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Clostridioides difficile colonizes a polymicrobial environment in the intestine and is a causative agent for antibiotic-
associated diarrhea (AAD) and pseudomembranous colitis (PMC). The most important virulence factors of C. 
difficile are bacterial toxins, and three toxins (toxin A, toxin B, and binary toxin) are produced by toxigenic 
strains. Other virulence factors include spores, flagella, capsules, biofilms, hydrolytic enzymes and adhesins. C. 
difficile infection (CDI) is specifically diagnosed by anaerobic culture and toxin detection by either nucleic acid 
amplification test (NAAT) or enzyme-linked immunosorbent assay (ELISA). For treatment of CDI, metronidazole, 
vancomycin and fidaxomicin are used based on the severity of CDI. Mutual interaction between C. difficile and gut 
microbiota is associated with pathogenesis of CDI, and decreased microbial diversity with altered gut microbiome 
was detected in CDI patients. Restoration of certain gut microbiota is considered to be potentially effective for 
the prevention and treatment of CDI, and an ideal goal for CDI patients is restoration of the gut microbiota to a 
healthy state. Fecal microbiota transplantation (FMT) is a highly successful method of microbiome restoration 
and has been reported to be effective for the prevention of recurrent CDI. In addition, approaches to restoring 
the gut microbiota by using probioitcs and live biotherapeutic products (LBPs) are currently being studied to 
examine the effect on CDI. Further microbial ecological research on C. difficile and gut microbiota could lead to 
a better understanding of the pathogenesis and treatment of CDI.
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INTRODUCTION

Microbial ecology is the study of relationships between 
microbes and their environments and how microbes interact 
with one another and their environments [1]. Microbial ecology 
includes interactions of microbes with humans, animals, plants, 
food, and surfaces which may serve as sources or reservoirs of 
microbes and is critically important, as microbes represent the 
majority of the genetic and metabolic diversity on the planet and 
drive most of the ecosystem processes.

Various microbes influence human microbiome, and disruption 
of the microbial ecosystem in humans may lead to diseases 
including infectious diseases [2]. It is evident that the diversity 
of microbes influences the composition of the human microbiota 
and consequently affects immune function and health outcomes. 
In humans, not only pathogens but also commensals modulate the 
gut microbiota and immune systems [2]. Clostridioides difficile, a 
causative pathogen for antibiotic-associated diarrhea (AAD) and 
pseudomembranous colitis (PMC), colonizes a polymicrobial 
environment in the intestine and responds to a dynamic microbial 

ecosystem [3, 4]. In this review article, the microbial-ecological 
significances of mutual interaction between C. difficile and gut 
microbiota are introduced and discussed.

CLOSTRIDIOIDES DIFFICILE

Microbiology
Clostridioides difficile was formerly called as Clostridium 

difficile, but according to its molecular classification, it 
was reclassified as Clostridioides difficile of the family of 
Peptococcaceae [5]. C. difficile is a Gram positive spore-forming 
obligately anaerobe bacterium, and it can colonize various hosts 
including humans and non-human mammals. Although it is 
not traditionally considered to be part of the human indigenous 
microbiota, it is estimated that C. difficile may comprise 1–3% 
of commensal bacteria in adult humans [6]. It is of note that it is 
detected in more than 80% of infants under 2 years of age without 
any gastrointestinal symptoms [7]. C. difficile ferments glucose, 
fructose, and mannitol but not arabinose, galactose, lactose, 
maltose, and sucrose [8]. It produces 3 different toxins, toxin A, 
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toxin B, and binary toxin, which are involved in its pathogenesis 
[9, 10]. C. difficile is isolated by anaerobic cultivation at 37°C 
for 2–3 days using CCFA (cycloserine-cefoxitin fructose agar) 
or CCMA (cycloserine-cefoxitin mannitol agar) medium. It is 
resistant to a broad spectrum of antibiotics, including beta-lactams 
and macrolides, but is sensitive to vancomycin, metronidazole, 
and fidaxomicin [11].

Pathogenesis
Virulence factors of C. difficile are listed in Table 1 [3, 12]. 

Toxins are the most important virulence factors, and toxin-
producing strains (toxigenic strains) induce AAD and PMC 
after disruption of indigenous gut microbiota due to antibiotic 
treatment. Toxin A, formerly called as enterotoxin, is encoded 
by tcdA in PaLoc (pathogenicity locus) and inactivates Rho 
protein via its glucosyltransferase activity [13]. Similarly, toxin 
B, formerly called as cytotoxin, is encoded by tcdB in PaLoc 
and inactivates Rho protein via its glucosyltransferase activity. 
Encoded by cdtA/cdtB in CdtLoc (Cdt locus), binary toxin 
(CDT) is a two-component toxin and is composed of CDTa and 
CDTb, which are responsible for toxin activity and binding to 
the receptor of LSR (lipolysis- stimulated lipoprotein receptor), 
respectively [14]. CDTa is an ADP-ribosylating toxin and inhibits 
polymerization of actin molecules. Then, cell structure is changed 
with formation of microtubule protrusion which increases the 
adhesion of extracellular C. difficile. Bacterial strains without 
the production of toxins are called non-toxigenic ones and do 
not induce any diseases. Other virulence factors include spores, 
flagella, capsules, biofilms, hydrolytic enzymes and adhesins 

[15]. In addition to bacterial virulence factors, cytokines, reactive 
oxygen species, and nitric oxide are host-derived virulence 
factors and are associated with the induction of inflammation and 
cell injury.

C. difficile infection (CDI)
C. difficile is detected by anaerobic culture and nucleic acid 

amplification test (NAAT) targeting mainly toxin A [16–19]. 
Enzyme-linked immunosorbent assays (ELISAs) for toxin A and 
B are used for the detection of toxigenic strains. The glutamate 
dehydrogenase (GDH) test is also used for detection of both 
toxigenic and non-toxigenic C. difficile, but it should be noted 
that other clostridial species including proteolytic Clostridium 
botulinum and Clostridium sporogenes produce GDH [20, 21]. For 
diagnosis of CDI, in addition to isolation of C. difficile by anaerobic 
culture, the combination of the NAAT and GDH is clinically used. 
Risk factors of CDI are listed in Table 2, and they include antibiotic 
exposure, older age, hospitalization, nursing home stay, and use 
of proton pump inhibitors (PPIs) or histamine 2 receptor blockers 
(H2RAs) [22–25]. Broad spectrum penicillins and cephalosporins, 
clindamycin, and fluoroquinolones possess a higher risk of CDI 
induction than other antibiotics. Patient age of 65 years or older 
increases the risk of CDI 5- to 10-fold, compared with patents 
<65 years of age. Most cases of CDI are linked to hospitalization 
or nursing home stays. Gastric acid suppressants including PPIs 
and H2RAs may disrupt the intestinal indigenous microbiota, 
allowing for C. difficile colonization. Other risk factors include 
immunosuppressants, inflammatory bowel diseases, gastrointestinal 
surgeries, transplantations and chronic renal diseases.

Table 1. Virulence factors of Clostridioides difficile infection

Virulence factor Main effect
Spore-forming ability Survival activity against stresses
Flagella Motility
Capsule Anti-phagocytosis
Biofilm formation Resistance to antibiotics/oxygen stress
Hydrolytic enzymes (hyaluronidase, gelatinase, collagenase) Destruction of tissue
Adhesins (Cwp66, Fbp68, SLP) Adherence to epithelial cells
Cwp84 Proteolytic activity
CD2831 Collagen binding protein
Toxin A Enterotoxigenic activity
Toxin B Cytotoxic activity
Binary toxin (CDT) Disruption of cytoskelton
Cytokines Induction of inflammation, chemotaxis
Reactive oxygen species Injury of intestinal epithelial cells
Nitric oxide Injury of DNA

Table 2. Risk factors for Clostridioides difficile infection

Risk factor Remarks
Antibiotic exposure Greater risk with penicillin, cephalosporins, clindamycin, and fluoroquinolones
Older age Increased risk in patients >65 years old
Hospitalization Increased risk with longer hospitalization
Nursing home stay Comorbidities and frequent antibiotic therapy are observed in residents
Use of proton pump inhibitors (PPIs) or 
histamine 2 receptor blockers (H2RA)

Induction of disruption of gut microbiota by gastric acid suppressants

Others Immunosuppressants, inflammatory bowel diseases, gastrointestinal surgeries, 
transplantations, chronic renal diseases
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For the non-serious CDI patients, metronidazole is 
recommendable as the first-choice drug, and vancomycin and 
fidaxomicin are recommendable for serious cases of CDI or cases 
of CDI with a high risk of recurrence [16–19, 26, 27]. Even after 
effective chemotherapy for the primary CDI, recurrent CDI occurs 
in 10–25% of patients due to either relapse of infection with 
the original strain or re-infection with different strain [28]. For 
prevention of recurrent CDI, several prophylactic interventions 
have been using passive immunization with a monoclonal 
antibody (bezlotoxumab) to toxin B, antibiotic prophylaxis, 
and microbiota-targeted therapy, including faecal microbiota 
transplantation (FMT), probiotics, and live biotherapeutic 
products (LBPs), have been reported [29, 30]. Bezlotoxumab 
has been reported to be effective for the prevention of recurrent 
CDI in combination with antibiotics [31]. A recent meta-analysis 
showed that oral vancomycin prophylaxis, one of the antibiotic 
prophylaxis interventions, was associated with reduced rates for 
both primary and secondary CDI in the patient with high risk 
factors [32]. The effects of FMT, probiotics, and LBPs on CDI 
are introduced later in this review. For the prevention of CDI 
in hospitals and nursing homes, use of gloves and disposable 
gowns by medical staff, healthcare personnel, and visitors is 
recommended throughout entire diarrheal episodes. It is important 
to recognize that alcohol-based hand hygiene is not effective 
due to spore formation by C. difficile, and that mechanical hand 
washing with running water and soap prevents the spread of C. 
difficile. It has been reported that more than 1,000 ppm of chlorine 
is effective for environmental cleaning [33].

INTERACTION BETWEEN C. DIFFICILE AND THE 
GUT MICROBIOTA

It has been reported that a toxigenic C. difficile strain induced 
lethal colitis in germfree (GF) mice but that no serious colitis 
was induced by the toxigenic strain in conventional (CV) mice 
harboring healthy commensal microbiota, indicating that healthy 
gut microbiota suppresses the outgrowth of C. difficile [34]. 
We showed that the growth of C. difficile was inhibited by a 
mix of intestinal microbiota (Enterococcus avium, Klebsiella 
pneumoniae, Parabacteroides distasonis, Eubacterium lentum, 
Clostridium ramosum and Clostridium perfringens) isolated 
from infant feces in continuous flow culture, suggesting that the 
inhibition may be due to the consumption of amino acids by gut 
microbiota [35].

Antibiotic therapy disrupts the intestinal commensal 
microbiome, reducing microbiota diversity and colonization 
resistance, which may lead to CDI, including AAD and PMC 
[36]. Gut dysbiosis is generally defined as “any change to the 
composition of resident commensal communities relative to 
the community found in healthy individuals”, and it can lead to 
deficient education of the host immune system and subsequent 
development of immune-mediated diseases [37].

Correlations between CDI and the gut microbiota have been 
analyzed by culture-independent genomic techniques, including 
next-generation sequencing (NGS). Pyrosequencing analysis of 
fecal specimens of the patients with CDI and C. difficile-negative 
nosocomial diarrhea (CDN) showed decreases in microbial 
diversity and species richness compared with those of healthy 
controls (HCs), and the relative abundances of Ruminococcaceae 
and Lachnospiraceae were significantly decreased in CDI and CDN 

patients [38]. Goldberg et al. [39] reported that higher abundances 
of both clostridial species and Bacteroidetes were observed in 
their control and non-C. difficile diarrhea groups compared with 
their CDI and C. difficile carrier groups, indicating an inverse 
association between CDI and the abundances of Bacteroidetes 
and other clostridial species in human intestine. Recently, Berkell 
et al. [40] reported that CDI patients demonstrated decreased 
microbial diversity and altered gut microbiome composition 
with decreases in Lachnospiraceae and Ruminococcaceae, and 
increase in Enterococcus. Gut microbiota compositions associated 
with C. difficile colonization and infection have been recently 
reviewed [41]. In the people with asymptomatic colonization 
of C. difficile (AC), the relative abundances of Prevotella, 
Alistipes, Bacteroides, Bifidobacterium, Dorea, Coprococcus 
and Roseburia were decreased, while in CDI patients the relative 
abundances of Lachnospiraceae, Ruminococcaceae, Blautia, 
Prevotella, Dialister, Bifidobacterium, Roseburia, Anaerostipes, 
Faecalibacterium and Coprococcus were decreased. It was also 
indicated that increases in the abundances of Enterococcaceae 
and Enterococcus were associated with CDI.

Lesniak et al. [42] recently investigated the correlation 
between gut microbiota and the severity of colitis caused by C. 
difficile inoculation in a mouse model (Table 3). GF mice were 
inoculated with human fecal samples, and mice were challenged 2 
weeks later with 103 C. difficile RT027 spores. Serious epithelial 
damages, tissue edema, and inflammation were detected in 
the intestine of the moribund mice, and they died due to lethal 
colitis and toxin production following infection. In the moribund 
mice, Akkermansia, Bacteroides, Clostridium sensu stricto, and 
Turicibacter were detected at higher relative abundances. In non-
moribund mice following C. difficile inoculation, Anaerotignum, 
Enterocloster, and Murimonas were more abundant. Bacteroides 
OTU7 was associated with toxin production and moribundity, and 
Enterocloster and Murimonas were associated with no detection 
of toxins and a low histopathologic score. These results revealed 
groups of microbiota associated with both severe and mild CDI 
outcomes, suggesting the possibility of identifying patients at 
high or low risk of developing more severe disease.

RESTORATION OF THE GUT MICROBIOTA IN THE 
TREATMENT OF CDI

The role of the gut microbiota is prevalent throughout the entire 
life cycle of C. difficile, from spore formation and germination to 
the development of infection, and it is possible that restoration 
of certain intestinal microbiota might be effective for prevention 
and treatment of CDI [43, 44]. An ideal goal for CDI patients 
is restoration of the gut microbiota to a healthy state [45]. It 
has been reported that the reduced presence of Bacteroides 
is associated with negative consequences for gastrointestinal 
disorders including CDI [46]. It is possible that Bacteroides may 
activate the host immune system to limit entry and proliferation 
of potential pathogens including C. difficile [47].

FMT
FMT is a highly successful method of microbiome restoration 

for the prevention of recurrent CDI [36]. van Nood et al. [48] 
examined the effect of FMT on the patients with recurrent CDI. The 
percentages cured without relapse were 81%, 93%, 23% and 31% 
in standard vancomycin treatments with a single FMT, multiple 
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FMTs, bowel lavage, and no additional treatment, respectively, 
indicating the significant efficiency of FMT in the prevention of 
recurrent CDI. Pomares Bascuñana et al. [49] reported the results 
of a meta-analysis that evaluated the effectiveness of FMT for 
the treatment of C. difficile diarrhea based on 15 studies selected 
from a total 5,266 studies. It was shown that the effectiveness of 
FMT was 82% (95% confidence interval [CI]: 75–89%) and that 
the included studies were highly homogenous (80%). It was also 
indicated that the efficacy of FMT increases with the number of 
doses and that it is equivalent or superior to the gold standard 
antibiotic regimes (vancomycin and fidaxomicin). Song et al. [50] 
recently reported the results of a meta-analysis concerning the 
effectiveness of FMT for severe or fulminant CDI (SFCDI) based 
on 10 studies including a total of 240 patients. They indicated 
that FMT resulted in the resolution of SFCDI within 4 weeks 
in 211/240 patients, giving a pooled estimate of 88% (95% CI: 
83–91%) and that the mean number of FMT required was 1.6 for 
severe CDI resolution and 2.0 for fulminant CDI resolution. In 
the Clinical Practice Guidelines for CDI in adults and children of 
the Infectious Diseases Society of America (IDSA) and Society 
for Healthcare Epidemiology of America (SHEA), FMT is 
recommended for patients with multiple recurrences of CDI who 
have failed appropriate antibiotic treatments [16]. Similarly, the 
Clinical Guidelines for Prevention, Diagnosis, and Treatment of 
CDI of the American College of Gastroenterology (ACG) suggest 
FMT be considered for patients with severe and fulminant CDI 
refractory to antibiotic therapy and recommend FMT be delivered 
through colonoscopy or capsules for treatment of recurrent CDI 
[17]. The Treatment Guidelines for CDI of the European Society 
of Clinical Microbiology and Infectious Diseases (ESCMID) 
indicated that FMT may be a rescue therapy for patients with 
severe complicated CDI that have deteriorated despite CDI 
antibiotic treatment and for whom surgery is not feasible [18]. 
The Clinical Practice Guidelines for Management of CDI of the 
Japanese Society of Chemotherapy and Japanese Association of 
Infectious Diseases (JSC/JAID) indicated that FMT cannot be 
recommended solely based on its efficacy (weak recommendation 
against use) [19]. Recently, Juul et al. [51] reported that FMT was 

also effective in a treatment for primary CDI. However, further 
studies on the screening and standardization of methods used 
to harvest stool and process it for FMT need to be performed. 
In addition, the two main concerns for FMT are the risk of 
transferring infectious pathogens from the donor to the recipient, 
and the development of autoimmunological disorders [52].

Probiotics
Probiotics are defined as “live microorganisms that, when 

administered in adequate amounts, confer a health benefit on 
the host” [53]. An alternative for CDI therapy comprises the 
delivery of beneficial probiotic microorganisms into the intestinal 
tract to restore the microbial balance [44]. Many probiotic 
microorganisms including Bifidobacterium, Lactobacillus, 
Bacteroides, Clostridium, and Saccharomyces, have been 
reported to have an inhibitory effects on the growth of C. 
difficile [54, 55]. Specific species such as Lacticaseibacillus 
rhamnosus or Saccharomyces boulardii have been studied for the 
prophylaxis or treatment of CDI with moderate certainty evidence 
in the meta-analysis [54]. We have previously reported that the 
Clostridium butyricum MIYAIRI588 strain was effective for 
the prevention of CDI in not only basic but also clinical studies 
[56–58]. A meta-analysis of probiotic efficacy for gastrointestinal 
diseases showed that the effects of probiotics on gastrointestinal 
diseases, including CDI and AAD, were different among 
probiotic species and that VSL#3 (including 8 bacterial strains 
of Lacticaseibacillus casei subsp. paracasei, Lactiplantibacillus 
plantarum, Lactobacillus acidophilus, Lactobacillus delbrueckii 
subsp. bulgaricus, Bifidobacterium longum, Bifidobacterium 
infantis, Bifidobacterium breve, and Streptococcus thermophilus) 
and C. butyricum MIYAIRI 588 had strong inhibitory effects [59]. 
The effects of bacteriocin produced by commensal microbiota on 
C. difficile were also reported. Commensal Bacillus thuringensis 
was shown to produce thuricin CD, which is a bacteriocin with 
activity against C. difficile [60], while Limosilactobacillus reuteri 
was shown to compete with other indigenous microbiota to 
produce reuterin from glycerol, in order to inhibit the growth of 
C. difficile [61].

Table 3. Relationship between gut microbiota and severity of Clostridioides difficile infection* (modified from Lesniak et al. [42])

Moribund mice (M1–M6) Non-moribund mice (N1–N9)
C. difficile titer (CFU/g stool)
1 dpi** 103–108 102–107

10 dpi Deceased 102–108

Toxin titer (log10) 2 dpi 1–4 1–3
10 dpi Deceased 1–3
Pathological score 7–10 0–8***
Microbiota Increased Increased

Akkermansia Anaerotignum
Bacteroides Enterocloster
Clostridium sensu stricto Murimonas
Turicibacter

Association with toxin production Positive Negative
Bacteroides OTU7 Enterocloster

Murimonas

*Germfree mice were inoculated with human fecal samples, and the mice were challenged 2 weeks later with 103 C. difficile RT027 
spores.
**dpi; days post infection
***Pathological scores were determined at the end of the experiment.
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Although various probiotics have been reported to be effective 
to prevent AAD and cure CDI, various recent clinical guidelines 
for the treatment of CDI do not strongly recommend the use of 
probiotics. The IDSA/SHEA and ACG guidelines recommend 
against probiotics for the prevention of primary CDI and CDI 
recurrence due to insufficient evidence of efficacy [16, 17]. 
Similarly, the ESCMID guidelines indicated that routine 
administration of probiotics to prevent CDI when on antibiotic 
treatment is not recommended during antibiotic treatment [18]. In 
contrast, American Gastroenterology Association (AGA) Clinical 
Practice Guidelines recommend the use of specific probiotics in 
adults and children on antibiotic treatment, in adults and children 
with pouchitis, and in preterm low-birth-weight infants, with 
conditional recommendations [62]. The Japanese guidelines of 
the JSC/JAID indicated a weak recommendation for probiotics 
to prevent CDI in patients at risk of CDI, but probiotics are not 
recommended for the prevention of recurrence of CDI [18].

LBPs
Compared with conventional probiotics, novel beneficial 

effects on human health have been reported for a wide range 
of microbial probiotics, and such probiotics are called next-
generation probiotics (NGPs). NGPs include various bacterial 
species such as Faecalibacterium prausnitzii, Akkermansia 
muciniphila, Bacteriodes fragilis/Bacteroides uniformis, 
Eubacterium hallii, and cocktails of Clostridium clusters IV and 
XIVa [63]. According to the pharmaceutical application, NGPs 
with novel therapeutic functions are termed LBPs [64]. An LBP is 
defined as “a biological product that contains live organisms such 
as bacteria and that is applicable to the prevention, treatment, 
or cure of a disease or condition of human beings”. O’Toole 
et al. [64] listed several candidates for LBPs and showed the 
biological functions targeting various diseases (infectious 
diseases, inflammatory diseases, malignancies) for 11 strains 
of the following 8 bacterial species: Bacteroides xylanisolvens, 
Bacteroides ovatus, Bacteroides dorei, B. fragilis, Bacteroides 
acidifaciens, C. butyricum, F. prausnitzii, and Lactococcus lactis.

Approaches to restoring the gut microbiota by using novel 
LBPs are currently being studied to examine the effect on CDI. 
It has been recently reported that SER-109 spores containing 
approximately 50 specific species of only Firmicutes, which 
were isolated from healthy donors, were effective for recurrent 
CDI [65]. The percentage of patients with recurrence of CDI 
was 12% in the SER-109 group and 40% in the placebo group, 
and the observed safety profile of SER-109 was similar to that 
of a placebo. Khanna et al. [66] recently reported the efficacy 
and safety of RBX2660, which consists of a broad consortium of 
microbes prepared from human stool in a phase III randomized 
double-blind, placebo-controlled trial for prevention of recurrent 
CDI. Both a microbiota suspension of RBX2660 and a placebo, 
normal saline, were administered rectally. The model-estimated 
treatment success rate was 70.6% with RBX2660 versus 57.5% 
with the placebo, and the incidence of treatment-emergent 
adverse events was higher in the RBX2660 group than that in 
the placebo group. In November 2022, the US Food and Drug 
Administration (FDA) approved RBX2660 (REBYOTATM) 
for the prevention of recurrence of CDI following antibiotic 
treatment for recurrent CDI in individuals 18 years of age 
and older. Dsouza et al. [67] recently reported the results of a 
phase 1 trial to examine colonization and modulation of the gut 

microbiota in healthy volunteers by VE303, which is comprised 
of 8 commensal clostridial strains and was developed for the 
treatment of recurrent CDI. It was shown that VE303 strains 
optimally colonized healthy volunteers if dosed over multiple 
days after vancomycin pretreatment and that VE303 promoted 
the establishment of a healthy state of the microbiota community.

Bacteriophage
Scientific research on bacteriophage has become a hot topic 

because antimicrobial resistance (AMR) of pathogenic bacteria 
is now a serious problem around the world. Fujimoto et al. [68] 
identified several novel endolysin sequences from the prophage 
sequence of C. difficile, and showed that synthesized endolysins 
exhibited bacteriolytic activity in vitro and were effective in a 
mouse model of CDI. Theoretical and practical findings from pre-
clinical and clinical evaluations of the safety and effectiveness 
of bacteriophage therapy need to be clarified for therapeutic 
application of this novel therapy for CDI [69]. A metagenome 
data-based next-generation phage therapy for CDI will be 
developed in the future [70].

CONCLUSION

In 2017, the US Centers for Disease Control and Prevention 
(CDC) considered CDI to be a major health threat, with 223,900 
national cases among hospitalized patients, eventually leading to 
12,800 deaths [71]. In its 2019 AR (antibiotics resistance) Threats 
Report, in addition to carbapenem-resistant Acinetobacter, 
Candida auris, carbapenem-resistant Enterobacterales, and 
drug-resistant Neisseria gonorrhea, C. difficile is listed in the 
category of urgent threats microorganisms. Therefore, methods 
of rapid diagnosis and effective treatment and prevention of CDI 
are expected to be established soon. Further microbial ecological 
research on C. difficile and the gut microbiota could lead to a 
better understanding of the mechanisms of pathogenesis following 
C. difficile infection and to further development of microbiome-
restoring methods, including FMT, probiotics, LBPs, and phage 
therapy.
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