27).

Table 2. T0 temperatures for different conversions corresponding to the plots in Figure 6
(reduced data).

Conversion α 0.1 0.35 0.5 0.7 Mean ± s.d.

temperature T0 [K] 904 997 1005 938 971 ± 17
temperature T0 [◦C] 671 724 732 665 698 ± 17

It can be seen that the T0 values in Table 2 are higher and closer together than the
values in Table 1. Therefore, another regression of the reduced data set was performed, this
time with a regression parameter T0 common to all four conversion values 0.1, 0.35, 0.5
and 0.7. This resulted in T0 = 966.8 K with an estimated standard deviation of 9.1 K, i.e.,
T0 = (967 ± 9) K = (694 ± 9) C. Graphical output of these calculations is shown in Figure 7.
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Figure 7. Arrhenius plot for austenitization of SA 508 Gr.3 steel using isoconversional method [2]
(reduced data) based on the modified Arrhenius equation in the form of Equation (27), with common
regression parameter T0 for all α values.

Austenitization starts at temperature Ac1, which seems to be close to the obtained
value of temperature T0. The temperatures Ac1 are not usually published, but they can be
calculated from their chemical composition, which for SA 508 Gr.3 steel is given in Table 3.

Table 3. Chemical composition of SA508 Gr.3 steel [2].

Element C Mn Si Ni Cr Mo V Al N Fe

composition wt.% 0.20 1.47 0.17 0.89 0.13 0.51 0.001 0.039 0.014 bal.

For the calculation of the Ac1 temperature, the paper [21] was chosen, which is
sufficiently new and takes into account as many elements from Table 3 as possible. It
provides the equation:

Ac1 = 742− 29 ·C− 14 ·Mn + 13 · Si + 16 ·Cr− 17 ·Ni− 16 ·Mo + 45 ·V + 36 ·Cu (28)

where the symbols of chemical elements are to be replaced by their content in weight
percent. Equation (28) for values gives Ac1 = 696.7 ◦C, with a recommended standard
deviation of 9.2 ◦C [21], then the result can be written as Ac1 = (697 ± 9) ◦C = (970
± 9) K. The agreement with the temperature T0 (see mean value in Table 2 and value
T0 = (967 ± 9) K = (694 ± 9) ◦C obtained in common regression) is practically perfect. It can
then be argued that the temperature T0 from the modified Arrhenius equation is directly Ac1
temperature of studied steel (logical judgment is supplemented by numerical verification).

DSC studies on the transformation kinetics of Ga7.5Se92.5 chalcogenide glass [22] (one
crystallization peak) and of Si12.5Te87.5 chalcogenide glass [23] (two separated crystalliza-
tion peaks) applying the isoconversional method were performed by El-Oyoun. The results
are plotted in the Kissinger plots in Figure 8. The values of T0 are 339 K for Ga7.5Se92.5
chalcogenide glass, 413 K for the first crystallization peak and 522 K for the second crystal-
lization peak, both for Si12.5Te87.5 chalcogenide glass. Comparing these temperatures with
corresponding DSC curves [22,23], the T0 values characterize approximately the onset of
heat flux for the lowest heating rates.
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3.2. Food Storage

Sá and Sereno [24] studied the browning kinetics of onion and strawberry during
the storage at temperatures 5, 15, 25, 35 and 45 ◦C and at relative humidity 33, 44 and
53 %. The extent of browning of the freeze-dried Portuguese red onion (Allium cepa L.)
was determined by the measurement of the absorbance of the filtered extract in 1 cm
quartz cells at wavelength of 420 nm using a UV/Vis Lambda 2 Spectrophotometer (Perkin
Elmer, Connecticut, USA), see the official ADOGA method [25]. The authors could then
determine the corrected reaction rate constants and plot them in the Arrhenius plot (see
Figure 3 in [24]) with the Arrhenius straight lines and the curves corresponding to the
Williams-Lander-Ferry model (WLF model) [26]. Figures 9 and 10 in this paper show
that the modified Arrhenius plot based on Equation (23) leads to a successful fit of the
considered experimental data. Figure 9 shows fit with individual values of temperature
T0 for each relative humidity: 261 K for 33%, 242 K for 44% and 255 K for 53%. Figure 10
shows the fits with the common value of temperature T0 = 256 K = −18 ◦C for all relative
humidity values. Temperatures below −18 ◦C are used as a standard for long-term storage
of food. The WLF model used by Sá and Sereno [24] to fit experimental data leads to the
same fitting curves, as will be discussed in the Discussion chapter.
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3.3. Botany

Curved Arrhenius plots in the studies of biological processes (especially in the context
of plants) were discussed by Wolfe and Bagnall [27] as early as 1980. In 44 references
many models of various complexity explaining the curvature of the Arrhenius plots are
given. Additionally, Nishiyama et al. [3] studied the temperature dependence of the respi-
ration rate of camellia leaves (Camellia japonica) and obtained the curved Arrhenius plot.
They compared the fitting using Equation (5) (see dashed line in Figure 11) with the split
into two straight lines (it was experimental data of Nishiyama et al in [3] that were the
basis for the paper of Yang et al. [15]). However, even in this case the modified Arrhenius
Equation (23) gives a reasonably good fit, only slightly worse than Equation (5), see solid
line in Figure 11. While Equation (5) is completely phenomenological and contains parame-
ters without any physical meaning, the value of temperature T0 = 235 K = −38 ◦C obtained
from the regression calculations using Equation (23) as regression function apparently
represents the temperature below which respiratory processes no longer occur.
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3.4. Microbiology

Ratkowski et al. [28] drew the Arrhenius plots of the growth rates of bacterial cultures
reported by Johnson et al. [29] (see p. 199). The growth rates of the studied bacterial
cultures reach their maxima at certain temperatures. Johnson et al. [29] considered relative
growth rates (maximum of growth rate = 100 %) and Ratkowski et al. [28] focused only on
the temperature range where growth rates decrease with decreasing temperature (i.e., with
increasing 1/T). They used fully phenomenological regression function:

√
k = b · (T − T0) (29)

proposed by Ohta and Hirahara [30]. In Figure 12 the Arrhenius plots of relative growth
rates are drawn with fits based on the modified Arrhenius Equation (23) (solid lines) and
on phenomenological regression function (29) (dashed lines). The modified Arrhenius
Equation (23) leads to a better fit, especially for the highest growth rates. On the other
hand, with regard to the number of regression parameters (only two) and the time of publi-
cation (1977), the function (29) represented a significant advance in the phenomenological
description of growth of bacterial cultures at that time.
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Figure 12. Arrhenius plots for the relative growth rates of bacterial cultures [28,29] based on the
modified Arrhenius Equation (23) (solid lines) and on phenomenological regression function (29)
(dashed lines). See Table 4 for full names of bacterial cultures.

The values of temperature T0 obtained from regression calculations are shown in
Table 4 for both regression functions (23) and (29). Additionally, the values published by
Ratkowski et al. [28] are added for comparison. The negligible differences between the
second to last column and the last column may be due to different regressions: y = lnk in
this paper and y =

√
k in paper [28]. Finally, it can be said that temperature T0 (in both

Equations (23) and (29)) can be interpreted as the temperature below which the bacterial
culture under consideration does not grow.

Table 4. Temperatures T0 for different bacterial cultures corresponding to the plots in Figure 12.

No Bacterial Culture T0 [K] (23) T0 [◦C] (23) T0 [K] (29) T0 [K] [28]

1 Bacillus circulans 283.4 10.3 296.0 296

2 Lactobacillus
delbrueckii 283.6 10.5 290.9 290

3 Escherichia coli 271.3 −1.8 277.8 276
4 Aerobacter aerogenes 254.1 −19.0 267.4 267
5 Sporotrichum carnis 257.3 −15.9 264.7 264
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3.5. Zoology

Laidler [4] summarized some unusual applications of the Arrhenius law in the animal
kingdom, e.g., in entomology (chirping of tree crickets, creeping of ants or flashing of
fireflies). In particular, the creeping of the ant Liometopum apiculatum (described by G. Mayr
in 1870, widespread in southwestern United States and from northwestern to southeastern
Mexico) using the Arrhenius law was studied by Crozier [31] who used the results of
measurements of ant speed versus temperature made by Shapley [32]. The Arrhenius
plot of ant speed values (excluding the two outliers specified by Shapley and the third
outlier removed by Crozier) is shown in Figure 13. The fit based on the modified Arrhenius
Equation (23) leads to temperature T0 = 252 K = −21 ◦C. It can be interpreted as the
temperature at which the movement of the ants under study stops.
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Figure 13. Modified Arrhenius plots for the speed of ant Liometopum apiculatum [31,32] based on
Equation (23).

Laidler [4] also presented the measurement of the frequency of terrapin’s heartbeat
at different temperatures made by Martin [33]. The Arrhenius plot of the rate of ter-
rapin’s heartbeat is shown in Figure 14. The experimental data are fitted excellently using
Equations (16) and (17) as regression function, where temperature T12 = 285 K = 12 ◦C
separates two nearly linear parts of the plot with different slopes, i.e., with different values
of activation energy. A considerably worse fit is obtained using the modified Arrhenius
Equation (23) but, on the other hand, regression parameter T0 = 277 K = 4 ◦C represents
the limit temperature below which terrapin’s heartbeat appears to stop.

Molecules 2021, 26, x FOR PEER REVIEW 14 of 21 
 

 

 
Figure 13. Modified Arrhenius plots for the speed of ant Liometopum apiculatum [31,32] based on 
Equation (23). 

Laidler [4] also presented the measurement of the frequency of terrapin’s heartbeat 
at different temperatures made by Martin [33]. The Arrhenius plot of the rate of terrapin’s 
heartbeat is shown in Figure 14. The experimental data are fitted excellently using Equa-
tions (16) and (17) as regression function, where temperature T12 = 285 K = 12 °C separates 
two nearly linear parts of the plot with different slopes, i.e., with different values of acti-
vation energy. A considerably worse fit is obtained using the modified Arrhenius 
Equation (23) but, on the other hand, regression parameter T0 = 277 K = 4 °C represents 
the limit temperature below which terrapin’s heartbeat appears to stop. 

 
Figure 14. Modified Arrhenius plots for the rate of terrapin’s heartbeat [4,31] based on Equation (23) 
(solid line) compared with the fit using Equations (16) and (17) as regression function (dashed line). 

4. Discussion 
The effort to cope with the curvature of the Arrhenius plot is very old and many 

phenomenological equations have been published, e.g., Equations (4)–(7), (9) and (10). 
Some of them have been published and used only a few times but, e.g., the supplement of 
C/(RT)2 as an addend in Equation (5) (or exp[C/(RT)2] as a multiplicand before logarithmi-
zation) causing curvature of the Arrhenius plot) has been used very often as a so-called 
Bässler-like factor [3,34]. Unfortunately, parameter C has no physical meaning and after 

Figure 14. Modified Arrhenius plots for the rate of terrapin’s heartbeat [4,31] based on Equation (23)
(solid line) compared with the fit using Equations (16) and (17) as regression function (dashed line).
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4. Discussion

The effort to cope with the curvature of the Arrhenius plot is very old and many phe-
nomenological equations have been published, e.g., Equations (4)–(7), (9) and (10). Some of
them have been published and used only a few times but, e.g., the supplement of C/(RT)2

as an addend in Equation (5) (or exp[C/(RT)2] as a multiplicand before logarithmization)
causing curvature of the Arrhenius plot) has been used very often as a so-called Bässler-like
factor [3,34]. Unfortunately, parameter C has no physical meaning and after adding the
Bässler factor in Equation (5), parameter B loses its previous physical meaning: B = −E
(activation energy).

According to the Arrhenius Equation (1), the reaction rates at very low temperatures
are very small but non-zero. This is acceptable for chemical reactions of simple chemicals.
On the other hand, many processes whose temperature dependence is also described by the
Arrhenius equation, can proceed only above a certain temperature but they cannot proceed
below it. In materials science, polymorphous materials can exist in a particular form
or crystal structure only above certain temperatures (often within a certain temperature
range), e.g., austenite (in equilibrium state) can exist only above the temperature Ac1.
Additionally, plant and animal life can exist above certain individual temperatures. The
modified Arrhenius Equation (23) respects these facts: k > 0 only for T > T0, for T < T0 is
k = 0.

The validity of the modified Arrhenius Equation (23) can be illustrated by drawing
in the plot lnk vs. 1/(T − T0) instead of in the usual plot lnk vs. 1/T where the linear
course is obtained with the slope −Em/R. This is shown in Figure 4 redrawn in the plot
lnk vs. 1/(T − T0), see Figure 15. A similar procedure is used in the Weibull plot when a
three-parameter Weibull distribution is considered: ln x-axis is replaced by ln(x − −x0)
axis, see Equation (20).
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Figure 15. Kissinger plot for Ni-Mn-In-Mg shape memory alloy [5] using the modified Arrhenius
Equation (23) as regression function. Replacing 1/T axis by 1/(T − T0), a linear plot is obtained
instead of a curved plot.

One of the criteria for the suitability of the regression function is the sum of the squares
of the deviations between the measured and calculated values of the observed quantity.
These sums are compared in Table 5 for the Kissinger plot for Ni-Mn-In-Mg shape memory
alloy [5], see Figures 1 to 4. It can be seen that the worst results are obtained for the
twice (“per partes”) used linear dependence and phenomenological function analogous
to Equation (5). The lowest sum is obtained for Equation (7) whose derivation is rather
problematic, see Introduction chapter. Comparable values of the sum are obtained for the
two newly presented functions described by Equation (16) (supplemented by Equation (17))
and Equation (23).
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Table 5. Comparison of sums of squares in the Kissinger plot for Ni-Mn-In-Mg shape memory
alloy [5] using the presented equations as regression functions.

Equation(s) Figure S

(1) (twice) 1 0.026706
analogy of (5) 1 0.031670

(7) 2 0.003730
(16) and (17) 3 0.009765

(23) 4 0.008962

Although the symbol E denotes the (activation) energy in the original Arrhenius
Equation (1), as well as in the modified Arrhenius Equation (23), the two energies differ sig-
nificantly. Let the energy in Equation (1) henceforth be denoted as EA and in Equation (23)
as Em. The activation energy EA is usually defined as:

EA = −R
∂ ln k

∂(1/T)
= RT2 ∂ ln k

∂ T
(30)

therefore, the slope of the Arrhenius plot is equal to −EA/R, see also Equation (2). Differ-
entiation (30) of the modified Arrhenius Equation (23) gives:

EA = Em

(
T

T − T0

)2
(31)

Two limits can be easily determined:

lim
T→∞

EA = Em, lim
T→T0

EA → ∞ (32)

as well as three equalities:

EA = 4 Em for T = 2 T0
EA = 9 Em for T = 1.5 T0

EA = 121 Em for T = 1.1 T0

(33)

Equation (32) shows that the slope of the modified Arrhenius plot for higher tempera-
tures is approximately equal to the slope of the classical Arrhenius plot but approaching T0
it grows above all limits. Equation (33) implies that Em can be orders of magnitude lower
than EA. On the other hand, Em is really constant (independent of temperature), while
EA is dependent on temperature in the curved Arrhenius plot (as invariable constant is
only for the classical Arrhenius Equation (1)). For example, for kinetic Equation (4) the
differentiation (30) gives the value:

EA = R(−B + CT + DT2 + 2ET3 + . . .) (34)

and for Equation (5):

EA = −B− 2
C

RT
(35)

It is the constant (activation) energy Em and the single parameter T0 (the lowest tem-
perature at which the process under study still takes place), which controls the curvature of
the curved Arrhenius plot, which are the main advantages of the newly presented modified
Arrhenius Equation (23) compared to a number of other more or less phenomenological
relations containing one or often more parameters without any physical meaning.

After deriving and verifying the suitability of the modified Arrhenius Equation (23),
the author of this paper tried to find some similar equations, i.e., equations containing the
exp[B/(T − T0)] term or the B/(T − T0) term after logarithmization. They have been found
in fields of science far from the fields mentioned above:
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• The Vogel−Fulcher−Tammann equation (VFT equation) [35–37] is used to describe
the viscosity of liquids as a function of temperature, especially near the glass transition:

η = η0 exp
(

B
T − TVF

)
(36)

where η0, B, and TVF (typically lying about 50 ◦C below the glass transition tem-
perature) are empirical material-dependent parameters. García-Colín et al. [38]
have not very convincingly attempted to build this purely empirical equation on
a theoretical basis.

• In the study of shear creep and recovery of elastomers, Conant et al. [39] published an
empirical equation for temperature dependence of creep or recovery time tc:

ln tc =
Cα

T − b
+ Cβ (37)

where Cα, Cβ, and b are empirical constants. They mentioned the similarity of
Equation (36) to the Arrhenius equation and called constant b as “correction” term.

• When studying dielectric relaxation in some simple alcohols, Davidson and Cole [40]
found that the temperature dependence of relaxation times deviates systematically
from the Arrhenius law. Most of their data could be fitted to the expression:

τ0 = A exp
(

B
T − T∞

)
(38)

For glycerol and n-propanol, these authors even found that the temperature values T∞
determined from electric relaxation times agree with the temperature values TVF (see
VFT equation) found in the viscosity studies performed by Tammann and Hesse [37].
This agreement T∞ = TVF means that there are no different specific temperatures for
the individual physical quantities, but only one common temperature characterizing
the material under study as such.

This means that for the three reciprocal values 1/η, 1/tc and 1/τc, the modified
Arrhenius Equation (23) holds. A broader presentation of the interconnection of the
Kissinger method used in the study of kinetic processes in materials with many phenomena
in other fields of science was made by Vyazovkin in his excellent review [41].

The authors of the Williams-Lander-Ferry model [26] came out of the VFT equation [35,37].
The opposite path is very simple to show. If the reference temperature is identified with glass
transition temperature Tg, the VFT equation can be written in the form:

ln

(
η

ρT

/
ηg

ρgTg

)
= −

c1(T − Tg)

c2 + (T − Tg)
(39)

where η is viscosity and ρ is the density of the studied liquid. Since the product ρT is not
very temperature sensitive (especially not compared to the right side of the equation), the
simplified left side of the equation ln(η/ηg) can be considered. Then Equation (38) can be
rewritten into the form:

ln η = ln ηg − c1 +
c1c2

T − (Tg − c2)
(40)

After the substitutions:

ln ηg − c1 = ln η0, c1c2 = B, Tg − c2 = TVF (41)

logarithmized VFT Equation (36) is obtained.
Soesanto and Williams [42] prefer the WLF equation to the VFT equation (and all other

equations of this type, i.e., (36), (37), including the modified Arrhenius Equation (23)). They
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argue for clarified meaning of the parameters of the WLF equation Tg, ηg, c1, and c2. The
meaning of the parameters Tg and ηg is unquestionable, but parameters c1 and c2 are only
phenomenological parameters without any physical meaning. In contrast, the parameters
in Equation (23) have in principle a clear physical meaning: the meaning of k∞ is the same
as in the original Arrhenius equation, E represents some analogy of activation energy
(independent of temperature) and T0 is the temperature characterizing the material under
study, common to more physical properties of this material. Moreover, the parameters
k∞, E, and T0 are independent of each other, while the parameters of the WLF equation
Tg, ηg, c1, and c2 are not (cannot be) independent. This means that for regression, one
parameter (usually Tg) must be predetermined and only the remaining three parameters
can be calculated in the regression procedure.

As shown above, the regression function (16) accompanied by Equation (17), as well
as the modified Arrhenius Equation (23) allow a successful regression of concave Arrhe-
nius plots. On the other hand, their abilities to describe complex chemical reactions are
limited. This limitation is quite fundamental and consists of a small number of regression
parameters − in principle, it is not possible to accurately describe multi-step reactions
using only three or four parameters. Probably the simplest published reaction (11) used in
this case had to be further simplified to the reaction with the scheme (14), in fact with the
scheme:

A
k1 or k2→ C (42)

in order to limit the number of regression parameters in the regression function (16) accom-
panied by Equation (17) to four. The modified Arrhenius Equation (23) contains only three
regression parameters and also cannot be used successfully in the case of more complex
phenomena, such as relaxation processes in gas-containing plasmas [43,44]. Overleaf, the
dielectric relaxation in some simple alcohols studied by Davidson and Cole [40] has been
successfully described using Equation (38), which is actually another form of the modified
Arrhenius Equation (23).

5. Conclusions

The presented findings can be summarized as follows:

1. In the case where the experimental Arrhenius plot consists of two approximately
linear parts, the fit using regression function (16) accompanied by Equation (17) gives
a successful result. The use of the regression function (16) is much more suitable than
using two independent straight lines.

2. For the generally curved Arrhenius plot, the regression function (23) is very suitable.
Only one parameter, T0 with clear physical meaning (the lowest temperature at which
the studied process is still running) controls the curvature of the Arrhenius plot. For
T0→0 the modified Arrhenius Equation (23) transitions smoothly into the original
Arrhenius Equation (1).

3. The two models presented for a concave-curved Arrhenius plot (super-Arrhenius be-
havior) can be simply modified for the convex-curved Arrhenius plot
(sub-Arrhenius behavior).

4. In addition to chemistry, the newly proposed model (23) can also be used in ma-
terials science, food storage, botany, microbiology and even in zoology, as has
been demonstrated.

5. In the past, phenomenological equations corresponding to the modified Arrhenius
Equation (23) have been used for the temperature dependence description of liquid
viscosity, creep or recovery time and dielectric relaxation time. Its validity seems
to be very broad in many different fields of science and technology. However, it is
necessary to try to interpret the meaning of temperature T0, as it has been identified
with the temperature Ac1 in the austenitization of SA 508 Gr.3 steel.

6. Also, the WLF equation is essentially equivalent to the modified Arrhenius Equation (23).
However, its parameters Tg, ηg, c1, and c2 are not independent and for regression one
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parameter (usually Tg) must be specified in advance and only the remaining three
parameters can be calculated in regression procedure.

7. When the temperature dependence of several properties of a single material is studied
using the modified Arrhenius Equation (23), the obtained temperature values T0
represent the only one common temperature characterizing this material as a whole,
not its individual properties.
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