
RESEARCH ARTICLE

A genetic correlation and bivariate genome-

wide association study of grip strength and

depression

Tianhao Zhang1, Lujun Ji1, Jia Luo1, Weijing Wang1, Xiaocao Tian2, Haiping Duan2,

Chunsheng XuID
2, Dongfeng ZhangID

1*

1 Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao,

Shandong Province, China, 2 Qingdao Municipal Center for Disease Control and Prevention, Qingdao

Institute of Preventive Medicine, Qingdao, Shandong, China

* zhangdf1961@126.com

Abstract

Grip strength is an important biomarker reflecting muscle strength, and depression is a psy-

chiatric disorder all over the world. Several studies found a significant inverse association

between grip strength and depression, and there is also evidence for common physiological

mechanisms between them. We used twin data from Qingdao, China to calculate genetic

correlations, and we performed a bivariate GWAS to explore potential SNPs, genes, and

pathways in common between grip strength and depression. 139 pairs of Dizygotic twins

were used for bivariate GWAS. VEAGSE2 and PASCAL software were used for gene-

based analysis and pathway enrichment analysis, respectively. And the resulting SNPs

were subjected to eQTL analysis and pleiotropy analysis. The genetic correlation coefficient

between grip strength and depression was -0.41 (-0.96, -0.15). In SNP-based analysis, 7

SNPs exceeded the genome-wide significance level (P<5×10−8) and a total of 336 SNPs

reached the level of suggestive significance (P<1×10−5). Gene-based analysis and path-

way-based analysis identified genes and pathways related to muscle strength and the ner-

vous system. The results of eQTL analysis were mainly enriched in tissues such as the

brain, thyroid, and skeletal muscle. Pleiotropy analysis shows that 9 of the 15 top SNPs

were associated with both grip strength and depression. In conclusion, this bivariate GWAS

identified potentially common pleiotropic SNPs, genes, and pathways in grip strength and

depression.

Introduction

Grip strength, which can reflect muscle strength to some extent [1] and is correlated with

nutritional status [2], disease status, and all-cause mortality [3], is a very important biomarker

of aging [4]. Depression is a common psychiatric disorder that can significantly decrease the

quality of life of older adults [5], leading to a heavy burden of disease worldwide [6]. Several

previous cross-sectional [7, 8] and cohort [9, 10] studies have found a significant inverse
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association between grip strength and depression, and there is also evidence for common

physiological mechanisms between grip strength and depression. For example, the muscle can

release inflammatory cytokines such as IL-6, IL-8, and IL-15 [11]. Some studies have shown

that weak skeletal muscle strength is related to an increase in serum proinflammatory cyto-

kines [12, 13], which can lead to depression [14]. Furthermore, lower grip strength and depres-

sion have been shown to be associated with shortened cellular telomere length [15, 16]. In

addition, physical activity can have a positive effect on serotonin [17], dopamine [18], and nor-

epinephrine levels [19], which are closely related to depression.

In addition to environmental factors, genetic factors also play a very important role in the

relationship between grip strength and depression. An elderly twin study found a heritability

of 35% for hand-grip strength [20]. In the twin study by Tian et al., handgrip strength was

found to have a moderate heritability of 59.68% [21]. The results of one meta-analysis showed

a heritability of 56% (95% CI: 0.46–0.67) for isometric grip strength [22]. A large twin study in

Sri Lanka found that the heritability of broadly defined depression was 61% in women [23].

Through a meta-analysis of twin studies, the heritability of depression was found to range

from 31% to 48% [24]. However, there are no studies on the genetic correlation of grip

strength with depression.

To date, little is known about shared genetic variation in depression and grip strength.

Some overlapping results were found between depression and grip strength by contrasting

univariate studies. Two cohort studies in older Swedish adults found that the APOEε4 allele

was simultaneously associated with decreased grip strength and depression [25, 26]. In addi-

tion, serval studies have shown that the vitamin D receptor (VDR) gene is associated with mus-

cle strength and senile depression symptoms [27–29]. The results of these univariate studies

indirectly support the existence of common susceptibility genes for grip strength and depres-

sion, but there is still a lack of direct evidence. Compared with univariate research, a bivariate

genome-wide association study (GWAS) can add two variables to the model simultaneously to

find the potential pleiotropic genetic variation between phenotypes. Bivariate GWASs have

higher statistical ability and more accurate parameter estimation than univariate studies [30,

31]. In addition, twin samples are more effective for studies targeting complex phenotypes

than general population samples [32].

In summary, we hypothesized that grip strength and depression are regulated by common

genetic factors. Therefore, we used twin data from Qingdao, China to calculate genetic correla-

tions, and we performed a bivariate GWAS to explore potential single nucleotide polymor-

phisms (SNPs), genes, and pathways in common between grip strength and depression.

Methods

Study population

We used a twin sample from the Qingdao Twin Registration System in China, and the details

of the sample can be found in previous literature [33]. Blood was collected from participants in

a fasted state, and zygosity was determined by sex, blood type, and microsatellite DNA gene

scanning with typing techniques. Participants differing in sex or blood type were identified as

dizygotic (DZ) twins. Monozygotic (MZ) twins were identified when both sex and blood type

was the same and all 15 short tandem repeats (STRs) were concordant. Twins fulfilling the fol-

lowing criteria could be included in the study: 1) older than 18 years; 2) available for follow-

up; and 3) had blood samples, questionnaires, and phenotypic measurement data. We

excluded twins if they 1) were pregnant or lactating; 2) were missing key indicator informa-

tion; 3) had a critical illness or were unable to complete the survey; or 4) were professional ath-

letes. Ultimately, 235 MZ and 134 DZ twins were included in the study.
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Phenotypes

Information such as sex and age were collected by questionnaires. The 30-item Geriatric

Depression Scale (GDS-30, Chinese version) was used to assess depressive symptoms. The

scale consists of 30 questions with a total score ranging from 0–30, with higher scores repre-

senting more severe depressive symptoms. This scale has been adapted precisely for the assess-

ment of depression in middle-aged and older adults, and it is appropriate for the Chinese

population [34]. Physical examinations were performed by trained investigators. Participants

were required to squeeze the grip of the handgrip dynamometer (WCS-100, Nantong, China)

as strongly as they could, with each hand tested 3 times. Like some other studies [35, 36], the

maximum value was taken as the grip strength for analysis.

Genetic correlations

We used Mx software to construct a bivariate Cholesky decomposition model. The classical

twin model decomposes the total phenotypic variation into additive genetic effect (A), com-

mon environment effect (C), and special environment effect (E). The likelihood ratio chi-

square test was used to compare the difference between the full model and its nested model. If

a P value greater than 0.05 indicated that the full model was not significantly different from its

nested model, the nested model was selected according to the Akaike information criterion

(AIC) and the minimalist principle.

Genotyping, quality control, and imputation

We used Infinium Omni2.5Exome-8v1.2 BeadChip from Illumina for genotyping DZ twins.

The chip covers a wide range and has a good typing detection rate. After typing detection,

SNPs were first quality-controlled, and individual SNPs should meet: 1) Locus missing

rate< 0.05 (SNPs with high missing rates were difficult to genotype); 2) Calling rate> 0.98

(The low calling rate reflects the poor quality of the sample); 3) Hardy-Weinberg equilibrium

(HWE) > 1×10−6 (HWE is a tool for tagging SNPs with a large number of genotyping errors);

4) Minor allele frequency (MAF) >0.05 (Variants with very low MAF are more susceptible to

genotyping errors, as the rarer alleles occur in only a few individuals.). Then, the quality-con-

trolled SNPs were imputed with the use of IMPUTE2 software [37], based on linkage disequi-

librium (LD) principles with data from the third phase of the 1000 Genomes Project (ASIAN)

[38] as the reference. The SNPs were quality controlled again after imputation with the stan-

dards of 1) a Hardy-Weinberg equilibrium (HWE)>1×10−6; 2) a minor allele frequency

(MAF)>0.05; 3) information contents (info> = 0.9). Finally, 7,165,663 SNPs were used in the

bivariate GWAS.

Bivariate GWAS

SNP-based analysis. To explore the association of SNPs in handgrip-depression pairs, we

used genome-wide efficient mixed-model association (GEMMA) [39], adjusting for sex, age,

and BMI. Rank transformation based on Blom’s formula was used to normalize the skewed

distributions of handgrip strength and depression. GEMMA fitted a multivariate linear mixed

model (mvLMM) while controlling for relatedness and population structure to test marker

associations of handgrip strength with depression. The significance level was defined as a P
value<5×10−8 as a conventional Bonferroni-corrected threshold [40]. The suggested level of

association was a P value<1×10−5, a commonly utilized threshold in GWASs [41]. The quan-

tile-quantile (Q-Q) plot was used to visualize the population stratification, and the Manhattan

plot was used to visualize the P value for each SNP on each chromosome.
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Gene-based analysis. Versatile Gene-based Association Study-2 (VEGAS2) software [42]

was used for gene-based analysis with the “1000G East ASIAN Population” as a reference. A

total of 21,221 genes were tested so that the Bonferroni-corrected significance threshold was a

P value<2.36×10−6(0.05/21,221). The nominal significance level was a P value<0.05 [43].

Pathway enrichment analysis. Pathway Scoring Algorithm (PASCAL) software [44] was

used to evaluate pathway scores for pathway enrichment analysis. First, SNP loci were located

in genes, and the association scores of all genes in a pathway were calculated. The chi-square

and empirical scores were used to evaluate high-scoring pathways. Then, we obtained access

information from the KEGG, BioCarta, and Reactome databases.

Expression quantitative trait locus (eQTL) analysis

For the top 60 SNPs that reached the suggested level of significance, we examined their func-

tionality using data from the GTEx portal (version 8) [45]. A P value<0.05 was considered sig-

nificant in the single-tissue eQTL analysis. The posterior probability m-value that the eQTL

effect existed in each tissue of a cross-tissue meta-analysis higher than 0.9 indicated that the tis-

sue having had an eQTL effect [46].

Pleiotropy analysis

We performed genetic pleiotropy tests on the top 15 SNPs that were most significant before

imputation using the R package “pleio”, thus verifying whether they were indeed associated

with both grip strength and depression.

Ethics statement

This study conformed to the declaration of Helsinki, and all participants provided written

informed consent. This study was approved by the Regional Ethics Committee of the Qingdao

Center for Disease Control. And the decision reference number was 2012–01.

Results

Basic characteristics

The basic characteristics of the twin are shown in Table 1. A total of 369 pairs of twins were

enrolled in this study. Among them, 134 were DZ twins and 235 were MZ twins. There were

362 males and 376 females. In the total sample, the median (interquartile range) age was 50

(45, 57), and the median (interquartile range) grip strength and depression scores of partici-

pants were 30.4 (23.8, 40.2) and 7 (4, 11), respectively. In the DZ twin sample, the median

Table 1. Characteristics of participants by sex.

Variables Male Female Total population

N M (Q) N M (Q) N M (Q)

Total sample Age (year) 362 50 (45, 58) 376 50 (46, 56) 738 50 (45, 57)

Grip strength 362 40.8 (34.8, 47.7) 376 24.4 (21.3, 27.7) 738 30.4 (23.8, 40.2)

Depression score 362 7 (3.75, 11) 376 7 (4, 10) 738 7 (4, 11)

DZ twins Age (year) 138 49 (45, 57) 130 49 (45, 56) 268 49 (45, 56)

Grip strength 138 42 (36.9, 49.9) 130 25.2 (22.2, 28.6) 268 31.1 (25.2, 42.5)

Depression score 138 7 (3, 11) 130 6 (4, 10) 268 7 (4, 11)

M: median; Q: quartile.

https://doi.org/10.1371/journal.pone.0278392.t001
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(interquartile range) age was 49 (45, 56), and the median (interquartile range) grip strength

and depression scores of the participants were 31.1 (25.2, 42.5) and 7 (4, 11), respectively.

Genetic correlations

As shown in Table 2, the phenotypic correlation coefficient between grip strength and depres-

sion was -0.27 (P<0.001), and the best fitting Cholesky decomposition model (ACE) identified

that the genetic correlation coefficient between the two phenotypes was -0.41 (-0.96, -0.15).

This finding suggested a moderate genetic correlation between grip strength and depression.

The common and special environmental correlation coefficients were insignificant.

Bivariate GWAS

SNP-based analysis. A bivariate GWAS was performed in 134 DZ twin pairs. As shown

in the Q-Q plot (Fig 1) for the bivariate measures of grip strength and depression, the inflation

Table 2. Genetic correlations between grip strength and depression.

Phenotypic Model rG (95%CI) rC (95%CI) rE (95%CI) Phenotypic correlation coefficient -2LL Δdf χ2 P
Grip strength–depression ACE -0.41 (-0.96, -0.15) -1.00 (-1.00, 1.00) -0.04 (-0.17, 0.09) -0.27 (-0.34, -0.19) 3610.99

AE -1.00 (-1.00, -0.78) - -0.12 (-0.23, -0.01) -0.24 (-0.31, -0.16) 3618.14 1 7.153 0.007

rG: genetic correlation coefficient; rC: common environmental correlation coefficient; rE: special environmental correlation coefficient; -2LL: double negative

logarithmic likehood function value; df: free degree.

https://doi.org/10.1371/journal.pone.0278392.t002

Fig 1. Quantile-quantile plot for bivariate genome-wide association study of grip strength and depression. The

horizontal axis represents the expected -log10 (P), while the vertical axis represents the observed -log10 (P). The red line

represents the expectation of the null hypothesis of no association, and the gray shaded area represents 95% confidence

intervals of the null hypothesis. The black dots represent the observed data, and λ indicates genomic inflation.

https://doi.org/10.1371/journal.pone.0278392.g001
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coefficients for the groups had a λ value of 1.027, indicating no stratification of the population.

The Manhattan plot (Fig 2) provides a visualization of the results of the GWAS. As shown in

the plot, 7 SNPs exceeded the genome-wide significance level (P<5×10−8) and a total of 336

SNPs reached the level of suggestive significance (P<1×10−5). The most significant SNP was

rs118190698 (P = 1.35×10−9) located in the RAB27B gene on chromosome 18; followed by

rs79530590 (P = 1.50×10−9), located in the LOC107985152 gene; rs117744620 (P = 3.31×10−9)

located in the LRR1 gene; rs117546604 (P = 3.84×10−9), rs150220336 (P = 4.39×10−8), and

rs147079354 (P = 4.62×10−8), located in the ME2 gene; and rs79287957 (P = 4.62×10−8) located

close to the LINC02871 gene. The top 60 SNPs are shown in Table 3 sorted by P value.

Gene-based analysis. In the gene-based analysis, 2 genes reached a significant association

level (P = 2.36×10−6): GTF2H2C_2 (P = 3.08×10−7) and GTF2H2C (P = 3.08×10−7). Further-

more, 1,262 genes reached the nominal significance level (P<0.05). The top 60 genes are

shown in S1 Table, and most of these genes were related to the nervous system, actin, and

immune system.

Pathway enrichment analysis. In the pathway enrichment analysis, we identified 621 bio-

logical pathways associated with grip strength and depression (emp-P<0.05). We ranked the

top 60 pathways by the strength of association in S2 Table. Most of these pathways were

involved in hormone synthesis, the immune system, and the nervous system.

eQTL analysis

The eQTL analysis across tissues using the Asian population as a reference found that 13 SNPs

were significant eQTLs in several tissues, including brain tissues, skeletal muscle, the tibial

nerve, and the thyroid (S3 Table; S1–S3 Figs). Among them, the rs10914394 (S1 Fig, Brain–

Spinal cord (cervical c-1), P value = 5.2×10−5, m-value = 1.00; Muscle–Skeletal, P
value = 4.3×10−28, m-value = 1.00; Nerve–Tibial, P value = 7.2×10−13, m-value = 1.00; Thyroid,

P value = 4.3×10−12, m-value = 1.00), rs10914386 (S2 Fig, Brain–Spinal cord (cervical c-1), P
value = 1.4×10−4, m-value = 1.00; Muscle–Skeletal, P value = 1.3×10−28, m-value = 1.00;

Nerve–Tibial, P value = 3.2×10−13, m-value = 1.00; Thyroid, P value = 1.3×10−11, m-

value = 1.00), and rs10914387 (S3 Fig, Brain–Spinal cord (cervical c-1), P value = 1.4×10−4, m-

value = 1.00; Muscle–Skeletal, P value = 2.5×10−28, m-value = 1.00; Nerve–Tibial, P
value = 3.1×10−13, m-value = 1.00; Thyroid, P value = 7.2×10−12, m-value = 1.00) SNPs were

significantly associated with the expression of the SERINC2 gene in brain tissues and muscle

tissues.

Fig 2. Manhattan plot for bivariate genome-wide association study of grip strength and depression. The horizontal axis represents autosomes and

the X chromosome, while the vertical axis represents the P-values of SNPs. The red line represents the genome-wide significance threshold (5×10−8),

and the lower horizontal dashed line represents the suggestive significance level (1×10−5).

https://doi.org/10.1371/journal.pone.0278392.g002
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Table 3. Top 60 SNPs that reached P < 1×10−5 from bivariate GWAS of grip strength and depression.

SNP Chr Band BP P-value Gene/Nearest gene

rs118190698 18 q21.2 52480259 1.35E-09 RAB27B
rs79530590 18 q21.2 48520209 1.50E-09 LOC107985152

rs117744620 14 q21.3 50079611 3.31E-09 LRR1
rs117546604 18 q21.2 48472778 3.84E-09 ME2
rs150220336 18 q21.2 48388016 4.39E-08 ME2
rs147079354 18 q21.2 48447754 4.62E-08 ME2
rs79287957 20 p12.2 11048805 4.92E-08 LINC02871
rs75534602 7 p12.1 50634883 6.13E-08 DDC

rs117533783 7 p12.2 50525408 7.82E-08 DDC
rs116994552 8 p21.1 28076758 8.16E-08 LOC100131127
rs11973477 7 q32.3 130908819 1.01E-07 MKLN1
rs6961574 7 q32.3 130908776 1.04E-07 MKLN1

rs149538842 3 p12.3 76440134 1.06E-07 ROBO2
rs78161270 7 p12.2 50541930 1.13E-07 DDC

rs117549429 21 q22.13 38971496 1.53E-07 KCNJ6
rs74214322 7 p13 45401720 3.00E-07 ELK1P1

rs118025410 5 q13.2 68859027 3.08E-07 GTF2H2C
rs76553625 5 q12.3 64268965 3.19E-07 CWC27
rs5773363 1 p35.2 31918631 3.24E-07 SERINC2

rs12657552 5 p13 68855113 3.29E-07 GTF2H2C
rs4081993 5 p13 68856116 3.33E-07 GTF2H2C

rs147869550 15 q23 71596350 4.45E-07 THSD4
rs1868887 7 p12.2 50479856 4.76E-07 IKZF1

rs79147986 5 p15.1 15593286 5.05E-07 FBXL7
rs201380943 11 p11.2 47778625 5.41E-07 FNBP4
rs116890548 12 q24.31 121620387 5.43E-07 P2RX7
rs573505577 11 p15.1 19918670 5.48E-07 NAV2
rs80251137 7 q36.3 155920157 6.09E-07 LOC105375601
rs2995920 4 p14.3 37904456 6.24E-07 TBC1D1

rs141475535 1 q44 244427543 7.24E-07 LOC105373262
rs116961485 8 q13.1 66227114 7.79E-07 PPIAP86
rs534143679 3 p22.3 32433754 7.96E-07 CMTM7
rs62358249 5 q14.3 84421657 8.02E-07 RBBP4P6
rs17008263 1 q41 220877255 8.02E-07 C1orf115
rs11851625 14 q12 30314159 8.15E-07 PRKD1
rs12563371 1 p21.1 103499755 8.22E-07 COL11A1

rs200867673 7 p14.3 32871494 8.88E-07 DPY19L1P2
rs2297807 20 q13.33 62575853 8.90E-07 UCKL1

rs57042988 7 q31.2 114791544 9.16E-07 LINC01392
rs10914394 1 p35.2 31915692 9.18E-07 LOC105378625

rs181979988 4 p14.3 38496704 9.38E-07 LINC01258
rs141325897 1 p21.1 103598274 9.38E-07 COL11A1
rs57244134 12 q22.13 94661218 9.93E-07 CEP83
rs10914386 1 p35.2 31909072 1.06E-06 SERINC2
rs10914387 1 p35.2 31909124 1.06E-06 SERINC2
rs6702129 1 p35.2 31910482 1.06E-06 SERINC2
rs1320586 1 p35.2 31908201 1.07E-06 SERINC2

(Continued)
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Pleiotropy analysis

Table 4 shows the results of the pleiotropy analysis. In the top 15 SNPs, 9 were associated with

both grip strength and depression. In addition, rs117549429 was associated with depression

only, and rs79287957, rs75534602, rs117533783, rs149538842, and rs78161270 were associated

with grip strength only.

Table 3. (Continued)

SNP Chr Band BP P-value Gene/Nearest gene

rs12122438 1 p35.2 31909448 1.07E-06 SERINC2
rs12141959 1 p35.2 31909380 1.07E-06 SERINC2
rs6690908 1 p35.2 31910089 1.07E-06 SERINC2
rs6675883 1 p35.2 31910202 1.07E-06 SERINC2
rs6688664 1 p35.2 31910337 1.07E-06 SERINC2

rs139995350 1 p35.2 31910430 1.07E-06 SERINC2
rs6691338 1 p35.2 31910655 1.07E-06 SERINC2

rs75429043 14 q12 30316306 1.13E-06 PRKD1
rs11795332 9 p22.3 15352410 1.13E-06 RPL7P33

rs113400337 9 p22.3 15360062 1.13E-06 RPL7P33
rs377290438 6 q12 68889736 1.14E-06 LINC02549
rs12323862 14 q12 30317951 1.14E-06 PRKD1
rs79219406 9 p22.3 15347617 1.18E-06 RPL7P33

SNP, nucleotide polymorphism; Chr, chromosome; BP, base pair.

https://doi.org/10.1371/journal.pone.0278392.t003

Table 4. The results of pleiotropy analysis for bivariate GWAS of grip strength-depression identified top 15 SNPs.

SNP Chr BP P-value a Trait of nonzero β b P for test0 c P for test1 d Associated trait

rs118190698 18 52480259 1.35E-09 G; D 1.88E-06 2.25E-04 G; D

rs79530590 18 48520209 1.50E-09 G; D 5.52E-06 2.09E-03 G; D

rs117744620 14 50079611 3.31E-09 G; D 1.11E-07 7.75E-03 G; D

rs117546604 18 48472778 3.84E-09 G; D 1.70E-06 4.19E-04 G; D

rs150220336 18 48388016 4.39E-08 G; D 9.39E-07 1.77E-04 G; D

rs147079354 18 48447754 4.62E-08 G; D 1.00E-06 1.66E-04 G; D

rs79287957 20 11048805 4.92E-08 G 3.10E-05 5.61E-01 G

rs75534602 7 50634883 6.13E-08 G 3.56E-05 2.45E-01 G

rs117533783 7 50525408 7.82E-08 G 2.10E-05 9.59E-02 G

rs116994552 8 28076758 8.16E-08 G; D 1.03E-06 2.48E-02 G; D

rs11973477 7 130908819 1.01E-07 G; D 2.03E-06 1.06E-03 G; D

rs6961574 7 130908776 1.04E-07 G; D 1.97E-06 1.03E-03 G; D

rs149538842 3 76440134 1.06E-07 G 5.63E-06 2.60E-01 G

rs78161270 7 50541930 1.13E-07 G 2.86E-06 1.20E-01 G

rs117549429 21 38971496 1.53E-07 D 1.87E-02 5.90E-02 D

SNP, nucleotide polymorphism; Chr, chromosome; BP, base pair; G, grip strength; D, depression.
a The P-value was derived from bivariate GWAS.
b Sequential tests of pleiotropy with a P threshold of 0.05.
c Single test of the number of traits associated with genotype, H0 (test0): all betas = 0.
d Single test of the number of traits associated with genotype, H0 (test1): one or less beta is nonzero.

https://doi.org/10.1371/journal.pone.0278392.t004
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Discussion

A total of 369 pairs of twins were included in this study. The genetic correlation between grip

strength and depression was evaluated by a bivariate genetic model. It was found that there

was a moderate genetic correlation between grip strength and depression, and the genetic cor-

relation coefficient was -0.41 (-0.96, -0.15), suggesting that there was a common genetic basis

between them. At present, most of the studies on the heritability of grip strength and depres-

sion are carried out for a single variable. Previous studies have shown that the heritability of

grip strength and depression is high, but there is still a gap in the research in determining their

common genetic correlation coefficient.

Then, a bivariate GWAS was carried out in 134 pairs of DZ twins to identify the common

SNPs, genes, and pathways of grip strength and depression. In the SNP-based analysis,

rs117744620, located in the LRR1 gene on chromosome 14, exceeded the genome-wide signifi-

cance level. LRR1 encodes a protein with a leucine-rich repeat. A previous study showed that

LRR1 regulates 4-1BB-mediated signaling cascades, which activate NF-кB [47], and NF-кB

could affect depression. LRR1 can also affect actin [48], thereby affecting muscle strength.

Three SNPs (rs117546604, rs150220336, rs147079354) located in or near the ME2 gene also

exceeded the genome-wide significance level. The ME2 gene encodes a mitochondrial NAD-

dependent malic enzyme. ME2 has been shown to be associated with generalized epilepsy [49],

suggesting that ME2 may affect both the nervous system and muscle strength. In addition,

ME2 has been found to be associated with susceptibility to psychosis and mania [50], and the

knockdown of ME2 may affect PI3K/AKT signaling [51], all suggesting that ME2 is also associ-

ated with depression.

In the top 60 SNPs that reached the suggested level of association, three SNPs (rs75534602,

rs117533783, rs78161270) were located near the DDC gene. A study has shown that the DDC
gene is associated with postpartum anxiety [52]. In addition, the DDC gene was also associated

with aromatic L-amino acid decarboxylase deficiency (AADCD), a neurotransmitter metabo-

lism disorder in the mainland Chinese population, the main symptoms of which include early-

onset hypotonia [53]. Therefore, the DDC gene may affect grip strength and depression simul-

taneously. rs116890548 is located in the P2RX7 gene on chromosome 12. P2RX7 is associated

with the inflammatory response and neuroimmune mechanisms of depression and neurode-

generative diseases [54, 55]. This gene can also affect calcium channels [56, 57] and is associated

with bone and joint diseases [58]. Therefore, P2RX7 may affect muscle strength. Moreover,

three SNPs (rs11851625, rs75429043, rs12323862) were located in the PRKD1 gene on chromo-

some 14. The PRKD1 gene can regulate actin [59] and affect skeletal muscle [60]. The PRKD1
gene is also associated with neurons [61], NF-кB [62], and the inflammatory response [63].

Therefore, PRKD1 may also regulate depression and muscle strength simultaneously.

In gene-based analysis, we found 2 genes that exhibited a significant association,

GTF2H2C_2 and GTF2H2C. However, there are too few studies on these two genes, and we

cannot yet explain the relationship of these two genes with the phenotype. Furthermore,

among the genes with nominal significance levels, many were associated with grip strength

and depression: (1) FNBP1 can affect neuronal dendrites [64] and actin [65], which may affect

grip strength and depression; (2) MOG is associated with multiple sclerosis [66, 67], the main

symptoms of which include depression and decreased muscle strength; (3) the SACS gene can

affect motor and sensory neuropathy [68], and is associated with complex neurological disor-

ders [69]; (4) the KMO gene is associated with depression [70, 71] and Huntington’s disease

[72], the symptoms of which include muscle atrophy; (5) the TECPR2 gene is tightly linked to

the nervous system [73–76] and may influence depression and grip strength by affecting

nerves; and (6) MGTA5 can affect the severity of multiple sclerosis [77, 78]. MGTA5 may also
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be associated with attempted suicide [79], and therefore may be associated with depression. In

addition, the expression levels of KCNN4 [80, 81], MOG [82, 83], and SNHG12 [84, 85] genes

can influence inflammatory factors, which may affect grip strength and depression by influ-

encing the inflammatory response.

In the pathway enrichment analysis, many pathways were related to hormone synthesis and

neural signal transduction. (1) Androgen biosynthesis, steroid hormones, and steroid hormone

biosynthesis are related to androgen synthesis and metabolism. Androgen levels are not only

associated with depression but also affect grip strength [86, 87]. (2) Potassium channels and the

nervous system can regulate the resting membrane potential in neurons, and it can affect both

depression and muscle strength [88, 89]. (3) Signaling by RHO GTPases can affect guanine

nucleotides, and studies have shown that RHO GTPases can affect actin [90] and neuronal

development [91, 92], thereby affecting muscle strength and depression. (4) The phospholipase

C mediated cascade, activated point mutants of FGFR2, and FGFR ligand binding and activa-

tion are related to fibroblast growth factor receptor. Fibroblast growth factors are associated

with skeletal muscle development [93], and a study has found that fibroblast growth factor-2

can affect depression [94]. (5) Cytokine receptor interaction pathway can affect cytokines. Cyto-

kines are soluble extracellular proteins or glycoproteins that are crucial intercellular regulators

and mobilizers of cells engaged in innate as well as adaptive inflammatory host defenses. This

pathway may affect grip strength and depression by influencing the inflammatory response.

The current research has several strengths. First, this is the first genetic correlation and

bivariate GWAS on grip strength and depression, which will help to study the common genetic

basis of these phenotypes. Second, our study was conducted in a twin sample, which is more

effective when exploring complex phenotypes such as depression [32]. In addition, we per-

formed a pleiotropic analysis, and the results showed that a number of the SNPs we obtained

were indeed associated with both grip strength and depression, which further confirmed the

accuracy of our study. At the same time, our research has some limitations. First, because it is

difficult to recruit twin samples, our sample size was relatively small, which limited our ability

to find more potential SNPs, genes, and pathways. Smaller sample sizes may also lead to lower

power, but we have used pleiotropy analysis to improve the credibility of the results. Second,

we cannot fully explain the SNP, gene, and pathway associations that we found. For example,

although two genes exceeded the Bonferroni-corrected significance threshold and the same

genes have also been found in univariate GWASs, we cannot explain the associated biological

mechanism. Third, because our sample included both middle-aged and older adults, and the

depression questionnaire we used was the GDS-30, this may have had an impact on the assess-

ment of depressive symptoms.

Conclusion

In conclusion, this bivariate GWAS identified potentially common pleiotropic SNPs, genes,

and pathways in grip strength and depression. However, more in-depth studies are still needed

to validate our results.
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