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SUMMARY

High-throughput single-cell RNA sequencing (scRNA-seq) has become a frequently used tool to 

assess immune cell heterogeneity. Recently, the combined measurement of RNA and protein 

expression was developed, commonly known as cellular indexing of transcriptomes and epitopes 

by sequencing (CITE-seq). Acquisition of protein expression data along with transcriptome data 

resolves some of the limitations inherent to only assessing transcripts but also nearly doubles the 

sequencing read depth required per single cell. Furthermore, there is still a paucity of analysis 

tools tovisualize combined transcript-protein datasets. Here, we describe a targeted transcriptomics 

approach that combines an analysis of over 400 genes with simultaneous measurement of over 40 

proteins on 2 × 104 cells in a single experiment. This targeted approach requires only about one-
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tenth of the read depth compared to a whole-transcriptome approach while retaining high 

sensitivity for low abundance transcripts. To analyze these multi-omic datasets, we adapted one-

dimensional soli expression by nonlinear stochastic embedding (One-SENSE) for intuitive 

visualization of protein-transcript relationships on a single-cell level.

Graphical Abstract

In Brief

Mair et al. describe a targeted transcriptomics approach combined with surface protein 

measurement to capture immune cell heterogeneity at a low sequencing depth. One-SENSE is 

used as a visualization tool to intuitively explore the relationship of protein and transcript 

expression on the single-cell level.

INTRODUCTION

Pioneering work almost 20 years ago illustrated the ability to study transcript expression at 

the single-cell level (Chiang and Melton, 2003; Phillips and Eberwine, 1996), but recent 

advances in microfluidics and reagents allow the high-throughput analysis of transcripts of 

104 single cells in one experiment (Jaitin et al., 2014; Klein et al., 2015; Macosko et al., 

2015). Several methods have been developed for this purpose, and currently the most widely 

adopted platform is a droplet-based microfluidics system commercialized by 10x Genomics 

(Zheng et al., 2017).

Although analysis of transcript expression on the single-cell level is a powerful tool to 

characterize the phenotypic and functional properties of cells, it is imperative to consider the 

relationship between transcripts and proteins when trying to extrapolate biology. Typically, 

transcripts are expressed at a much lower level than proteins—for example, murine liver 

cells have a median copy number of 43,100 proteins but only 3.7 mRNA molecules per gene 

(Azimifar et al., 2014). Similarly, the dynamic range of expression is much greater for 
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proteins, with copy numbers spanning about 6–7 orders of magnitude, whereas transcript 

copy numbers span about 2 orders of magnitude (Schwanhäusser et al., 2011). Finally, the 

correlation of gene expression and protein expression has been estimated to have a Pearson 

correlation coefficient between 0.4 (Schwanhäusser et al., 2011) and 0.6 (Azimifar et al., 

2014). These discrepancies in transcript and protein expression patterns are relevant for the 

biological interpretation of single-cell transcriptome data but also pose analytical challenges. 

Suitable approaches are required to visualize the data despite the pronounced differences in 

abundance and dynamic range of expression.

The parallel measurement of transcript and protein phenotype has been recently reported as 

cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) (Stoeckius et al., 

2017) or RNA expression and protein sequencing (REAP-seq) (Peterson et al., 2017). These 

technologies leverage existing single-cell RNA sequencing (scRNA-seq) platforms that use 

an unbiased whole-transcriptome analysis (WTA) approach that captures cellular mRNA by 

its poly-A tail and use oligonucleotide-labeled antibodies (carrying unique barcodes) to 

interrogate surface protein abundance. Typically, current droplet-based WTA approaches 

result in the detection of ~1,000 unique transcripts per single cell for the transcriptome (with 

a substantial fraction of these transcripts encoding ribosomal proteins), and antibody panels 

of up to 80 targets have been reported (Peterson et al., 2017).

Although proof-of-principle experiments for this sequencing-based technology have been 

established, it remains unclear how the antibody detection compares to established flow-

cytometry-based assays in different experimental settings with regard to capturing the 

dynamic range of protein expression and identifying low abundance protein expression. In 

addition, the combined WTA plus protein approach can quickly become resource intensive 

given the high number of reads per cell required to achieve library saturation. Finally, 

droplet-based WTA pipelines may still miss specific transcripts of interest if they are below 

the limit of detection, with current high-throughput chemistries capturing an estimated 10% 

of the total cellular mRNA (Zheng et al., 2017).

Here, we report using a high-throughput (>104 single cells) targeted transcriptomics 

approach using nanowells to capture single cells (Rhapsody platform, commercialized by 

BD Biosciences) (Fan et al., 2015) in combination with oligonucleotide-barcoded antibodies 

(termed AbSeq). Specifically, we simultaneously interrogated 492 immune-related genes 

and 41 surface proteins that are commonly used for immunophenotyping. We found that this 

targeted approach was efficient at detecting low-abundance transcripts while only requiring 

about one-tenth of the sequencing read depth needed for WTA, indicating that targeted 

transcriptomics is a sensitive and cost-efficient alternative when the focus is on interrogating 

defined transcripts. Notably, this approach clearly separated different memory T cell subsets 

as well as regulatory T cells (Tregs) solely based on transcript information, which is often 

difficult due to the low amount of mRNA recovered from T lymphocytes (Zheng et al., 

2017). Furthermore, we used 30-parameter fluorescent-based flow cytometry to 

simultaneously measure the same protein targets as in the multi-omic assay. Our data 

indicate that the validation of oligonucleotide-barcoded antibody panels is necessary for 

meaningful interpretation of the multi-omic data.
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To demonstrate the sensitivity and robustness of the system, we analyzed T cells before and 

after 1 h of stimulation. We found distinct chemokine expression patterns within the CD8+ T 

cell population 1 h after stimulation, indicating significant heterogeneity in the response of 

this compartment.

Finally, to intuitively visualize protein and transcriptome data in a single plot, we adapted 

one-dimensional soli expression by nonlinear stochastic embedding (One-SENSE), which 

was originally developed for visualization of mass cytometry data (Cheng et al., 2016). This 

adaptation allows effective visualization and identification of cellular phenotypes that differ 

either by transcripts or by proteins. Overall, we provide a methodological toolset for 

generating high-throughput multi-omic single-cell data with a focus on selected targets at 

minimal read depth and an analytical tool to visualize these protein and transcript datasets.

RESULTS

Comparison of Oligonucleotide-Labeled Antibody Probes to High-Dimensional Flow 
Cytometry

For our reference dataset, we used peripheral blood mononuclear cells (PBMCs) from three 

healthy control subjects carrying the HLA-A*02:01 allele, which allowed isolation of 

Epstein-Barr Virus (EBV)-specific CD8+ T cells by using an EBV-tetramer reagent (EBV 

epitope YVLDHLIVV) (Dunne et al., 2002). To ensure sufficient cell numbers of these rare, 

antigen-specific T cells, we enriched tetramer-positive T cells by fluorescence-activated cell 

sorting (FACS). In parallel, we sorted CD45+ live leukocytes from PBMCs (Figure 1A). 

Moreover, to minimize batch effects during subsequent staining with 41 oligo-nucleotide-

labeled antibodies (Figure 1B), we used a multiplexing protocol with barcoded cell-hashing 

antibodies (Stoeckius et al., 2018). All samples were processed simultaneously using the 

Rhapsody platform, a nanowell-based cartridge system (Fan et al., 2015) for scRNA-seq 

with a targeted approach focusing on 492 immune-relevant transcripts (397 pre-defined 

targets complemented by 95 experiment-specific targets, full list provided in Table S1). 

Following quality control and removal of multiplets, we recovered 27,258 cells from the 

sequencing data, which were evenly distributed across the three different donors (donor 1: 

8,984 cells, donor 2: 8,956 cells, donor 3: 9,318 cells).

First, we wanted to assess whether the surface protein phenotypes as defined by sequencing 

match known biology. For this, we designed two optimized 30-parameter 

immunophenotyping panels (adapted from Mair and Prlic, 2018) covering the same 41 

protein targets in an overlapping fashion. We used these panels to stain whole unsorted 

PBMC samples from the same 3 donors, down-sampled the cytometry data to 27,000 cells, 

and used biaxial gating to identify the main immune lineages of the myeloid compartment 

(Figure 1C) as well as the lymphoid compartment (Figure 1D). All populations were present 

at comparable frequencies in the two different datasets, with myeloid cells showing slightly 

lower abundance in the experiment that included cell sorting (Figures 1E and 1F). Notably, 

even low-abundance cell populations, such as CD1c+ conventional dendritic cells (cDCs) 

and cross-presenting CD141+ cDCs, were clearly identified by their surface protein 

phenotype (Figure 1C). Furthermore, the oligonucleotide-labeled antibodies allow 
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discrimination of the CD45 splice variants CD45RO and CD45RA, which are used to subset 

T cells and cannot be distinguished by 3ʹtranscriptomic analysis alone.

However, for the anti-T cell receptor ɣδ (TCR ɣδ) reagent we used, discordant patterns were 

observed when comparing the expression to conventional flow cytometry, despite using the 

same antibody clone (Figure S1A). This was not immediately evident when visualizing the 

data on a heatmap (Figure S1B), emphasizing the need for careful reagent validation for 

sequencing-based protein measurements. Thus, we did not analyze ɣδ T cells separately for 

the rest of our study. Furthermore, the anti-CCR7 antibody clone used in the AbSeq 

experiment delivered sub-optimal resolution (data not shown). A detailed list of antibody 

clones and used concentrations can be found in the STAR Methods (Table S4).

Targeted Transcriptomics Captures the Major PBMC Lineages Similar to Whole-
Transcriptome Approaches

Next, we wanted to assess how well a targeted transcriptomics approach can identify 

immune cell heterogeneity compared to a commonly used WTA pipeline (Zheng et al., 

2017). For this, we used a single donor and compared the resulting populations after graph-

based clustering of the transcript data by using the R package Seurat implementation of 

PhenoGraph at standard resolution settings (Butler et al., 2018; Levine et al., 2015; Figures 

2A and S2A). For visualization, we used uniform manifold approximation and projection 

(UMAP), a dimensionality reduction approach that has recently been adopted for single-cell 

data (Becht et al., 2019; McInnes et al., 2018). Overall, the targeted transcriptomic approach 

using 492 genes revealed a similar resolution of known immune subsets in the peripheral 

blood relative to WTA (Figures 2B and S2B). In particular, CD4+ T cells and CD8+ T cells 

separated well, and we observed Tregs expressing FOXP3 and CTLA4 as a separate cluster 

(Figure 2B). For verification of this Treg cluster, we used the corresponding protein 

signature, which showed high expression of CD25 and low expression of CD127 (Figure 

2C). To determine if we could extract these same clusters from a WTA set, we performed 

clustering of a publicly available WTA reference dataset at different resolution parameters 

(Figures S2B and S2C).

Next, to obtain a relative measure of detection efficiency, we calculated the average number 

of transcripts per cell both for the targeted transcriptomics as well as the WTA dataset from 

the same donor. Around 75% of the assayed genes showed equal or slightly superior 

detection efficiencies (Figure 2D). However, although there was a small subset of transcript 

targets that showed considerably higher detection efficiency (including FOXP3 and CTLA4, 

identifying the Treg cluster), around 34 targets (including PDCD1) were detected at less 

than 30% of their level in the WTA dataset (full list and calculation provided in Table S2). 

These differences are likely due to the different amplification efficiencies using multiplexed 

targeted primers (Rhapsody) versus primers designed to recognize the template switch-oligo 

(10x Genomics).

Next, we compared the gene expression pattern for four phenotypically similar clusters (as 

defined by their transcript profile) in our WTA and the targeted transcriptomics dataset from 

the same donor, and we included the same clusters from a publicly available WTA reference 

dataset containing more than 8,000 cells (Figure 2E). Visualizing the top differentially 
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expressed genes (as identified by model-based analysis of single-cell transcriptomes 

[MAST] in the targeted dataset, see STAR Methods) of these four clusters on a heatmap 

yielded very similar patterns, suggesting that targeted transcriptomics with an immune-

focused primer panel faithfully recapitulates cellular heterogeneity of PBMCs at the single-

cell level.

To further compare our donor-matched datasets, we used MAST to identify all differentially 

expressed genes for each cluster with a log-fold change of >0.25 in both datasets. For three 

clusters (CD56+ natural killer [NK] cells, CD4+ T cells, and CD14+ monocytes) we 

compiled a list of genes that were shared between the two datasets or that were only present 

in the WTA data and only present in the targeted transcriptomics data (full list of genes 

available in Table S3). Visualizing all overlapping genes for a representative cluster (the NK 

cell cluster) in both datasets again displayed very similar patterns (Figure S2D). In the case 

of the NK cell cluster, there were 73 additional genes identified only in the WTA data 

(heatmap representation of the top 23 of these is shown in Figure S2E). To gain insight into 

how well biological processes are captured with a targeted set of genes, we performed Gene 

Ontology (GO) analysis, showing that the majority of GO terms were detected in either 

dataset, with some GO terms (e.g., GO-0051179, ‘‘localization’’) only being found in the 

WTA dataset (Figure S2F).

Finally, to directly assess the effect of different read depths on the resolution of protein and 

transcript signals in the AbSeq dataset, we analyzed PBMCs of a different donor with a total 

of approximately 27,000 reads/cell (approximately 18,000 reads/cell for the antibody library, 

9,000 reads/cell for the transcript library; see STAR Methods for list of all read depths) and 

subsampled the number of reads during processing of the raw data to 20% (approximately 

4,000 reads/cell for the antibody library, 2,000 reads/cell for the transcript library) and 10%. 

Visualization of the resulting clusters on a UMAP plot as well as the top differentially 

expressed genes on a heatmap revealed no major differences between using 100% or 20% of 

the reads (Figure S3A). For the protein signal, differences only became apparent when using 

10% of the reads, which resulted in a noticeable loss of signal intensities (Figure S3B). For 

protein targets that exhibited bimodal distributions, we calculated the absolute number of 

molecules detected, revealing a noticeable drop in signal intensity when down-sampling to 

10% of the reads (Figure S3C).

Overall, we conclude that the panels used in our assay targeting at least 2,000–4,000 reads/

cell for the transcript portion of the library (which is approximately one-tenth of the typical 

read depths used for WTA approaches) (Zheng et al., 2017) and at least 200–400 reads/

antibody/cell for the antibody portion of the library deliver sufficient resolution.

Multi-omic Analysis Identifies Canonical Memory T Cell Populations and Allows the Study 
of Rare-Antigen-Specific CD8+ T Cells

We next performed an in-depth analysis of the CD8+ T cell compartment. First, we 

visualized protein and RNA data collected from total CD45+ live cells from PBMCs from 

three patents on separate UMAP plots. We found that cells from different donors comingled 

and separated by cell type rather than by donor, suggesting that there was no cluster driven 

by a single donor (Figure 3A, left panel). Also, the two experimental batches (cartridges) did 
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not show significant separation on a UMAP plot calculated using transcripts or proteins 

(Figure 3A, right panel).

Notably, protein information overlaid on the transcript-generated UMAP plot allowed 

accurate identification of all main immune clusters (Figure 3B), which is not necessarily the 

case when using transcript information for the corresponding lineage markers. This is 

exemplified by biaxial plots showing protein signal on the y-axis and transcript signal on the 

x-axis (Figure 3C). Although CD8A, transcript, and protein are co-expressed in most cells, 

only half of the CD4-protein+ (throughout the manuscript abbreviated as CD4-P) cells 

contained detectable CD4-transcript. On the contrary, CD69-RNA (plotted on the x-axis) 

was detected across a large number of CD8+ T cells, but as expected only a few CD8+ T 

cells in the peripheral blood express the CD69 protein (CD69-P, plotted on y-axis) on their 

surface. For CD27, we observed a higher correlation between transcripts and proteins 

(Figure 3C). Overall, these observations emphasize the importance of the parallel 

measurement of proteins and transcripts to faithfully study T cell biology.

Next, we continued our analysis of CD8+ T cells (defined by surface protein expression) 

using SCAMP (selected clustering annotated using modes of projections) (Greene et al., 

2018). Unbiased graph-based clustering using transcript information suggested the presence 

of 5 distinct cellular clusters (Figure 3D). Visualization of the top differentially expressed 

genes, such as SELL (encoding CD62L), CCR7, and GZMB, suggested that these 5 clusters 

reflect canonical naive and memory T cell populations (Sallusto et al., 1999; Figure 3E). 

Additionally, our data allowed identification of CD8+ mucosal-associated invariant T 

(MAIT) cells, which express high levels of Interleukin-18 Receptor Accessory Protein 

(IL18RAP) and Tumor Necrosis Factor (TNF) (Slichter et al., 2016; Mori et al., 2016). We 

confirmed the resemblance of these populations by surface protein expression (Figure 3F), 

with central memory CD8+ T cells expressing low levels of CD45RA protein and high levels 

of both CD27 and CD28 protein (Sallusto et al., 2004; Hamann et al., 1997). Importantly, 

the splice variants CD45RO and CD45RA cannot be distinguished by analyzing transcripts 

alone, highlighting the added value of combined protein and transcript analysis.

To visualize the correspondence between transcript and protein expression in the multi-omic 

dataset, we adopted One-SENSE, which has originally been developed for visualizing mass 

cytometry data (Cheng et al., 2016). We mapped cells by separately plotting proteins and 

transcripts each on to a single UMAP dimension, similar to a recently published one-

dimensional t-stochastic neighbor embedding (t-SNE) representation for scRNA-seq data 

(Linderman et al., 2019). The combined plot shows the overall distribution of protein 

expression profiles in the x-axis and the top differentially expressed gene profiles on the y-

axis. Aligned heatmaps that represent median expression with bins of cells are provided to 

annotate the one-dimensional UMAP protein and gene expression profiles (blue: low 

expression, red: high expression). Black areas in the heatmaps refer to areas of the One-

SENSE plot that are devoid of cells. This approach allows easy identification of cellular 

clusters that are similar by transcripts but separated by proteins and vice versa (Figure 3G). 

One example for this is highlighted in Figure 3G (red box and arrow), where cluster 2 (light 

green, TEMRA cells) is relatively homogeneous by transcript but can be separated by CD56 

protein expression. A fraction of cells between cluster 1 (dark blue, effector memory CD8+ 
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T cells) and 2 (light green, TEMRA) shares the same protein signature but can be 

distinguished by GNLY and GZMH expression (Figure 3G, red box and arrows). Varying 

degrees of concordance and ability to discriminate cellular subsets from gene and protein 

expression profiles can be seen across this plot.

To determine if targeted transcriptomics is amenable for studying rare-antigen-specific T cell 

populations, we analyzed CD8+ T cells recognizing the HLA-A*02-restricted EBV epitope 

YVLDHLIVV (Dunne et al., 2002). Visualization on the UMAP plot revealed remarkable 

similarity of EBV-specific T cells across all three donors (Figure 3H), with most of the cells 

grouped within the effector memory CD8+ T cell cluster. However, relative to the EBV-

nonspecific memory T cell cluster, the EBV-Tet+ T cells showed a significant 

downregulation of the Granulysin transcripts and an upregulation of YBX3, an RNA binding 

protein whose function has not been defined in T cells but has recently been shown to be a 

critical regulator for the stability of specific mRNAs (Cooke et al., 2019).

Overall, these data show that a combined analysis of targeted transcriptomics and protein 

expression by sequencing is a valuable approach for studying T cell subsets and could be 

used as a resource-efficient tool for studying T cell responses in human disease.

Short-Term Stimulation of T and NK Cells Reveals Chemokine Heterogeneity and a 
Disconnect with the Early Activation Marker CD69

Cytokines and chemokines are the quintessential effector molecules of T cells, and the 

existence of specific T cell subsets that are poised to produce certain cytokines has been the 

subject of intense research over the past decade (van den Broek et al., 2018; Zhou et al., 

2009). To test whether multi-omic single-cell analysis can provide additional insight, we 

purified T and NK cells and stimulated them for 1 h with phorbol-myristate-acetate (PMA) 

and ionomycin. We probed early transcriptional changes with a T-cell-centric-targeted 

transcriptomic approach covering 259 genes. Transcripts encoding for IFNG, FASL, and 

ICOS exhibited robust upregulation in the stimulated versus unstimulated sample (Figure 

4A), as was the case for CD69, a commonly used protein marker for early T cell activation 

(Figure 4B). Notably, when we analyzed cytokine expression relative to the surface protein 

expression of CD69 on CD8+ T cells, we observed that both IFNG as well as TNF 

transcripts were primarily expressed in CD69-transcript-positive, but CD69-protein-negative 

cells, whereas the FOSB transcript (encoding for a subunit of the transcription factor AP-1) 

was co-expressed with the CD69 protein (Figure 4B).

Data projection on a UMAP plot after phenograph-based clustering (Levine et al., 2015) 

suggested the presence of five different clusters (Figure 4C). Protein expression patterns for 

CD45RA and CD45RO highlight the distribution of naive, effector, and memory T cells 

within this plot (Figure 4C). A heatmap visualization of the most highly expressed 

transcripts show that these five clusters are primarily defined by the differential expression 

of CCL3, CCL4, IFNG, TNF, and various granzymes (Figure 4D). Overall, this analysis 

reveals considerable functional diversity within the CD8+ T cell compartment that is 

detectable 1 h after stimulation. Given the nature of PMA- and ionomycin-induced 

activation, this finding likely reflects intrinsic functional heterogeneity.
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Multi-omic Analysis of the Peripheral Myeloid Compartment Reveals Inflammatory Subsets 
Not Captured by Surface Protein Phenotype

Next, we wanted to determine whether the targeted transcriptomics approach can also be 

used for other immune populations that are not as well studied as T cells. During the past 

decade, it has become evident that the myeloid cell compartment is complex in terms of 

cellular heterogeneity (Guilliams et al., 2014; See et al., 2017; Villani et al., 2017) and that 

commonly used bone-marrow-derived differentiation protocols do not faithfully capture the 

phenotype of myeloid cells in vivo (Guilliams and Malissen, 2016; Helft et al., 2015). Thus, 

we tested how well targeted transcriptomics could dissect the heterogeneity of the peripheral 

myeloid compartment. Unbiased clustering using transcripts suggested the presence of 5 

different populations (Figure 5A), with clear separation of CD14 and CD16 protein 

expression (Figure 5B). As expected, visualization of the top differentially expressed genes 

(Figure 5C) as well as key surface proteins (Figure 5D) mapped these clusters to CD123+ 

plasmacytoid DCs (pDCs), CD1c+ cDCs, CD16+ monocytes, and CD14+ monocytes. We 

used One-SENSE to further explore the relationship between cluster 0 and 1, revealing that 

these two populations were very similar in terms of surface protein profile (CD14+ CD16— 

classical monocytes) but were separated by a specific set of transcripts encoding for pro-

inflammatory cytokines and chemokines (Figure 5E). We used MAST to confirm that these 

transcripts were differentially expressed (Finak et al., 2015), with higher expression of 

CXCL3 and CCL4 (also known as MIP-1b, a chemoattractant for natural killer cells) in 

cluster 1 (Figure 5F). These cells in cluster 1 could be related to a very recently defined 

inflammatory subset of CD14+ CD163+ myeloid cells (Dutertre et al., 2019). Thus, 

combining protein and transcriptome data allowed us to observe multiple functional subsets 

within the peripheral CD14+ myeloid population, which were not apparent by surface 

marker expression alone. In summary, these data highlight that targeted transcriptomics can 

be used for exploratory studies of different immune compartments.

DISCUSSION

Current efforts in the field of single-cell analysis focus on the integrative measurement of 

multiple modalities per cell. Ultimately, being able to analyze DNA sequence, genome 

accessibility status, transcript, regulatory RNAs, and protein expression all together would 

allow a holistic understanding of cellular function, but this has not yet been achieved (Stuart 

and Satija, 2019). Arguably one of the most important steps on this trajectory has been the 

ability to combine protein and transcript measurements by sequencing at the single-cell level 

by using high-throughput methods (Peterson et al., 2017; Stoeckius et al., 2017). However, 

with increased cell numbers, these combined measurements can quickly become resource 

intensive, mostly due to the high number of sequencing reads that are required per cell. 

Moreover, to fully leverage the advantage of multi-omic single-cell analysis approaches, it is 

imperative to collect large cell numbers to adequately represent low-abundance cellular 

populations, such as antigen-specific T cells or antigen-presenting cells (APCs). This can be 

exemplified with DC subsets; CD1c+ cDCs typically represent only 0.1%–0.5% of cells in 

the peripheral blood, i.e., to capture 50 cells without prior enrichment requires sequencing a 

minimum of 10,000 cells. However, even 50 cells might be insufficient to extrapolate 

functional potential if there is pronounced heterogeneity within such a rare population.
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The targeted transcriptomic approach that we describe here provides an alternative platform 

that significantly lowers the number of reads required for sequencing saturation of 

transcripts compared to WTA approaches but still provides valuable information on 492 

immune-centric genes. Notably, the targeted workflow avoids the significant number of 

reads used by transcripts encoding ribosomal proteins, which provide limited insight in the 

context of specifically assessing immune cell function. In combination with the lower 

number of target genes relative to WTA, this contributes to requiring less reads to achieve 

library saturation. It is important to keep in mind that a targeted approach sacrifices the 

unbiased nature and breadth of WTA. However, many immunological applications are 

centered around a set of critical immune effector molecules, such as cytokines, chemokines, 

or transcription factors, which are comprehensively covered by a targeted gene panel. 

Because genes of interest can be selected for such a panel, this approach allows tailoring 

toward a specific research question.

Our experiments suggest that a targeted workflow can, in some cases, deliver high sensitivity 

when it comes to detecting relatively low abundance transcripts, but we also found a set of 

genes that was underrepresented relative to WTA. This is probably related to the sub-optimal 

amplification efficiencies of certain targeted primer pairs. Modifying primer design should 

be sufficient to improve detection sensitivity of these genes. Overall, in many experimental 

setups it might be beneficial to combine both approaches: first, use a WTA platform to 

identify potentially unknown transcripts and then use a targeted approach (ideally tailored 

toward gene sets of interest) for profiling larger cell numbers or interrogating cellular 

responses to specific stimuli. Here, we provide proof-of-concept data that as early as 1 h 

after stimulation CD8+ T cells show heterogeneous patterns of chemokine expression. 

Comprehensive chemokine and cytokine profiling of T cells after a very short stimulus could 

be very valuable to gain additional insights into their function, e.g., in the context of cancer 

immunotherapy (Nagarsheth et al., 2017).

The rather low number of reads per cell required for targeted transcriptomics makes the 

approach very suitable for combined profiling of transcript and protein expression for larger 

numbers of cells. This is particularly relevant in the context of T cell biology, where well 

established T cell subsets, such as memory T cells and Tregs can be difficult to identify in 

some droplet-based scRNA-seq studies solely on the basis of transcripts (Zheng et al., 2017). 

This has been attributed to the fact that lymphocytes contain a relatively low amount of 

mRNA, which, in combination with the inherent drop-out rate of scRNA-seq protocols, fails 

to detect some low-abundance transcripts that define these cellular subsets (Stuart and Satija, 

2019). This issue can be alleviated by measuring surface protein markers, such as the splice 

variants CD45RA and CD45RO, which have been well studied in the context of naive and 

memory T cells, or the interleukin-2 (IL-2) receptor alpha chain (CD25) and IL-7 receptor 

(CD127) for the distinction of Tregs.

In addition, the parallel measurement of surface protein phenotypes allows linking novel 

cellular clusters (that are defined solely by transcript) with previously characterized cellular 

subsets that are defined by surface protein phenotype only. Finally, the combined 

measurement approach can be useful to identify targets with a significant disconnect 

between transcript and protein expression, as we observed for CD69.
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The development of novel technologies can sometimes outpace our ability to validate 

platforms and reagents. Given that typical single-cell sequencing experiments require 

complex pre-processing steps and are often visualized using dimensionality reduction 

techniques, such as UMAP or t-SNE, there is a disconnect between the actual raw data and 

the interpretation of final heatmaps. Although this might be less of a problem for transcript 

counts, antibody-based probes require careful validation, which is highlighted by our 

observation that even the same antibody clone can yield a different result in a multi-omic 

sequencing experiment relative to conventional cytometry. In general, we found that 

sequencing-based expression patterns for proteins that show clear bimodal expression (such 

as CD3, CD14, or other lineage markers) were easy to interpret, but making a positivity call 

could become challenging for protein markers with low or continuous expression patterns 

(such as PD1, Tim-3, or IL-7Rα). Distinguishing signal from noise for proteins with rather 

low expression levels is further complicated by the fact that antibody-based probes 

inevitably yield some degree of unspecific binding, thus introducing a background signal. As 

sequencing-based protein measurements become more common, it is important to reach a 

consensus in the field regarding standard quality-control practices. Reagents need to be 

carefully tested and validated, preferably with parallel deposition of the validation data in 

public databases, and analysis approaches should rely on algorithm-assisted determination of 

positivity cutoffs, e.g., by using SCAMP (Greene et al., 2018) or other tools developed for 

this purpose.

Additional work is needed to assess whether more complex antibody panels require different 

sequencing depths relative to our study. We are not providing a general recommendation 

regarding an optimal sequencing depth to measure protein expression because the required 

read depth will depend on the oligo-to-antibody ratio of a given reagent and the relative 

abundance of the target epitopes in an experimental sample. Specifically, samples that are 

stained with antibody-oligo conjugates that consume a large fraction of the sequencing reads 

(such as, e.g., HLA-DR, CD4, and CD8) may require additional read depth to ensure that 

low-abundance protein targets are not missed due to a lack of reads. Finally, it is important 

to note that sequencing-based antibody measurements are only semiquantitative and cannot 

be used to determine absolute surface protein counts, which is, in part, due to the limited 

efficiency of current single-cell platforms regarding oligonucleotide capture and subsequent 

cDNA synthesis (Zheng et al., 2017).

Ultimately, to advance our understanding of biology, the field relies on innovative 

approaches to analyze and visualize high-dimensional data (Butler et al., 2018; Cao et al., 

2019; Stuart and Satija, 2019). Due to the complexity of the data and different expression 

scales, this presents a challenge for combined protein-transcript datasets. To alleviate this 

problem, we have adopted an analysis approach successfully used for high-dimensional 

cytometry data, One-SENSE (Cheng et al., 2016). By visualizing the top differentially 

expressed genes in one dimension relative to the measured protein phenotypes, this method 

allows easy dissection of cells that are similar in transcript phenotype but different in protein 

phenotype and vice versa. This visualization approach will be a useful tool for biologists to 

explore future multi-omic datasets to extract biological meaning from these complex multi-

dimensional data.
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STAR★METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Martin Prlic, at mprlic@fredhutch.org. This study did not 

generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Primary Cells—Peripheral blood mononuclear cells (PBMCs) were obtained as 

cryopreserved samples from healthy controls (Seattle Area Control Cohort) via the HIV 

Vaccine Trial network (HVTN). Researchers authored on this manuscript did not have 

access to any patient information. Vials with cryopreserved cells were thawed at 37○C until 

a tiny ice crystal was left in the tube, and then carefully diluted in 1mL of pre-warmed 

complete RPMI (RPMI (GIBCO, #18875119) with 10% FBS (Nucleus Biologics, #AU 

FBS-500ml L1 HI) and 1% Penicillin-Streptomycin (GIBCO, #15140122) and transferred to 

a new tube. An additional 13 mL of pre-warmed complete RPMI were added drop by drop, 

followed by centrifugation for 5 minutes at 400 g and resuspension in 1 mL of complete 

RPMI.

METHOD DETAILS

T cell stimulation assay—Freshly thawed PBMCs (Seattle Area Control Cohort) were 

depleted of myeloid cells, B cells and IL3Ra-expressing cells using magnetic-activated cell 

sorting (MACS) with antibodies targeting CD33, CD20 and CD123 and anti-mouse IgG 

microbeads (Miltenyi #130-048-402). The purified cell fraction was washed and stimulated 

in RPMI with 10% FBS with PMA (10 ng/mL) and Ionomycin (1 µg/mL) for 60 minutes at 

37○C. Unstimulated cells were incubated without PMA/Ionomycin for 60 minutes at 37○C. 

After that, cells were stained with AbSeq antibody-oligo-conjugates targeting CD3, TCRαβ, 

CD4, CD8, PD1, CD137, CD103, CD69, CD39, CCR7, CD45RA, CD45RO and Tim3, 

strictly following the manufacturers protocol (BD Biosciences) and subjected to the targeted 

transcriptomic workflow described below, using the BD Rhapsody T Cell Expression Panel 

Hs (BD Biosciences, #633751).

Flow Cytometry and Cell sorting—For flow cytometric analysis good practices were 

followed as outlined in the guidelines for use of flow cytometry (Cossarizza et al., 2019). 

Following thawing, PBMCs were incubated with Fc-blocking reagent (BioLegend Trustain 

FcX, #422302) and fixable UV Blue Live/Dead reagent (ThermoFisher, #L34961) in PBS 

(GIBCO, #14190250) for 15 minutes at room temperature. If required, cells were stained 

with an EBV-Tetramer reagent (peptide YVLDHLIVV; Fred Hutch Immune Monitoring 

Core) diluted in FACS buffer (PBS with 2% FBS, Nucleus Biologics, #AU FBS-500ml L1 

HI) for 30 minutes at room temperature, followed by two washes. After this, cells were 

incubated for 20 minutes at room temperature with 100 µL total volume of antibody master 

mix freshly prepared in Brilliant staining buffer (BD Bioscience, #563794), followed by two 

washes. All antibodies were titrated and used at optimal dilution, and staining procedures 

were performed in 96-well round-bottom plates. A detailed list of panels used, including 

fluorochromes and final dilutions of all antibodies are listed in Table S4. Stained cells were 
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fixed with 4% PFA for 20 minutes at room temperature, washed, resuspended in FACS 

buffer and stored at 4○C in the dark until acquisition.

All samples were acquired using a FACSymphony A5 (BD Biosciences), equipped with 30 

detectors and 355nm, 405nm, 488nm, 532nm and 628nm lasers and FACSDiva (BD 

Biosciences). Detector gains were optimized using a modified voltage titration approach 

(Perfetto et al., 2012) and standardized from day to day using 6-peak Ultra Rainbow Beads 

(Spherotec, # URCP-38-2K). Single-stained controls were prepared with every experiment 

using antibody capture beads diluted in FACS buffer (BD Biosciences anti-mouse, #552843 

and anti-rat, #552844), or cells for Live/Dead reagent. After acquisition, data was exported 

in FCS 3.1 format and analyzed using FlowJo (version 10.5.x, BD Biosciences). Doublets 

were excluded by FSC-A versus FSC-H gating. For some of the plots, the number of 

acquired cells was down-sampled using the appropriate FlowJo plugin to match the number 

of cells analyzed in the AbSeq workflow.

All cell sorting was performed on a FACSAria III (BD Biosciences), equipped with 20 

detectors and 405nm, 488nm, 532nm and 628nm lasers. For all sorts, an 85 mm nozzle 

operated at 45 psi sheath pressure was used. Cells were sorted into chilled Eppendorf tubes 

containing 500 µL of complete RPMI, washed once in PBS and immediately used for 

subsequent processing.

Targeted Transcriptome and protein single-cell library preparation and 
Sequencing—For all targeted transcriptomics experiments, we utilized the BD Rhapsody 

Express system, which is based on Fan et al. (2015) with some adaptations prior to the 

commercial release by BD Biosciences. CD45+ live PBMCs and EBV-tetramer+ CD8+ T 

cells were sequentially labeled using Single Cell Labeling with the BD Single-Cell 

Multiplexing Kit (BD Biosciences, #633781) and BD AbSeq Ab-Oligos reagents strictly 

following the manufacturers protocol (BD Biosciences). Briefly, cells from each donor or 

subtype of cells (after sorting) were labeled with sample tags (Stoeckius et al., 2018). Each 

sample was washed twice with FACS buffer before pooling all samples together. Pooled 

samples were washed one more time and then stained in a total volume of 200 µL of FACS 

buffer with AbSeq Ab-Oligos (BD Biosciences) diluted as listed in Table S4. The pooled 

sample was then washed twice, counted and resuspended in cold BD Sample Buffer (BD 

Biosciences) to achieve approximately 20,000 cells in 620 µL. Single cells from the pooled 

sample were isolated using Single Cell Capture and cDNA Synthesis with the BD Rhapsody 

Express Single-Cell Analysis System following the manufacturers protocol (BD 

Biosciences). After priming the nanowell cartridges, the pooled sample was loaded onto two 

BD Rhapsody cartridges and incubated at room temperature. Cell Capture Beads (BD 

Biosciences) were prepared and then loaded onto the cartridge and incubated prior to 

shaking at 1,000 rpm at room temperature for 15 s on a ThermoMixer C (Eppendorf). 

According to the manufacturers protocol, cartridges were washed, cells were lysed, and Cell 

Capture Beads were retrieved and washed prior to performing reverse transcription and 

treatment with Exonuclease I. cDNA Libraries were prepared using mRNA Targeted, 

Sample Tag, and BD AbSeq Library Preparation with the BD Rhapsody Targeted mRNA 

and AbSeq Amplification and BD Single-Cell Multiplexing Kits and protocol (BD 

Biosciences). In brief, cDNA underwent targeted amplification using the Human Immune 
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Response Panel primers and a custom supplemental panel (all 492 targets are listed in Table 

S1) via PCR (10 cycles). PCR products were purified, and mRNA PCR products were 

separated from sample tag and AbSeq products with double-sided size selection using 

SPRIselect magnetic beads (Beckman Coulter, #B23318). mRNA and Sample Tag products 

were further amplified using PCR (10 cycles). PCR products were then purified using 

SPRIselect magnetic beads. Quality and quantity of PCR products were determined by using 

an Agilent 2200 TapeStation with High Sensitivity D5000 ScreenTape (Agilent) in the Fred 

Hutch Genomics Shared Resource laboratory. Targeted mRNA product was diluted to 2.5 

ng/µL and sample tag and AbSeq PCR products were diluted to 1 ng/µL to prepare final 

libraries. Final libraries were indexed using PCR (6 cycles). Index PCR products were 

purified using SPRIselect magnetic beads. Quality of final libraries was assessed by using 

Agilent 2200 TapeStation with High Sensitivity D5000 ScreenTape and quantified using a 

Qubit Fluorometer using the Qubit dsDNA HS Kit (ThermoFisher, #Q32854). Final libraries 

were diluted to 2 nM and multiplexed for paired-end (150bp) sequencing on a HiSeq 2500 

sequencer (Illumina). The final mean read depths for the three experiments that we 

sequenced were as follows: Experiment 1 (used in Figure S3): 18,445 reads/cell for AbSeq 

library (saturation 88.4%), 9,137 reads/cell for mRNA library (saturation 86.7%). 

Experiment 2 (main figures): 4,330 reads/cell for AbSeq library (saturation 53.3%), 2,165 

reads/cell for mRNA library (saturation 89.9%). Experiment 3 (used for Figure 4; T cell 

stimulation assay): 19,236 reads/cell for the AbSeq library (saturation 94.7%), 14,042 reads/

cell for the mRNA library (saturation 94.9%).

Whole Transcriptome single-cell library preparation and sequencing—cDNA 

libraries of CD45+ Live PBMCs were generated using the Chromium Single Cell 3ʹ Reagent 

Kits v2 (10x Genomics) protocol targeting 5,000 cells in two separate wells. Briefly, single 

cells were isolated into oil emulsion droplets with barcoded gel beads and reverse 

transcriptase mix. cDNA was generated within these droplets, then the droplets were 

dissociated. cDNA was purified using DynaBeads MyOne Silane magnetic beads 

(ThermoFisher, #370002D). cDNA amplification was performed by PCR (10 cycles) using 

reagents within the Chromium Single Cell 3ʹ Reagent Kit v2 (10x Genomics). Amplified 

cDNA was purified using SPRIselect magnetic beads (Beckman Coulter). cDNA was 

enzymatically fragmented and size selected prior to library construction. Libraries were 

constructed by performing end repair, A-tailing, adaptor ligation, and PCR (12 cycles). 

Quality of the libraries was assessed by using Agilent 2200 TapeStation with High 

Sensitivity D5000 ScreenTape (Agilent). Quantity of libraries was assessed by performing 

digital droplet PCR (ddPCR) with Library Quantification Kit for Illumina TruSeq (BioRad, 

#1863040). Libraries were diluted to 2 nM and paired-end sequencing was performed on a 

HiSeq 2500 sequencer (Illumina). The final read depths for the two technical replicates that 

we sequenced were 77,049 reads/cell and 86,246 reads/cell, respectively.

QUANTIFICATION AND STATISTICAL ANALYSIS

Cell Ranger processing for WTA data—Raw base call (BCL) files were demultiplexed 

to generate Fastq files using the cellranger mkfastq pipeline within Cell Ranger 2.1.1 (10x 

Genomics). Targeted transcriptome Fastqs were further analyzed via Seven Bridges (BD 

Biosciences). Whole transcriptome Fastq files were processed using the standard cellranger 
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pipeline (10x genomics) within Cell Ranger 2.1.1. Briefly, cellranger count performs 

alignment, filtering, barcode counting, and UMI counting. The cellranger count output was 

fed into the cellranger aggr pipeline to normalize sequencing depth between samples. The 

final output of cellranger (molecule per cell matrix) was then analyzed in R using the 

package Seurat (version 2.3 and 3.0) as described below.

Seven Bridges processing for targeted transcriptomics data—Targeted 

transcriptomics Fastq files were processed via the standard Rhapsody analysis pipeline (BD 

Biosciences) on Seven Bridges (https://www.sevenbridges.com) per the manufacturérs 

recommendations. First, R1 and R2 reads are filtered for high-quality reads, dropping reads 

that are too short (less than 64 bases for R2) or have a base quality score of less than 20. 

Then, R1 reads are annotated to identify cell label sequences and unique molecular 

identifiers (UMIs), and R2 reads are mapped to the respective reference sequences using 

Bowtie2. Finally, all valid R1 and R2 reads are combined and annotated to the respective 

molecules. For all of our analysis, we utilized recursive substation error correction (RSEC) 

as well as distribution-based error correction (DBEC), which are manufacturer-developed 

algorithms correcting for PCR and sequencing errors. For determining putative cells (which 

will contain many more reads than noise cell labels), a filtering algorithm takes the number 

of DBEC-corrected reads into account, calculating the minimum second derivative along the 

cumulative reads as the cut-off point. Final expression matrices contain DBEC-adjusted 

molecule counts in a CSV format. For sample tag assignment, a cell is called as a singlet if 

the minimum read count for a given sample tag is reached, and more than 75% of the sample 

tag reads are derived from a single sample tag antibody. In turn, if the count for two more 

sample tag antibodies exceeds the minimum thresholds, these cells are labeled as multiplets, 

and if a cell does not reach criteria for either a multiplet or singlet, it is labeled as 

undetermined. Both multiplets and undetermined cells were excluded from analysis as 

described below.

For further analysis, molecule count tables were read into the R package Seurat (version 2.3 

and 3.0) using customized scripts and analyzed as described below.

Seurat workflow for targeted and WTA data—The R package Seurat (Butler et al., 

2018) was utilized for all downstream analysis. For whole transcriptome data, based on 

commonly used cutoffs suggested by Butler et al., only cells that had at least 200 genes 

(with % 20% being mitochondrial genes) were included in analysis (removing 182 out of a 

total of 5,416 cells). A natural log normalization using a scale factor of 10,000 was 

performed across the library for each cell. UMIs and mitochondrial genes (only for WTA 

data) were linearly scaled to remove these variables as unwanted sources of variation. For 

the targeted data, singlets were identified during pre-processing as described above. In our 

case, out of 29,033 total cells, 1,532 were called as doublets (and 243 events as 

undetermined), with 27,258 cells remaining (donor 1: 8,984 cells, donor 2: 8,956 cells, 

donor 3: 9,318 cells). For WTA data, doublets and low-quality cells were identified by their 

outlier UMI and gene counts (more than 15,000 UMIs and more than 3,000 genes), and their 

high percentage of mitochondrial genes (more than 20%), removing 640 cells.
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For WTA, dimensionality reduction using UMAP and clustering was performed on a subset 

of variable genes. For targeted transcriptomics, no gene per cell cutoffs were imposed and 

the data was normalized with the same method (natural log normalization using a scale 

factor of 10,000). To make sure that the same normalization methods could be used, we 

compared the library size factor distribution (using the package scater) between the WTA 

and targeted transcriptomic data, which showed similar distributions irrespective of whether 

using all genes or only the targeted gene set (however, further comparative experiments 

might be required to ensure that the standard log normalization implemented in Seurat is an 

effective normalization method for different targeted transcriptomic experimental setups). 

When scaling data, UMI was the only regressed variable. Dimensionality reduction using 

UMAP and clustering was based on either all genes or all proteins. For differential gene 

expression analysis we utilized the Seurat implementation of MAST (model-based analysis 

of single-cell transcriptomes) with the number of UMIs included as a covariate (proxy for 

cellular detection rate (CDR)) in the model (Finak et al., 2015).

For generation of some FCS files the antibody molecule count tables were converted using 

the R packages premessa and flow-Core. FCS-files with antibody molecule count signals 

were analyzed in FlowJo 10.5.x (BD Biosciences) using either an arcsinh transformation or 

biexponential transformation.

Data processing for One-SENSE and generation of FCS files—CSV files of raw 

counts were converted to FCS files using a script adapted from https://gist.github.com/

yannabraham/c1f9de9b23fb94105ca5. Raw counts were normalized based on total counts 

per cell, then scaled to a value of 10,000 based on the Seurat normalization algorithm. A 

natural log transformation was applied to gene expression data, while protein expression 

data was randomized by adding a random uniform distribution from 0 to 1, followed by 

transformation with the function arcsinh(x/5). Dimensionality reduction using UMAP was 

performed separately on all genes and proteins to reduce them to one dimension before 

plotting. Cells were also split into 500 bins of equivalent width based on one-dimensional 

UMAP data, then used to generate heatmaps colored by median marker intensity per bin 

(low expression: blue, mid expression: green, high expression: red). Heatmaps 

corresponding to empty areas of the One-SENSE plot were colored in black. An example 

script for One-SENSE processing can be found at https://github.com/MairFlo/

Targeted_transcriptomics.

DATA AND CODE AVAILABILITY

The sequencing data discussed in this publication have been deposited in the NCBI’s Gene 

Expression Omnibus (Edgar et al., 2002) and are accessible through GEO series accession 

number GEO: GSE135325. (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE135325). The accession number for all flow cytometry data reported in this paper is 

FlowRepository: FR-FCM-Z266 (http://flowrepository.org/id/FR-FCM-Z266). All scripts 

used for data processing and plot generation are available at https://github.com/MairFlo/

Targeted_transcriptomics.
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Highlights

• Targeted transcriptomics captures immune cell heterogeneity at a low 

sequencing depth

• Antibody panels for sequencing-based protein measurement require validation

• Combined protein and transcript measurements highlight T cell heterogeneity

• One-SENSE provides an intuitive visualization tool for protein-transcript 

datasets
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Figure 1. Comparison of Oligonucleotide-Labeled Antibody Probes to High-Dimensional Flow 
Cytometry
(A) Schematic graph describing the workflow of the experiment. PBMC samples from three 

donors were split in half, with one aliquot used for the multi-omic workflow and one aliquot 

used for flow cytometry phenotyping using two 30-parameter panels.

(B) Overview of antibody targets used in both the multi-omic and conventional flow 

cytometry experiment.

(C) Manual gating of main immune subsets by using the combined AbSeq dataset (top 

panel, red) and concatenated and down-sampled events (27,000 cells, from three donors) 

from the conventional (conv) flow cytometry dataset (bottom panel, blue).

(D) Manual gating of various T cell markers by using the combined AbSeq dataset (top 

panel, red) and concatenated, down-sampled events from the cytometry dataset (bottom 

panel, blue).
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(E) Quantification of main immune subsets by using AbSeq and flow cytometry either with 

prior cell sorting (red squares) or using AbSeq without prior cell sorting (orange squares).

(F) Quantification of main T cell populations and selected phenotyping markers from two 

independent experiments using AbSeq and flow cytometry either with prior cell sorting (red 

squares) or using AbSeq without prior cell sorting (orange squares).

See also Figure S1 and Table S1 for full list of genes.

Mair et al. Page 22

Cell Rep. Author manuscript; available in PMC 2020 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Targeted Transcriptomics Captures the Major PBMC Lineages Similar to Whole-
Transcriptome Approaches
(A) Graph-based clustering of the transcript data from one representative donor (8,843 cells) 

is shown on a UMAP (uniform manifold approximation projection) plot. Clusters have been 

annotated by expression of key lineage genes.

(B) The top 10 differentially expressed genes for each cluster were identified using the 

Seurat implementation of MAST (model-based analysis of single-cell transcriptomes) and 

visualized on a heatmap after Z score normalization. Cluster names are shown in the same 

color scheme as in (A).

(C) Expression of the indicated transcripts and proteins on the three different CD4+ T cell 

clusters, highlighting the CD25+ CD127low Treg cluster (orange).

(D) Relative detection ratio of all detected transcripts relative to a whole-transcriptome 

dataset from the same donor. Genes are manually assigned into four different groups 

according to their relative detection ratio.
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(E) Expression pattern of the top 5 differentially expressed genes for each cluster (as 

identified by MAST on the targeted transcriptomics dataset) for 4 representative main 

immune populations on the targeted data (left), whole-transcriptome data from the same 

donor (middle), and a publicly available whole-transcriptome reference dataset (right).

See also Figures S2 and S3.
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Figure 3. Multi-omic Targeted Transcriptomics Identifies Canonical Memory T Cell Populations 
and Allows the Study of Rare-Antigen-Specific CD8+ T Cells
(A) UMAP plots calculated as indicated and colored by donor (left) or by cartridge run 

(right) show that there are no major clusters driven from the different experimental runs or 

individual donors.

(B) Example UMAP plots (calculated on transcript) representing the expression of the main 

immune lineage protein markers, which allow the unequivocal identification of CD4+ and 

CD8+ T cells, CD19+ B cells, and CD14+, as well as CD16+ myeloid cells.

(C) Example bivariate plots showing the poor correlation of transcript and protein levels for 

CD4 and CD69 and good correlation for CD8 and CD27. Protein signal is plotted on the y-

axis, and transcript signal on the x-axis.

(D) UMAP plot and graph-based clustering of the CD3+ CD8+ CD4− T cell compartment, 

revealing 5 distinct populations.
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(E) Violin plots showing some of the top differentially expressed genes identified by MAST 

for each of the 5 clusters in (D).

(F) Protein signatures of the 5 clusters identified canonical naive and memory CD8+ T cell 

subsets, including CD8+ mucosal-associated invariant T cells (MAIT cells).

(G) One-SENSE plot depicting protein expression heatmap along the x-axis, and transcript 

expression heatmap of the top differentially expressed genes along the y-axis.

(H) Identification of EBV-specific CD8+ T cells relative to all CD8+ T cells, and expression 

pattern of two differentially expressed genes between tetramer-positive cells and tetramer-

negative cells in the effector memory cluster 1.
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Figure 4. Multi-omic Analysis of the T and NK Cell Compartment 1 h after Stimulation
(A) Representative plots showing the upregulation of selected effector transcripts, such as 

IFNG, FASL, and ICOS, after stimulation (red) relative to unstimulated cells (blue).

(B) Disconnect between surface protein expression of the early activation marker CD69 and 

IFNG and TNF transcript within CD8 protein+ T cells. Blue overlay indicates unstimulated 

cells, and red indicates stimulated cells.

(C) UMAP plot of stimulated CD8-protein+ T cells showing five phenograph-defined 

clusters and corresponding CD45RA and CD45RO protein expression.

(D) Heatmap showing the expression of key effector transcripts within the clusters identified 

in (C).
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Figure 5. Combined Protein and Transcript Phenotyping of the Peripheral Myeloid 
Compartment Reveals Inflammatory Subsets Not Captured by Surface Protein Phenotype
(A) UMAP plot and graph-based clustering of the peripheral non-T/non-NK/non-B cell 

compartment, revealing 5 distinct populations.

(B) Heatmap overlay of CD14 and CD16 protein expression.

(C) Heatmap of the top differentially expressed genes identified by MAST for each of the 5 

clusters highlighted in (A).

(D) Protein signatures of the 5 clusters identifies canonical CD123+ plasmacytoid DCs, 

CD1c+ conventional DCs, and CD16+ monocytes but two of the clusters map to CD14+ 

monocytes.

(E) One-SENSE plot depicting protein expression heatmap along the x-axis and transcript 

expression heatmap of some of the top differentially expressed genes along the y-axis. Red 

box and arrows highlight the differentially expressed genes between cluster 0 and 1.

(F) Violin plots showing key genes of the respective myeloid population (top panel) and 

differentially expressed genes between cluster 0 and 1, suggesting the presence of an 
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inflammatory subpopulation within CD14+ CD16‒ monocytes that expresses high levels of 

IL1B, TNF, CXCL3, and CCL4.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CD183 (CXCR3)-BUV395 (clone 1C6) BD Biosciences Cat#565223; RRID:AB_2687488

CD3-BUV496 (clone UCHT1) BD Biosciences Cat#564809; RRID:AB_2744388

CD25-BUV563 (clone 2A3) BD Biosciences Cat#565699; RRID:AB_2744341

HLA-DR-BUV661 (cloneG46-6) BD Biosciences Cat#565073; RRID:AB_2722500

ICOS-BUV737 (clone DX29) BD Biosciences Cat#564778; RRID:AB_2738947

CD8-BUV805 (clone SK1) BD Biosciences Cat#564912; RRID:AB_2744465

CD196 (CCR6)-BV421 (clone 11A9) BD Biosciences Cat#562724; RRID:AB_2737747

TCRgd-BV480 (clone DX12) BD Biosciences Cat#566084; RRID:AB_2739495

CD14-BV570 (clone M5E2) BioLegend Cat#301832; RRID:AB_2563629

PD1-BV605 (clone EH12.1) BD Biosciences Cat#563245; RRID:AB_2738091

CD69-BV650 (clone FN50) BD Biosciences Cat#563835; RRID:AB_2738442

CD45RA-BV711 (clone UCHL1) BD Biosciences Cat#564675; RRID:AB_2738885

CD103-BV750 (clone Ber-ACT8) BD Biosciences, custom Cat#624380; no RRID

CD127-BV785 (HIL-7R-M21) BD Biosciences Cat#563324; RRID:AB_2738138

Tim3-BB515 (clone 7D3) BD Biosciences Cat#565569; RRID:AB_2744368

CD16-BB630 (clone 3G8 BD Biosciences, custom Cat#624294; no RRID

CD27-BB660 (clone M-T271) BD Biosciences, custom Cat#624295; no RRID

CD161-BB700 (clone DX12) BD Biosciences Cat#745791; RRID:AB_2743247

CD38-BB790 (clone HIT2) BD Biosciences, custom Cat#624296; no RRID

CD194 (CCR4)-PE (clone 1G1) BD Biosciences Cat#551120; RRID:AB_394054

CD39-PECF594 (TU66) BD Biosciences Cat#563678; RRID:AB_2738367

CD137-PECy5 (clone 4B4-1) BD Biosciences Cat#551137; RRID:AB_394067

CD19-PE-Cy5.5 (clone SJ25-C1) Thermo Fisher Cat#MHCD1918; RRID:AB_10373840

CD197 (CCR7)-PECy7 (clone 3D12) BD Biosciences Cat#557648; RRID:AB_396765

EBV-Tetramer-APC Fred Hutchinson Immune monitoring core peptide YVLDHLIVV

CD45RO-AF700 (clone UCHL1) BioLegend Cat#304218; RRID:AB_493765

CD4-APCH7 (clone RPA-T4) BD Biosciences Cat#560158; RRID:AB_1645478

CD40-BUV395 (clone 5C3) BD Biosciences Cat#565202; RRID:AB_2739110

CD56-BUV563 (clone NCAM16.2) BD Biosciences Cat#565704; RRID:AB_2744431

CD86-BUV737 (clone FUN-1) BD Biosciences Cat#564428; RRID:AB_2738804

CX3CR1-BV421 (clone 2A9-1) BD Biosciences Cat#565800; no RRID

CD28-BV480 (clone CD28.2) BD Biosciences Cat#566110; RRID:AB_2739512

CD141-BV605 (clone 1A4) BD Biosciences Cat#740421; RRID:AB_2740151

Sirpa-BV650 (clone SE5A5) BD Biosciences Cat#743565; no RRID

OX40-BV711 (clone ACT-35) BioLegend Cat#350029; RRID:AB_2632863

CD11b-BV750 (clone ICRF44) BD Biosciences, custom Cat#624380; no RRID

CD123-BV786 (clone 7G3) BD Biosciences Cat#564196; RRID:AB_2738662

CD206-BB515 (clone 19.2) BD Biosciences Cat#564668; RRID:AB_2738882

CD32-BB700 (clone FLI8.26) BD Biosciences Cat#742216; no RRID
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REAGENT or RESOURCE SOURCE IDENTIFIER

Lag3-PE (clone T47-530) BD Biosciences Cat#565617; no RRID

CD163-PECF594 (clone GHI/61) BD Biosciences Cat#562670; RRID:AB_2737711

CD80-PECy5 (clone L307.4) BD Biosciences Cat#559370; RRID:AB_397239

CD4-PECy7 (clone SK3) BD Biosciences Cat#557852; RRID:AB_396897

CD1c-AF647 (clone F10/21A3) BD Biosciences Cat#565048; RRID:AB_2744318

CD11c-AF700 (clone B-ly6) BD Biosciences Cat#561352; RRID:AB_10612006

HLA-DR-APCH7 (clone L243) BD Biosciences Cat#561358; RRID:AB_10611876

UV Fixable Live-Dead Thermo Fisher Cat#L34961; no RRID

Human TruStain FcX (Fc-Block) BioLegend Cat#422302; no RRID

Cytofix/CytoPerm BD Biosciences Cat#554722; no RRID

CD3-Ab-O (clone SK7) BD Biosciences AHS0033; no RRID

CD4-Ab-O (clone SK3) BD Biosciences AHS0032; no RRID

CD8-Ab-O (clone RPA-T8) BD Biosciences AHS0027; no RRID

CD19-Ab-O (clone SJ25C1) BD Biosciences AHS0030; no RRID

CD14-Ab-O (clone MPHIP9) BD Biosciences AHS0037; no RRID

CD16-Ab-O (clone 3G8) BD Biosciences AHS0053; no RRID

CD56-Ab-O (clone NCAM16.2) BD Biosciences AHS0019; no RRID

CD11b-Ab-O (clone M1/70) BD Biosciences AHS0005; no RRID

CD25-Ab-O (clone 2A3) BD Biosciences AHS0026; no RRID

HLA-DR-Ab-O (cloneG46-6) BD Biosciences AHS0035; no RRID

CD45RA-Ab-O (clone HI100) BD Biosciences AHS0009; no RRID

CD127-Ab-O (clone HIL-7R-M21) BD Biosciences AHS0028; no RRID

CD38-Ab-O (clone HIT2) BD Biosciences AHS0022; no RRID

CD197-Ab-O (clone 3D12) BD Biosciences AHS0007; no RRID

CD279-Ab-O (clone EH12.1) BD Biosciences AHS0014; no RRID

CD28-Ab-O (clone CD28.2) BD Biosciences AHS0024; no RRID

CD27-Ab-O (clone M-T271) BD Biosciences AHS0025; no RRID

CD69-Ab-O (clone FN50) BD Biosciences AHS0010; no RRID

CD123-Ab-O (clone 7G3) BD Biosciences AHS0020; no RRID

CD45RO-Ab-O (clone UCHL1) BD Biosciences AHS0036; no RRID

CD11c-Ab-O (clone B-Ly6) BD Biosciences AHS0056; no RRID

CD86-Ab-O (clone FUN-1) BD Biosciences AHS0057; no RRID

CD183-Ab-O (clone 1C6) BD Biosciences AHS0031; no RRID

CD196-Ab-O (clone 11A9) BD Biosciences AHS0034; no RRID

CD80-Ab-O (clone L307.4) BD Biosciences AHS0046; no RRID

CD278-Ab-O (clone DX29) BD Biosciences AHS0012; no RRID

CD194-Ab-O (clone 1G1) BD Biosciences AHS0038; no RRID

CD40-Ab-O (clone 5C2) BD Biosciences AHS0117; no RRID

CD137-Ab-O (clone 4B4-1) BD Biosciences AHS0003; no RRID

TCRgd-Ab-O (clone B1) BD Biosciences AHS0015; no RRID

CD163-Ab-O (clone GH1/61) BD Biosciences AHS0062; no RRID

CD134-Ab-O (clone ACT35) BD Biosciences AHS0013; no RRID
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REAGENT or RESOURCE SOURCE IDENTIFIER

Tim3-Ab-O (clone 7D3) BD Biosciences AHS0016; no RRID

CD103-Ab-O (clone Ber-ACT8) BD Biosciences AHS0016; no RRID

CD206-Ab-O (clone 19.2) BD Biosciences AHS0072; no RRID

CD32-Ab-O (clone FLI8.26) BD Biosciences AHS0073; no RRID

CD161-Ab-O (clone DX12) BD Biosciences AHS0002; no RRID

CD39-Ab-O (clone TU66) BD Biosciences AHS0006; no RRID

CD141-Ab-O (clone 1A4) BD Biosciences AHS0083; no RRID

Lag3-Ab-O (clone T47-530) BD Biosciences AHS0018; no RRID

CD1c-Ab-O (clone F10/21A3) BD Biosciences AHS0088; no RRID

Biological Samples

Cryopreserved peripheral blood mononuclear cells HVTN, Fred Hutch NA

Critical Commercial Assays

Rhapsody AbSeq reagent pack (4 reactions) BD Biosciences Cat#633771

Rhapsody Human T cell expression panel BD Biosciences Cat#633751

Rhapsody Human Immune Response panel BD Biosciences Cat#633750

Rhapsody custom gene panel (see Table S1) BD Biosciences Cat#633743

Human Single cell multiplexing kit BD Biosciences Cat#633781

Deposited Data

Flow Cytometry Data http://www.flowrepository.org FR-FCM-Z266

sc-RNaseq/AbSeq Data https://www.ncbi.nlm.nih.gov/geo/ GEO: GSE135325

Software and Algorithms

R Studio and R environment The R project for Statistical Computing https://rstudio.com/ and https://cran.r-
project.org/

Seurat v2.3 and v3.0 Satija Lab, NYU, New York Genome 
Center

https://github.com/satijalab/seurat

Seven Bridges (standard pre-processing of 
Rhapsody raw sequencing data, i.e., FASTQ files)

BD Biosciences https://www.sevenbridges.com

CellRanger (standard pre-processing of WTA raw 
sequencing data, i.e., FASTQ files)

10x genomics https://www.10xgenomics.com/

FlowJo 10.5.x (analysis and visualization of flow 
cytometry and AbSeq data)

BD Biosciences https://www.flowjo.com

Prism (plotting) GraphPad N/A

Illustrator (figure generation) Adobe N/A

Seurat workflow for all WTA and targeted 
trancriptomic single cell molecule count tables

Prlic Lab, FHCRC, Seattle https://github.com/MairFlo/

One-SENSE (visualization of data 
proteintranscript)

Newell Lab, FHCRC, Seattle https://github.com/MairFlo/

Other

FACSymphony flow cytometer BD Biosciences N/A

Rhapsody Express instrument BD Biosciences N/A
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