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Lung injury, whether induced by infection or caustic chemicals, initiates a series of complex 
wound-healing responses. If uncontrolled, these responses may lead to fibrotic lung diseases 
and loss of function. Thus, resolution of lung injury must be tightly regulated. The key 
regulatory proteins required for tightly controlling the resolution of lung injury have yet to 
be identified. Here we show that loss of deubiquitinase CYLD led to the development of lung 
fibrosis in mice after infection with Streptococcus pneumoniae. CYLD inhibited transforming 
growth factor-β-signalling and prevented lung fibrosis by decreasing the stability of smad3 
in an E3 ligase carboxy terminus of Hsc70-interacting protein-dependent manner. moreover, 
CYLD decreases smad3 stability by deubiquitinating K63-polyubiquitinated Akt. Together, our 
results unveil a role for CYLD in tightly regulating the resolution of lung injury and preventing 
fibrosis by deubiquitinating Akt. These studies may help develop new therapeutic strategies for 
preventing lung fibrosis. 
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Lung injury represents a major cause of morbidity and mortal-
ity worldwide. Injurious stimuli such as infectious agents and 
caustic chemicals initiate a complex and dynamic series of host 

wound-healing responses. During the early stage of severe Streptococ-
cus pneumoniae infections, pneumolysin induces acute lung injury 
(ALI) and lethality. As a critical host response, type 1 plasminogen 
activator inhibitor (PAI-1) is upregulated by S. pneumoniae, which 
provides protection against ALI by preventing alveolar hemorrhage1. 
Appropriate host response such as upregulated PAI-1 production is 
thus critical for repairing injured lung tissue and restoring its func-
tion. However, if uncontrolled, excessive PAI-1 will have an adverse 
effect on tissue remodelling process via enhanced accumulation of 
extracellular matrix in tissues2–9. Thus, PAI-1 expression must be 
tightly and dynamically regulated during the entire host wound-
healing process. We previously found that deubiquitinase CYLD 
has a critical role in preventing excessive production of PAI-1 by 
suppressing its p38 MAPK-dependent expression. However, dur-
ing lethal S. pneumoniae infection, excessive release of pneumolysin 
caused severe lung injury, which overwhelms the protective effect 
of available PAI-1, thereby leading to lethality. Interestingly, CYLD 
deficiency in the Cyld-deficient mouse results in excessive produc-
tion of PAI-1, thus providing efficient protection against lethality1. 
Therefore, our previous study demonstrates that CYLD is a critical 
negative regulator for host survival during early stage of infection as 
Cyld-deficient mice have a much higher survival rate compared with 
wild-type (WT) mice. Because uncontrolled and excessive wound-
healing response such as excessive PAI-1 production could result in 
lung fibrosis3, we hypothesized that Cyld-deficient mice that sur-
vived lethal S. pneumoniae infection may develop lung fibrosis, and 
CYLD the may thus act as a key regulator for the wound-healing 
process during the late stage of bacterial infections. Here we show that 
CYLD acts as a critical negative regulator for injury-induced fibrotic 
response by inhibiting transforming growth factor-β (TGF-β)- 
signalling. We further show that CYLD inhibits TGF-β-signalling 
via decreasing the stability of Smad3 protein in a glycogen synthase 
kinase3-β (GSK3β)-Hsc70-interacting protein (CHIP)-dependent 
manner. Interestingly, CYLD decreases Smad3 stability by directly 
deubiquitinating K63-polyubiquitinated Akt. These studies may 
bring new insights into the novel role of CYLD in regulating fibro-
sis and may lead to the identification of new therapeutic targets for 
treating these diseases.

Results
CYLD is a key negative regulator for lung fibrosis. To test our 
hypothesis, we first determined whether CYLD deficiency leads to 
the development of lung fibrosis in a mouse model of lung injury 
induced by S. pneumoniae infection. As shown in Fig. 1a, the 
majority of WT mice that survived ALI appeared fully recovered 
without significant pathological changes. In contrast, Cyld − / −  
mice exhibited marked fibrotic pathological changes as evaluated 
by performing H&E staining. Further, histological analysis with 
Trichrome staining demonstrated significant collagen deposition 
(stained blue) in lungs of S. pneumoniae-inoculated Cyld − / −  mice 
but not in WT mice. Moreover, S. pneumoniae-inoculated lungs of 
Cyld − / −  mice also exhibited a hyperfibrotic response, with increased 
expression of fibrogenic gene type I and type III collagens (COL1A2 
and COL3A1), connective tissue growth factor (CTGF) and PAI-1 
compared with WT mouse lung (Fig. 1b). Similar to the lethal dose 
of S. pneumoniae, a sub-lethal dose of S. pneumoniae still exhibited 
a fibrotic effect, and the fibrotic response was significantly enhanced 
in Cyld − / −  mice compared with WT mice (Supplementary Fig. S1a).  
Thus, it is evident that, regardless of the severity of infection, CYLD 
has a critical role in tightly controlling the fibrotic response and 
preventing fibrosis.

On the basis that CYLD acts as a negative regulator for PAI-1 
upregulation by inhibiting p38 MAPK-dependent PAI-1 expression1,  

we first determined whether CYLD inhibits S. pneumoniae-induced 
lung fibrosis also via inhibiting p38 MAPK signalling. Interestingly, 
treatment with p38-specific inhibitor SB203580 did not affect lung 
fibrosis in these Cyld − / −  mice (Supplementary Fig. S1b). This unex-
pected finding thus led us to focus on determining a p38-independent  
molecular mechanism by which CYLD prevents development of 
lung fibrosis post-bacterial-infection.

Among a number of signalling pathways involved in lung fibrosis, 
TGF-β-Smad signalling is crucial for regulating lung fibrosis, and  
S. pneumoniae has been shown to induce TGF-β-signalling10–15. 
Thus, we first determined whether S. pneumoniae induces TGF-
β-expression. As shown in Supplementary Fig. S1c, S. pneumoniae  
induced TGF-β expression at late stage of infection when fibrosis 
develops, whereas it induced rapid p38 MAPK activation at early 
stage when lung injury is induced, followed by inactivation at late 
stage. These interesting results may well explain why inhibition of 
p38 using a specific inhibitor did not affect lung fibrosis in Cyld − / −  
mice and may also imply an important role of TGF-β-Smad in 
mediating S. pneumoniae-induced lung fibrosis.

To further determine the clinical relevance of our finding in the 
mouse model, the expression level of CYLD protein in the lung of 
human patients with lung fibrosis was measured and compared with 
that in normal controls. As shown in Fig. 1c; Supplementary Fig. S2a, 
CYLD expression in the lung tissues with fibrosis was much lower 
compared with that in normal control. We next sought to explore why 
CYLD protein level is lower in patients with fibrosis. Because TGF-β- 
expression was found to be upregulated at a later stage of infection 
during recovery process from tissue injury, we sought to determine 
whether TGF-β regulates CYLD expression. Indeed, the expression  
of CYLD was inhibited by TGF-β in the lung tissue of mice (Sup-
plementary Fig. S2b). Thus, it is logical to propose that TGF-β may  
promote tissue fibrosis not only by activating the TGF-β-Smad signal-
ling pathway, the critical positive regulator for fibrotic response, but 
may also, at least in part, by inhibiting the expression of CYLD, the 
negative regulator for fibrotic response. How TGF-β regulates CYLD 
needs to be further investigated in the future studies.

To further evaluate the generalizability of our findings, we 
next sought to determine whether CYLD also acts as a key nega-
tive regulator for chemical-induced lung fibrosis in a widely used 
lung fibrosis model induced by bleomycin. Interestingly, as shown 
in Supplementary Fig. S3, bleomycin-induced lung fibrosis was also 
significantly enhanced in Cyld-deficient mice compared with WT 
mice. These data thus suggest that the anti-fibrotic effect of CYLD 
via inhibiting TGF-β-signalling may be generalizable for tissue 
fibrosis induced by other injurious stimuli as well.

CYLD prevents lung fibrosis via inhibiting TGF--signalling. 
Because S. pneumoniae induces TGF-β-signalling and TGF-β- 
signalling is known as a crucial signalling pathway involved in the 
development of lung fibrosis10–16, we determined whether CYLD 
inhibits TGF-β-signalling using various approaches including short 
interfering RNA (siRNA). As expected, siRNA-CYLD (siCYLD) 
efficiently reduced endogenous CYLD protein expression in a 
number of cell types including human primary bronchial epithe-
lial NHBE cells and greatly enhanced TNF-α-induced activation of 
NF-κB-Luc activity, as previously shown (Fig. 2a,b). Interestingly, 
CYLD knockdown with siCYLD markedly enhanced the activity of 
TGF-β-induced Smad-binding element (SBE)-dependent promoter 
and TGF-β-responsive PAI-1 promoter activity as well as PAI-
1 messenger RNA in human lung epithelial A549 and HeLa cells  
(Fig. 2c,d). Consistent with these results, siCYLD enhanced, whereas 
overexpressing WT-CYLD, inhibited TGF-β-induced SBE-dependent  
promoter activity in a dose-dependent manner (Fig. 2e). We 
next confirmed this finding in human primary bronchial epithe-
lial NHBE cells. As shown in Fig. 2f, siCYLD enhanced, whereas  
overexpressing WT-CYLD inhibited, TGF-β-induced SBE-Luc 
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activity in NHBE cells. Consistent with the results obtained using 
siCYLD, CYLD deficiency also enhanced TGF-β-induced SBE-Luc 
activation in Cyld − / −  mouse embryonic fibroblast (MEF) cells as 
compared with WT MEF (Fig. 2g). Moreover, CYLD deficiency also 
markedly enhanced induction of TGF-β-regulated fibrogenic genes 
in mouse lung tissue, including PAI-1 and CTGF (Fig. 2h). We 
conclude from these data that CYLD negatively regulates TGF-β- 
signalling both in vitro and in vivo. We further investigated whether 
CYLD deficiency leads to lung fibrosis via enhancement of TGF-β-
signalling by using SB431542, a specific inhibitor of TGF-β-signalling.  
Indeed, as shown in Fig. 2i, systemic inoculation of SB431542 
inhibited lung fibrosis in S. pneumoniae-inoculated Cyld − / −  lungs, 
thereby confirming that CYLD deficiency leads to pulmonary fibrosis  
in post bacterial infections via enhancing TGF-β-signalling.

CYLD inhibits TGF--signalling via decreasing Smad3 stability. 
Having identified CYLD as a negative regulator of TGF-β-signalling 

and lung fibrosis, we next sought to determine how CYLD inhibits 
TGF-β-signalling. TGF-β-ligands bind to a type II receptor (TβRII), 
which recruits and phosphorylates a type I receptor (TβRI). The 
activated TβRI then phosphorylates the Smad subgroup known as 
receptor-activated Smads (R-Smad), for example, Smad3, which can 
bind to Co-Smad Smad4. The R-Smad and Co-Smad complex then 
undergoes nuclear translocation for target gene regulation17–20. To 
first determine at which level CYLD inhibits TGF-β-signalling, we 
took advantage of the available lung epithelial cell lines, DR26 and 
R1B that are derived from the WT Mv1Lu cells and lack functional 
TβRII and TβRI, respectively21. As shown in Fig. 3a, siCYLD mark-
edly enhanced constitutively active (C/A)-TβRI-induced SBE-Luc 
activity in TβRII-deficient DR26 cells, suggesting enhancement 
of TGF-β-signalling, by CYLD knockdown, occurs at the level or 
downstream of TβRI independent of TβRII. We next determined 
whether CYLD exerts its inhibitory effect on TGF-β-signalling at 
the level or downstream of TβRI by assessing the effects of siCYLD 
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Figure 1 | CYLD is a negative regulator for lung fibrosis in mouse and human. (a) H&E and masson’s trichrome (Trichrome) staining of lung tissues 
from Cyld + / +  and Cyld − / −  mice 2-weeks post S. pneumoniae infection (insert: ×400). scale bars correspond to 200 µm. (b) Relative quantity of mRnA 
expression of type I and type III collagens (CoL1A2 and CoL3A1), CTGF and type 1 plasminogen activator inhibitor (PAI-1) compared with internal control 
Glyceraldehyde 3-phosphate dehydrogenase was measured in the lung tissues of Cyld + / +  and Cyld − / −  mice 2-weeks post S. pneumoniae infection. 
*P < 0.05 values are the means ± s.d. (n = 3). un-paired student’s t-test was used for comparison with Cyld + / + . (c) H&E, masson’s trichrome, and  
anti-CYLD staining of control (Con) and lung fibrosis tissues of human patients (Fibrotic lung). Lung fibrosis tissues were obtained from the patients  
with pulmonary fibrosis, during pneumonectomy, and normal control tissues were obtained from the patient with pneumothorax during the surgery.  
slides are representative of 5 (Con) and 10 (Fibrotic) human lung tissues. scale bars, 200 µm.
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on WT-Smad3-induced SBE-Luc activity in TβRI-deficient R1B 
cells. CYLD knockdown markedly enhanced WT-Smad3-induced 
SBE-Luc activation in R1B cells, suggesting CYLD may inhibit TGF-
β-signalling at the level or downstream of Smad3 independent of 
TβRI (Fig. 3b). To further determine whether CYLD inhibits TGF-
β-signalling by likely targeting Smad3, we next evaluated the effect 
of CYLD knockdown in Smad3-deficient MEF cells. As shown in 
Fig. 3c, siCYLD did not enhance SBE-Luc activity in the absence of 
Smad3. In contrast, siCYLD markedly enhanced SBE-Luc activity in 
cells reconstituted with WT-Smad3, suggesting CYLD may inhibit 
TGF-β-signalling at the level of, or downstream of, Smad3.

To further determine how CYLD inhibits TGF-β-signalling via 
Smad3, we next evaluated the effect of CYLD on Smad3 activation 
by using antibody against phosphorylated Smad3. Interestingly, 
CYLD knockdown increased, whereas overexpressing WT-CYLD, 
inhibited not only phosphorylated but also total Smad3 (Fig. 3d). 
Smad3 expression is also higher in both Cyld − / −  MEF and Cyld − / −  
mouse lung compared with their WT counterparts (Fig. 3e), whereas 
another R-Smad Smad2 expression was unaffected by CYLD defi-
ciency (Fig. 3f). Consistent with these results, Smad3 expression was 
also higher in the lung of human patients with pulmonary fibrosis 
as compared with normal control (Fig. 3g; Supplementary Fig. S2a). 
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Figure 2 | CYLD prevents development of lung fibrosis via inhibition of TGF--signalling. (a) Epithelial cells transfected with siRnA-Control (siCon) or 
siCYLD were analysed by immunoblotting with the indicated antibodies. (b) nF-κB-promoter activity was determined in siCon- or siCYLD-transfected 
cells stimulated with TnF-α (10 ng ml − 1). (c) sBE-promoter and PAI-1-promoter activity was determined in siRnA-control (siCon) or siCYLD-transfected 
cells stimulated with TGF-β. (d) Relative quantity of PAI-1 mRnA expression compared with Glyceraldehyde 3-phosphate dehydrogenase was measured 
in siCon- or siCYLD-transfected cells stimulated with TGF-β. (e) sBE-promoter activity was determined in A549 cells transfected with various amount of 
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statistical data analysis was performed using student’s t-test. (i) H&E and masson’s trichrome staining of lung tissues from Cyld − / −  mice 2-weeks  
post-S. pneumoniae-infection with or without intraperitoneal inoculation of sB431542 (10 mg per kg body weight). scale bars, 200 µm.
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Moreover, overexpressing WT-CYLD markedly reduced expression 
of both endogenous and exogenous Smad3, but not Smad4 proteins 
(Fig. 3h), but had no effect on the levels of Smad3 mRNA (Fig. 3i). 
Interestingly, treatment with MG132, a specific proteasome inhibi-
tor, reversed the WT-CYLD-induced decrease in Smad3 protein level 
(Fig. 3j) and TGF-β-induced PAI-1 expression (Fig. 3k). Collectively, 
these data suggest that CYLD inhibits TGF-β-signalling by decreas-
ing stability of Smad3 protein in a proteasome-dependent manner.

CYLD decreases Smad3 stability via Akt-GSK3-CHIP pathway. 
Because CYLD is a known deubiquitinating enzyme (DUB)22–29, 
we investigated whether CYLD-induced Smad3 degradation 
depends on its deubiquitinating activity. We first assessed the 
effect of DUB-deficient CYLD mutants on Smad3 basal level and 
TGF-β-induced SBE promoter activity. As shown in Fig. 4a, DUB- 
deficient CYLD mutants (H/N-CYLD and C/S-CYLD) failed to  
induce Smad3 degradation as compared with WT-CYLD. Similar 
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Figure 4 | CYLD decreases stability of Smad3 protein in a GSK3-CHIP-dependent manner possibly via Akt. (a) Cells transfected with WT-CYLD  
or DuB-deficient mutants (H/n-CYLD or C/s-CYLD) were analysed by immunoblotting with the indicated antibodies. (b) sBE-promoter activity  
was determined in cells transfected with WT-CYLD, H/n-CYLD or C/s-CYLD stimulated with TGF-β. (c) Cells co-transfected with siCon or siCHIP  
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immunoblotted against His to detect GsK3β. (i) HA-GsK3β in cells co-transfected with myc-CHIP and HA-GsK3β was pulled down with HA probe  
and analysed by immunoblotting with anti-myc antibody. (j) A549 cells were treated with S. pneumoniae for various times as indicated in the figure,  
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with the indicated antibodies. *P < 0.05 values in b,d,e, and g are the means ± s.d. (n = 3). statistical data analysis was performed using student’s  
t-test. S.p., Streptococcus pneumonia.
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result was also observed in TGF-β-induced SBE promoter activity 
(Fig. 4b). These data suggest that CYLD decreases Smad3 stability in 
a DUB activity-dependent manner.

Because E3 ubiquitin ligase has a critical role in mediating Smad3 
degradation30 and CYLD is known as a deubiquitinase22,28,29, we 
hypothesized that CYLD may decrease Smad3 stability via regu-
lating an E3 ubiquitin ligase. On the basis that carboxy terminus 
of CHIP has been shown to mediate Smad3 degradation31,32, we 
first determined whether CHIP mediates CYLD-induced Smad3 
degradation by using siCHIP. The efficiency of siCHIP in reducing 
CHIP expression was first confirmed in A549 cells (Supplementary  
Fig. S4). As shown in Fig. 4c, CHIP knockdown using siCHIP 
reversed the WT-CYLD-induced Smad3 decrease in A549 cells. 
Similar results were also observed in TGF-β-induced SBE promoter 
activity and PAI-1 upregulation (Fig. 4d,e, respectively). We next 
examined whether CYLD directly interacts with CHIP by perform-
ing co-immunoprecipitation experiments. As shown in Supplemen-
tary Fig. S5, no direct physical interaction was observed between 
CYLD and CHIP, thereby suggesting that CYLD may regulate 
CHIP-dependent Smad3 stability probably by targeting an upstream 
molecule of CHIP.

In view of the known upstream signalling, molecules involved 
in mediating Smad3 degradation, GSK3β was shown to have an 
important role in mediating Smad3 degradation33. We thus deter-
mined whether GSK3β is involved in mediating CYLD-induced 
Smad3 degradation. As shown in Fig. 4f, a specific GSK3β inhibi-
tor SB216763 reversed the WT-CYLD-induced Smad3 decrease in 
A549 cells. Similar results were also observed in TGF-β-induced 
SBE promoter activity (Fig. 4g), thereby suggesting the involvement 
of GSK3β in mediating regulation of Smad3 stability by CYLD.  
We further performed co-immunoprecipitation experiments to  
determine whether GSK3β directly interacts with CYLD. As  
shown in Supplementary Fig. S5, no direct interaction was found 
between GSK3β and CYLD, suggesting the involvement of an addi-
tional signalling molecule, further upstream of GSK3β. It is inter-
esting to note that GSK3β was found to directly interact with CHIP 
both in vitro and in vivo (Fig. 4h,i). Further experiments demon-
strate that GSK3β phosphorylation was induced by S. pneumoniae 
and enhanced by CYLD deficiency (Fig. 4j,k). As phosphorylation 
of GSK3β is known to result in inactivation of its kinase activity 
and CYLD deficiency enhances GSK3β phosphorylation, it is logi-
cal that CYLD may induce GSK3β kinase activity by inhibiting its 
phosphorylation and thereby promoting GSK3β-CHIP-mediated  
Smad3 protein degradation. However, it still remains unclear how 
GSK3β regulates CHIP-mediated Smad3 protein degradation.  
Previously, it has been reported that Erk5 MAPK regulates E3  
ligase activity of CHIP dependently on Erk5 kinase activity34.  
Thus, it is likely that GSK3β may regulate E3 ligase activity of  
CHIP by binding to CHIP dependently on GSK3β kinase activity. 
Further investigation is needed for understanding the molecular 
mechanism underlying GSK3β-mediated regulation of CHIP E3 
ligase activity.

We next sought to determine the direct molecular target of 
CYLD in mediating GSK3β-dependent Smad3 protein degradation.  
Because Akt is known as the major upstream regulator of GSK3β35,36, 
we investigated whether Akt mediates CYLD-induced degradation 
of Smad3. We first determined whether S. pneumoniae induces acti-
vation of Akt. As shown in Fig. 4j–l, S. pneumoniae induced phos-
phorylation of Akt and GSK3β, but not p70S6K, which represents 
another downstream target of PI3K pathway, suggesting the specific 
activation of Akt-GSK3β by S. pneumoniae. Consistent with these 
results, S. pneumoniae also upregulated Smad3 protein expression 
in a time-dependent manner (Fig. 4m). This interesting result thus 
led us to determine whether Akt is critically involved in mediating 
CYLD-induced degradation of Smad3 by first examining the effect 
of Akt knockdown on Smad3 protein stability.

CYLD decreases Smad3 stability by inhibiting Akt. As shown in 
Supplementary Fig. S6a, Akt1 and 2 but not 3 are predominantly 
expressed in both Cyld + / +  and Cyld − / −  cells. Thus, we determined 
the effect of knockdown of both Akt1 and 2 on Smad3 protein level 
in these cells. As shown in Fig. 5a, knockdown of Akt1/2 significantly 
reduced Smad3 protein expression in both WT and Cyld-deficient 
cells. Consistent with this result, Akt knockdown also inhibited the 
enhancement of TGF-β-induced SBE promoter activity induced by 
CYLD knockdown (Fig. 5b). Similarly, enhanced TGF-β-induced 
SBE promoter activity was also inhibited by Akt-specific inhibi-
tor in Cyld − / −  MEFs (Fig. 5c). Moreover, TGF-β-induced PAI-1 
mRNA expression was also markedly reduced by Akt1-deficiency 
in Akt1 − / −  cells, and siCYLD no longer enhanced TGF-β-induced 
PAI-1 expression in Akt1 − / −  cells (Supplementary Fig. S6b). We 
further confirmed whether activation of Akt does induce upregu-
lation of fibrotic response gene expression via Smad3. As shown 
in Supplementary Fig. S7, activation of Akt by expressing a con-
stitutively active C/A-Akt indeed induced expression of PAI-1 and 
CTGF in Smad3 + / +  cells, but not in Smad3 − / −  cells. Together, 
these data provide supportive evidence for the critical involvement 
of Akt in mediating CYLD-dependent Smad3 degradation. PI3 K 
is known as the one of the major signalling molecules upstream of 
Akt. We thus determined whether PI3K, like Akt, is also involved 
in mediating CYLD-dependent Smad3 degradation by evaluating 
the effect of PI3K and Akt inhibitors on Smad3 protein expression. 
Akt inhibitor markedly reduced Smad3 protein expression whereas 
PI3K inhibitor LY294002 did not reduce Smad3 protein expres-
sion (Fig. 5d,e). These results are rather unexpected as it is well 
known that PI3K and, in turn, PIP3 is completely rate-limiting for 
Akt activation37. Because only chemical inhibitors for PI3K were 
used in our studies, our data do not completely preclude the pos-
sible involvement of PI3K in regulating Akt-mediated regulation  
of Smad3. Further studies are needed to determine whether  
CYLD-Akt-mediated regulation of Smad3 is indeed independent 
of PI3K by using more specific approaches. Nonetheless, these data 
suggest that CYLD decreases Smad3 protein stability via negatively 
regulating Akt.

To further determine how CYLD negatively regulates Akt, 
we first examined whether CYLD physically interacts with Akt  
by performing co-immunoprecipitation experiments. Results in 
Fig. 5f showed that CYLD and Akt are indeed physically associated 
with each other in epithelial cells co-transfected with HA-CYLD 
and Flag-Akt. We next determined whether endogenous CYLD 
directly interacts with endogenous Akt and if such a direct interac-
tion is further increased on S. pneumoniae treatment by perform-
ing Duolink in vivo protein–protein interaction detection assay38,39  
and co-immunoprecipitation assay. As shown in Fig. 5g,h, endog-
enous CYLD indeed directly interacts with endogenous Akt and  
S. pneumoniae treatment increased their direct interaction. Together, 
these data suggest that CYLD decreases Smad3 stability and TGF-
β-signalling by inhibiting Akt.

CYLD deubiquitinates K63-ubiquitinated Akt to inhibit Smad3. 
Because CYLD is a known deubiquitinase and Akt ubiquitination 
is critical for its functional activity40, we next investigated whether 
CYLD deubiquitinates Akt. As shown in Fig. 6a, co-expressing  
WT-CYLD, but not DUB mutant (H/N-CYLD), decreased Akt 
polyubiquitination. In addition, siCYLD also markedly enhanced  
S. pneumoniae-induced Akt ubiquitination in epithelial cells (Fig. 6b).  
We then determined whether S. pneumoniae induces endogenous 
Akt ubiquitination in the absence and presence of CYLD. As shown 
in Fig. 6c,d; Supplementary Fig. S8, endogenous Akt ubiquitination 
was detected in the absence of S. pneumoniae, and S. pneumoniae 
markedly enhanced endogenous Akt ubiquitination. Interestingly, 
expression of WT-CYLD greatly decreased S. pneumoniae-induced 
endogenous Akt ubiquitination, whereas CYLD knockdown, or 
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CYLD deficiency, enhanced it. Because Akt has been shown to 
undergo K63 polyubiquitination, we next determined whether 
CYLD specifically deubiquitinates K63-polyubiquitinated Akt. As 
shown in Fig. 6e, co-expressing WT-CYLD markedly decreased 
K63- but not K48-polyubiquitinated Akt. Consistently, results in  
Fig. 6f indicate that recombinant CYLD protein (GST-rCYLD) 
directly deubiquitinates K63-linked polyubiquitination of Akt (His-
rAkt) in vitro in a cell-free system in a dose-dependent manner.  
Moreover, deficiency of CYLD also enhanced S. pneumoniae-
induced K63-polyubiquitination of Akt (Fig. 6g). Taken together, 
these data provide strong evidence that CYLD negatively regu-
lates Akt by directly interacting with and deubiquitinating  
K63-polyubiquitinated Akt, both in vitro in a cell-free system and  
in vivo under endogenous condition.

Because K14 lysine in the pleckstrin homology domain of Akt is 
critical for mediating its function40, we next determined whether 

mutation of K14 lysine to arginine (R) reduces polyubiquitination  
of Akt. Indeed, K14R, but not K8R, K20R and K30R, markedly 
reduced K63-linked polyubiquitination of Akt compared with  
WT-Akt (Fig. 6h). We further determined whether K14 residue in 
Akt is indeed functionally critical for mediating CYLD-induced 
inhibition of TGF-β-signalling. As shown in Fig. 6i, expressing 
WT-CYLD significantly inhibited TGF-β-induced SBE promoter 
activity in epithelial cells co-transfected with WT-Akt or K20R, but 
not with K14R, thereby demonstrating the critical role for K14 in 
the PH domain of Akt in mediating inhibition of TGF-β-signalling  
by CYLD. TNF receptor-associated factor 6 (TRAF6) was previ-
ously shown to function as an E3 ligase for Akt-K63 polyubiqui-
tination and CYLD deubiquitinates TRAF6 (refs 24, 40). Thus,  
we next explored the possibility that CYLD may inhibit Akt- 
mediated fibrotic response via deubiquitinating TRAF6. As shown 
in Supplementary Fig. S9, CYLD knockdown, using siCYLD, still 
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Figure 5 | CYLD decreases Smad3 stability by inhibiting Akt. (a) mEF cells from Cyld + / +  and Cyld − / −  mice were transfected with siCon or siAkt1/2 and 
analysed by immunoblotting with the indicated antibodies. (b) sBE-promoter activity was determined in siCYLD-transfected A549 cells with or without 
siAkt co-transfection and stimulated with TGF-β. (c) sBE-promoter activity was determined in mEFs from Cyld + / +  and Cyld − / −  mice pretreated with 
Akt inhibitor and stimulated with TGF-β. (d) mEF cells from Cyld + / +  and Cyld − / −  mice were incubated with Akt inhibitor (20 µm), and cell lysates were 
analysed by immunoblotting with the indicated antibodies. (e) Cells were incubated with Akt inhibitor (20 µm) or LY294002 (20 µm), and cell lysates 
were analysed by immunoblotting with the indicated antibodies. (f) Lysates from cells transfected with HA-CYLD and Flag-Akt were immunoprecipitated 
with anti-CYLD antibody (upper panel) or anti-Akt antibody (lower panel), and interacting proteins were analysed by immunoblotting. (g) A549 cells  
were treated with S. pneumoniae for various times as indicated in the figure, stained with rabbit anti-CYLD antibody and/or mouse anti-Akt antibody,  
and in vivo protein–protein interaction between CYLD, and Akt (Red dot) was detected with secondary proximity probes, anti-Rabbit mInus and anti-
mouse-PLus, using Duolink in vivo protein–protein interaction detection kit (olink). scale bar, 10 µm. (h) Cells were treated with S. pneumoniae or vehicle 
control. Akt in cell lysates was pulled down with anti-Akt antibody and immunoblotted against CYLD and Akt. *P < 0.05 values in b,c are the means ± s.d. 
(n = 3). statistical data analysis was performed using student’s t-test. S.p., Streptococcus pneumonia.
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enhanced TGF-β-induced fibrotic response in TRAF6-depleted 
cells, thereby suggesting that CYLD inhibits Akt-mediated fibrotic 
response at least in part by directly interacting with and deubiqui-
tinating Akt.

Discussion
To prevent the development of lung fibrosis during recovery of  
lung injury, wound-healing responses must be tightly regulated1,4–6. 
The molecular mechanisms underlying this tight regulation remain 
largely unknown. In the present study, we provide evidences to iden-

tify CYLD deubiquitinase as a critical negative regulator for prevent-
ing development of lung fibrosis after infection with S. pneumoniae. 
CYLD inhibits TGF-β-signalling and thereby prevents fibrosis via 
decreasing stability of Smad3 protein in a GSK3β-CHIP-dependent  
manner. Moreover, CYLD decreases Smad3 protein stability by 
directly deubiquitinating K63-polyubiquitinated Akt, which, in 
turn, leads to activation of GSK3β (Fig. 7a). CYLD deficiency results 
in enhanced fibrotic response via enhanced Smad3-protein stabil-
ity following lung injury (Fig. 7b). Taken together, as shown in our 
previous study1, CYLD promotes bacteria-induced lung injury and 

IP:a b

e f

c

d

h ig

siCYLD

Cyld+/+ Cyld–/–

S. p.

HA-UB WT

HA-Ub His-rUb-K63
His-rAkt1

GST-rCYLDFlag-Akt
Flag-CYLD

HA-Ub K63 +

– WT 8 14 20 30

+ + + + +

Flag-Akt

IP: Flag
IB: Ub

IB: Flag

Flag-Akt
HA-CYLD

IP: Flag

IP: Akt

WT

+
–

+
+

+
–

+
+

+

+ + + +
+ + + +

+
+
–

K63

kDa
kDa
250
150

100

75

50
250
150
100

150

100

IB: Akt1

IB: CYLD

75

60

100

K48

IP: Flag

IB: Ub

siCYLD
S. p.

+

–
–

–
+

+ + + +
+ + + +
– + – +

+
+

+ + +
– + + +
–

+

+ +

+–

–

–

+ + +
– – –+
–
–

– – +
+++– WT H/N kDa

kDa kDa

250
150

100
75

250
150

100

75

60

100

60

100

kDa

kDa

250

250

150

100

75

60

150

100

75

60

100

150

100

75

60

100

Flag-Akt S. p.
Flag-CYLD Flag-CYLD

Ub(n)-Akt

Akt

IP: Akt1

IP: Akt1
IB: Akt1

IB: CYLD

IP: Akt

Flag-Akt
HA-Ub K63

S. p.

IB: Ub

IB: Ub

IB: AktIB: Akt
IP: Akt

IP: Akt

IP: FLag

R
el

at
iv

e 
lu

ci
fe

ra
se

ac
tiv

ity

IB: Ub

IB: Akt

IB: Akt

IB: CYLD

IB: CYLD IB: CYLD

Ub(n)-Akt

Akt

IP: Akt

(KR) 16 * *

12

Con

#

TGF-β

8

4

0
WT-CYLD

AKT WT K14R K20R

– + – + – +

kDa

150

100

75

60

IB: Akt

IB: CYLD

Akt
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with TGF-β. *P < 0.05, #P>0.05 values in i are the means ± s.d. (n = 3). statistical data analysis was performed using student’s t-test. S.p.,  
Streptococcus pneumonia.
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reduces host survival by inhibiting S. pneumoniae-induced PAI-
1 expression via specific inhibition of p38 signalling during early 
lung-injury stage of infection; and as shown in our current study, 
CYLD prevents the development of lung fibrosis by inhibiting TGF-
β-Smad signalling via reducing Smad3 stability during late tissue 
remodelling stage of infection. Thus, CYLD acts a key regulator 
during the entire wound-healing process in lung injury1,41. These 
studies may help develop new therapeutic strategy for preventing 
lung fibrosis.

Previously it has been known that TNF receptor-associated fac-
tor 6 (TRAF6) acts as an E3 ligase for Akt-K63 polyubiquitination, 
and CYLD deubiquitinates TRAF6 (refs 24, 40). In this study we 
provided experimental evidences for direct interaction between Akt 
and CYLD, and also showed that CYLD does directly deubiquitinate 
Akt under both endogenous and exogenous conditions. It is possible 
that CYLD may inhibit Akt-mediated fibrotic response by actually 
deubiquitinating TRAF6. Thus, we evaluated the effect of siCYLD 
on TGF-β-induced fibrotic response in TRAF6-depleted cells using 
siTRAF6. Interestingly, CYLD knockdown still led to the enhance-
ment of TGF-β-induced fibrotic response in TRAF6-depleted cells 
(Supplementary Fig. S9). Nonetheless, these data demonstrate that 
CYLD indeed inhibits Akt-mediated fibrotic response by at least in 
part directly interacting with and deubiquitinating Akt.

Here we have provided strong evidence that CYLD inhibits  
S. pneumoniae-induced Smad3-dependent fibrosis via inhibit-
ing Akt, thereby linking CYLD to Smad3 via Akt. It is still unclear 
whether or not direct activation of Akt induces fibrotic response via 
Smad3. Indeed, direct activation of Akt by expressing a constitu-
tively active form of C/A-Akt induces expression of fibrotic response 
gene PAI-1 and CTGF in Smad3 + / +  cells, but not in Smad3 − / −   
cells (Supplementary Fig. S7). Collectively, it is evident that the 
fibrotic effects of CYLD-dependent Akt deubiquitination are indeed 
specifically mediated via the TGF-β-Smad3 pathway.

On the basis of the experimental data we presented, it is clear 
that CYLD regulates lung fibrosis by inhibiting TGF-β-signalling in 
wound-healing response in lung injury caused by infectious agents. 
Because TGF-β-signalling has an essential role in regulating tissue 
fibrotic response, it is possible that CYLD may also be crucial for 
negatively regulating fibrotic response induced by other injurious 
stimuli such as caustic chemicals. Thus, we sought to determine 
whether CYLD also acts as a key negative regulator for chemical-
induced lung fibrosis in a widely used lung fibrosis model induced 
by bleomycin. Interestingly, CYLD deficiency markedly enhanced 
bleomycin-induced lung fibrosis in Cyld-deficient mice (Supple-
mentary Fig. S3). These data thus suggest that the inhibitory effect 
of CYLD in fibrotic response may be generalizable for tissue fibrosis 
induced not only by infectious agents but also by other injurious 
stimuli such as caustic chemicals, as long as the fibrotic response is 
mainly mediated via TGF-β-Smad signalling.

Methods
Cell culture and reagents. A549, HeLa and HEK293 cells were maintained in the 
F12-K, minimal essential medium Eagle’s with Earle’s balanced salt solution (EMEM),  
and DMEM, respectively. WT mink Mv1Lu cells and two mutant cell lines DR26 
and R1B cells were maintained with EMEM supplemented with nonessential 
amino acids. MEFs from Smad3 − / − , Cyld + / +  and Cyld − / −  mice were maintained 
in DMEM. Human primary bronchial epithelial NHBE (Cambrex) cells were  
maintained in bronchial epithelial growth media supplemented with bronchial 
epithelial growth media single Quot1,24,42,43. Recombinant TGF-β1 (indicated  
as TGF-β throughout the manuscript) and TNF-α were purchased from R&D 
system; Akt inhibitor (1L6-Hydroxymethyl-chiro-inositol-2(R)-2-O-methyl- 
3-O-octadecyl-sn-glycerocarbonate)44,45 and SB203580 were from Calbiochem; 
SB431542 and bleomycin were from Sigma; MG132 was from American Peptide. 
In vitro ubiquitination and deubiquitination assay kit was purchased from Boston 
Biochem. Duolink in vivo protein–protein interaction detection assay kit was 
from Olink Bioscience38,39. Recombinant His-Akt and His-GSK3β were from 
Calbiochem. ELISA assay kits for TGF-β and total and phospho-p38 MAPK were 
purchased from R&D system and Invitrogen, respectively.

Real-time quantitative RT–PCR analysis. Total RNA was isolated using TRIzol 
reagent following manufacturer’s instructions. Synthesis of complementary  
DNA from total RNA was performed with MultiScribe reverse transcriptase.  
Real-time quantitative PCR was performed using an ABI 7500 Sequence Detection 
System (Applied Biosystems)24. Relative quantities of mRNAs were calculated  
using the comparative threshold cycle method and normalized using human  
and mouse glyceraldehyde-3-phosphate dehydrogenase as an endogenous control. 
The primer sequences for mouse COL1A2, COL3A1, CTGF and PAI-1, and  
human PAI-1, CHIP, and Smad3 are as follows10–12. Mouse CTGF: 5′-GTAAC 
CGGGGAGGGAAATTA-3′ and 5′-ACAGCTGGACTCAGCCTCAT-3′; mouse 
COL1A2: 5′-GACAAATGAATGGGGCAAG-3′ and 5′-CAATGTCCAGA 
GGTGCAATG-3′; mouse COL3A1: 5′-CGAAGATGGCAAAGATGGAT-3′  
and 5′-GCCACTAGGACCCCTTTCTC-3′; mouse PAI-1: 5′-GTAGCACAG 
GCACTGCAAAA-3′ and 5′-TGAGATGACAAAGGCTGTGG-3′; human  
PAI-1: 5′-CCCTTTGCAGGATGGAACTA-3′ and 5′-ATGGCAATGTGACT 
GGAACA-3′; human CHIP: 5′-CCCGGCCCCTATACATAGTT-3′ and  
5′-CAGTCCAGAGTCCAACAGCA-3′.

Plasmids and luciferase assays. The expression plasmids Flag-WT-CYLD,  
HA-WT-CYLD, Flag-H/N-CYLD, HA-C/S-CYLD, Flag-WT-Smad3, C/A- 
TβRI, and the reporter plasmids SBE-Luc, PAI-1-Luc, and NF-κB-Luc were  
previously described17,42,43,46. Flag-WT-Akt1, pRK5-HA-Ub WT, pRK5- 
HA-Ub K63, and pRK5-HA-Ub K48 were from Addgene, and K to R mutants  
of Akt were generated with WT-Akt1 using QuickChange XL Site-Directed  
Mutagenesis kit (Stratagene). All transient transfections were carried out using 
TransIT-LT1 reagent (Mirus) or Lipofectamine (Invitrogen) according to  
manufacturers’ instructions24.

RNA-mediated interference. RNA-mediated Interference for downregulating 
CYLD expression was carried out using pSuper-CYLD24 and the sequence for  
the siCYLD is 5′-GATCCCCGAGCTACTGAGGACAGAAATTCAAGAGATT 
TCTGTCCTCAGTAG CTCTTTTTGGAAA-3′. Human and mouse siRNAs  
for Akt and CHIP were from Dharmacon, and knockdown of Akts and CHIP,  
using siAkt and siCHIP, was performed with Lipofectamine 2000 (Invitrogen).  
ON-TARGETplus SMARTpool of siRNAs targeting human Akt1, human CHIP, 
mouse Akt1, and mouse Akt2 consists of four siRNAs and sequences for the  
siRNAs are as follows: Human siAkt1 (5′-CAUCACACCACCUGACCAA-3′,  
5′-ACAAGGACGGGCACAUUAA-3′, 5′-CAAGGGCACUUUCGGCAAG-3′,  
5′-UCACAGCCCUGAAGUACUC-3′); human CHIP (5′-CGCUGGUGGC 

Injurious stimuli (e.g., bacteria)

TβRII/I

a b

TβRII/I

CHIP CHIP

Smad3 Smad3GSK3β GSK3β

CYLDAkt Akt

ECM ECM

Wound-healing
response

Excessive wound-
healing response

Lung fibrosisResolution of
lung injury
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Figure 7 | A schematic model illustrating a critical role of CYLD in lung 
fibrosis. (a,b) on the one hand, following lung injury after severe bacterial 
infection, for example, S. pneumoniae infection, extracellular matrix 
production and tissue recovery process are initiated via both TβRII/I-
mediated activation of smad3 and Akt-dependent inhibition of GsK3β-
CHIP-mediated smad3 degradation. on the other hand, CYLD induced  
by S. pneumoniae inhibits Akt by deubiquitinating K63-polyubiquitinated 
Akt., which in turn leads to activation of GsK3β and promotes CHIP-
mediated smad3 degradation, thereby attenuating excessive fibrotic 
response and preventing lung fibrosis (a). Deficiency of Cyld results in 
enhanced activation of Akt, which in turn leads to inhibition of GsK3β  
and CHIP-mediated smad3 degradation, thereby promoting excessive 
fibrotic response and tissue fibrosis (b). ECm, extracellular matrix;  
TβRII/I, TGF-β receptor II and I.
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CGUGUAUUA-3′, 5′-GUGGAGGACUACUGAGGUU-3′, 5′-GAAGGAGGUUA 
UUGACGCA-3′, 5′-UGGAAGAGUGCCAGCGAAA-3′); mouse Akt1 (5′- CUG 
CAGAACUCUAGGCAUC-3′, 5′-GAUCAAGGAUGGUGCCACU-3′, 5′-GAGG 
UUGCCCACACGCUUA-3′, 5′-CGACGUAGCCAUUGUGAAG-3′); mouse Akt2 
(5′- CCAUGAAUGACUUCGAUUA-3′, 5′-GUACUUUGAUGACGAGUUC-3′, 
5′-CCUGAACAAUUUCUCUGUA-3′, 5′-GAUGCGGGCUAUCCAGAUG-3′).

Western blot and ubiquitination experiments. Western blot, immunoprecipita-
tion and ubiquitination experiments were performed as follows24. Western blots 
were performed using whole-cell extracts, separated on 8 or 10% SDS–PAGE 
gels, and transferred to polyvinylidine difluoride membranes. The membrane was 
blocked with a solution of PBS containing 0.1% Tween 20 (PBS-T) and 5% BSA. 
The membrane was then incubated in a 1:2,000 dilution of a primary antibody in 
5% BSA–PBS-T. After three washes in PBS-T, the membrane was incubated with 
1:5,000 dilution of the corresponding secondary antibody in 3% non-fact skim 
milk–PBS-T. Respective proteins were visualized by using enhanced chemilumi-
nescence detection reagents, according to the manufacturer’s instructions. To con-
duct immunoprecipitation analysis, cell lysates were incubated with 1 µg of primary 
antibodies overnight, at 4 °C, followed by 2-h incubation with protein A/G-agarose 
beads (Invitrogen). Immnoprecipitates were then suspended in a sample buffer, 
separated on 8% SDS–PAGE, transferred to polyvinylidine difluoride membrane, 
and detected by immunoblot analysis, as described above. The antibodies against 
total-Akt, phospho-Akt at T308 & S473, total Smad3, phospho-Smad3, total 
p70S6K, phospho-p70S6K at T389, total GSK3β, phospho-GSK3β at S9, mouse 
HA-Tag, His-Tag, and mouse and rabbit anti-Ubiquitin were purchased from Cell 
Signaling; antibodies against CYLD, total-Akt1/2/3, goat total-Akt1, Smad4, rabbit 
HA-Tag, mouse Ubiquitin, and actin were from Santa Cruz; FLAG and β-actin 
were from Sigma.

In vivo protein–protein interaction detection assay. A549 cells were cultured 
in tissue culture slide and incubated with S. pneumoniae, or control for time indi-
cated in the figure. Cells were stained with 2 µg ml − 1 of primary mouse anti-Akt 
antibody and rabbit anti-CYLD antibody, and protein–protein interaction between 
Akt and CYLD was detected with secondary proximity probes, anti-Rabbit MINUS 
and anti-mouse PLUS, using Duolink in vivo protein–protein interaction detection 
assay kit, according to the manufacturer’s instructions (Duolink proximity ligation 
assay, Olink Bioscience)38,39.

Mice and animal experiments. Cyld − / −  mice were generated by homologous  
recombination as follows1. The targeting construct was designed to disrupt the 
exons 2 and 3 with an IRES-LacZ/MC1-Neo cassette. The targeting plasmid was 
linearized and transfected into embryonic stem cells of a 129/S. Homologously 
recombined embryonic stem cells were injected into blastocysts that were subse-
quently transferred to foster mothers, to generate chimeric progeny. Generated 
chimeric progeny were backcrossed to C57BL/6J, and germline transmission was 
confirmed by PCR with tail DNA. Homozygous knockout of Cyld gene was con-
firmed by mRNA detection by RT–PCR and CYLD protein detection by western 
blot analysis in MEF cells and lung tissues. For S. pneumoniae-induced severe 
infections in WT and Cyld − / −  mice, anaesthetized mice were intratracheally  
(i.t.) inoculated with live S. pneumoniae (5×107 CFU per mouse). Survived mice 
from severe pneumonia were then sacrificed 2 weeks post S. pneumoniae infection 
for histopathological analysis. For TGF-β inoculation, anaesthetized WT and 
Cyld − / −  mice were i.t. inoculated with TGF-β (25–100 ng per mouse) for 6 h,  
and lung tissues were then subjected to total mRNA and protein extraction. 
In experiments using chemical inhibitor, SB431542 (10 mg kg − 1) or SB203580 
(20 mg kg − 1) or equal volume of vehicle control was administered via an  
intraperitoneal route 1–2 h(s) before the i.t. inoculation of S. pneumoniae. For  
bleomycin-induced fibrosis model, animals were i.t. inoculated with bleomycin  
(3 units per kg body weight) for 2 weeks. Lung tissues were then subjected to  
histological analysis and total mRNA and protein extraction. All animal experi-
ments were approved by the Institutional Animal Care and Use Committee 
(IACUC) at University of Rochester and Georgia State University.

Histology and immunohistochemistry. Lung tissue sections from WT and 
Cyld − / −  mice and normal control and pulmonary fibrosis patients were stained 
with haematoxylin and eosin (H&E), to visualize lung inflammation, and Masson’s 
trichrome staining (Trichrome staining) was performed to highlight organizing 
fibrosis. Immunohistochemical staining against CYLD and Smad3 was performed 
using ABC staining System (Santa Cruz). Briefly, tissue sections were incubated 
with 1 µg of primary antibodies or control IgG followed by 3 washes with PBS.  
Tissues were then incubated with 1 µg of biotinylated secondary antibodies 
followed by the incubation with AB enzyme reagent. After three washes, colour 
reaction was developed with peroxidase substrate. Control and fibrotic lung tissues 
from patients were obtained from Chonnam National Hospital with approval from 
the Institutional Review Board (IRB) at Chonnam National University, Korea.

Statistical analysis. All experiments were repeated at least three times with  
consistent results. Data are means ± s.d. Statistical significance was assessed by  
two-tailed unpaired student’s t-test. P<0.05 was considered significant. 
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