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A B S T R A C T   

Although physical grids improve contrast in radiographic images by reducing scattered radiation, 
various artifacts such as grid shadow, moire, and cutoff result in increased patient doses. To 
overcome these problems, this study evaluates the applicability and usefulness of a material 
thickness-based scatter-correction technique for mammography. Specifically, this study aims to 
compare and evaluate the performance of mammography using the proposed software-based 
scatter correction framework and a physical grid. The proposed technique enables scatter 
correction based on pre-calculated parameters of a thickness-based scatter kernel at a water slab 
phantom and an empirical quantity of scatter components in a mammographic system. In the 
Monte Carlo simulation and experiment, the proposed framework displayed an intensity profile 
and full width at half maximum that closely approximated those seen in the physical grid. In 
addition, by applying the proposed framework to the ACR phantom, it was verified that all 
structures, including specks, were distinctly distinguished. The results demonstrate that the X-ray 
scatter-correction method with a software-based framework for mammography is applicable to 
the field of diagnostic imaging, as this approach yields image quality equivalent to that achieved 
with physical grids while also enabling a reduction in radiation doses for patients.   

1. Introduction 

The incidence of cancer is steadily increasing on a global scale, with breast cancer being the most prevalent malignancy and a 
leading cause of mortality among women [1–3]. Furthermore, Fitzmaurice et al. found that breast cancer is a leading cause of death 
and disability-adjusted life years (DALYs), accounting for 601,000 deaths and 17.4 million DALYs in 2017 [4]. Therefore, breast cancer 
screening is crucial for the early detection of masses and microcalcifications [5]. 

As a standard X-ray imaging technique used in clinics, digital mammography plays a key role in screening and detecting breast 
cancer [5]. Conventional digital mammographic systems typically comprise an X-ray tube (e.g., W/Rh and W/Ag target filter), 
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high-resolution detector, and compression paddle [6,7]. The recommended average glandular dose is less than 2.5 mGy per projection 
[8]. 

In mammographic examinations, contrast loss inherently occurs because of the superposition of tissue components (e.g., glandular 
and fatty tissue) in the projection image [9] and radiation scattering [10]. The compression paddle is used to improve image quality 
and reduce the absorbed dose [11]. Breast compression prevents motion blur and reduces the superimposition of lesions owing to 
separate tissue structures. Scatter removal is critical factor; the amount of radiation scattered decreases with thickness when the object 
reacts. The degradation caused by scatter is generally calculated using Eq. (1) [12]: 

g(x, y)= Ip(x, y) + Is(x, y), (1)  

where g(x, y) is the degraded image with a primary component Ip(x, y) and scatter component Is(x, y) in the Cartesian coordinate 
system. Here, Is(x, y) can be used for various mathematical-physical models, and a scatter point-spread function (sPSF) is most 
commonly used. The representative sPSF-based model is expressed by Eq. (2), as follows: 

Is(x, y)= Ip(x, y)⨂⨂sPSF(x, y), sPSF(r) =
δ(r)

r
+

SF
(1 − SF)2kr

e− r/k , SF =
Is(x, y)

Ip(x, y) + Is(x, y)
, (2)  

where ⨂⨂ is a two-dimensional (2D) convolution operator, and Is(x, y) can be simply expressed by convolving Ip(x, y) and sPSF(x, y)
in a shift-invariant system [13]. δ(r) is the delta function of the primary transmission component at a radial distance r, and k is the 
mean propagation distance of scatter radiation. According to the study by Boone and Seibert, these two terms balance according to 
signal strength and object thickness. Detailed descriptions of the symmetric sPSF(x, y) can be found in Refs. [14,15]. 

Mechanical breast compression techniques fail to sufficiently eliminate scattered radiation and often cause discomfort and pain 
during and after examination [16]. An alternative approach to eliminating scatter radiation is the hardware-based scatter-rejection 
method. The air-gap technique [17] is a method in which the distance between the X-ray source and detector is maximized to prevent 
scattered radiation from entering the detector. Although this approach does not require additional devices, its constrained geometry 
presents limitations. The grid technique [18] is the most widespread method owing to its outstanding performance in terms of scatter 
rejection. This approach is primarily designed so that 1D or 2D lead strips absorb scattered radiation while aluminum and carbon 
graphite fill the space between them. However, the image quality degrades because of grid shadows and moire artifacts [19]. The 
moving grid technique prevents artifact generation via sophisticated grid motion against X-ray exposure time [20]. 

The grid-based scatter-rejection method incurs an essential limitation in that additional X-ray exposure is required to maintain 
imaging performance by absorbing radiation in the grid. Recently, several studies have focused on restoring degraded images without a 
physical grid. A virtual grid software (Fujifilm, Tokyo, Japan) has been developed to suppress scatter using prior information according 
to exposure conditions. It is also possible to set various grid conditions according to a practical setting [21]. Diagnostic accuracy was 
improved by using deep-learning-based SimGrid software (Samsung, Seoul, South Korea) in low-dose pediatric radiographic images to 
increase the visibility of foreign materials and bones [22]. Learning-based scatter correction methods digitally restore X-ray images by 
removing scatter based on information of scatter radiation (e.g., scatter amplitude, distribution, etc.). Thus, no artifacts are generated 
and there is an advantage in reducing the radiation dose to the patient. However, these approaches have limitations in that they need 
large clinical datasets and require further validation to verify the reproducibility of the software in multi-modality applications. 

Star-Lack et al. [23] introduced the prior-information-based scatter-correction method, which pre-calculates the scatter kernel and 
amplification according to the thickness of the water slab phantom using system modeling in Monte-Carlo (MC) simulation based on 
experimental conditions. Based on this, the sPSF presented by Ohonesorge et al.‘s model [24] is fitted, and then the primary image 
without the scatter component is estimated. The method proved highly effective in removing scatter radiation in X-ray cone-beam 
computed tomography. However, the parameters of Ohonesorge et al.‘s model were estimated by dividing the group into three 
thickness categories to satisfy the prescribed model shape, which reduces accuracy. Moreover, the high-frequency noise components in 
the degraded image were amplified by Fourier-transform-based direct inverse filtering using the estimated scatter kernels. 

Continuing the R&D, a water-equivalent thickness kernel-based scatter-correction method incorporating total variation (TV) 
regularization was investigated and its viability in mammographic imaging systems was evaluated. The imaging performance between 
the proposed algorithm and physical grid was compared, and a systematic simulation and experiment were performed to demonstrate 
the feasibility of the proposed approach. In the following sections, the proposed scatter-correction software scheme is briefly 
described, and the experimental results are presented. 

2. Materials and methods 

2.1. Proposed software-based scatter-correction framework 

To correct the scatter component, the proposed software requires prior sPSF information based on the thickness of the basis ma-
terial. Each sPSF was measured using the MC simulation under equivalent conditions to those used in the experiment: tube voltage of 
29 kVp as a pencil beam and filtration of 5.543 mm Al. Water was used as the basis material, and 10 sets of water slabs with a thickness 
of 30 mm were employed. In addition, 100 scatter kernels according to the i-th thickness (TKi)—defined in Eq. (3)—were obtained at 
each 1-mm thickness. 

TKi = SFw(i)PSF(i), (3) 
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where SFw(i) and PSF(i) are the empirical compensation factors for scatter kernel amplitude and point-spread function (PSF) at i-th 
thickness for scatter kernel distribution, respectively. The TKi was previously measured using the MC simulation, and which is 2D low- 
pass filter. We redefine Eq. (2) by applying a factor for the thickness as in Ref. [23]: 

Is(x, y)=
∑100

i=1

∑N

n=1

∑M

m=1
Ip(xm, yn)TKi(x − xm, y − yn) (4)  

where xm, yn denote pixel coordinates and the maximum distribution is the matrix size of input image, M and N. In order to apply the 
TKi, a pixel-by-pixel thickness calculation is required for the degraded image, g. The segmentation mask according to the i-th thickness 
is defined as follows. 

Maski(x, y)=
{

True, thicknessi ≤ τ(x, y) ≤ thicknessi+1
False, otherwise (5)  

τ(x, y) ≈
1

μwater
ln
(

I0(x, y)
Ip(x, y)

)

(6)  

In Eq. (6), τ is the water-equivalent thickness when replacing the projection image with a pre-obtained projection image using a water 
slab, μwater is the linear attenuation coefficient of water, and I0(x, y) is the measured scatter-free component without an object. The 
initial Ip(x, y) is calculated from the degraded image g(x,y), and the τ(x, y) is calculated by the updated Ip(x, y) through the proposed 
framework. This is done equally in simulation and experiment. 

From the above equations, we propose a framework to compensate for the scatter radiation, as illustrated in Fig. 1. Briefly, obtain 
the degradation image, g, using a mammography system without physical grid (①). Then, measure the thickness-specific scatter 
kernel, TKi, through the MC simulation (②). The initial scatter component, I(1)s (x, y), is then calculated using Eqs. (4)–(6) in the 
proposed thickness based scatter-correction framework (③). Here, the initial I(0)p (x, y) used the acquired image, g(x,y). And then Eq. (7) 
represents the process used to update the primary component Ip(x, y) (④). 

I*
p = argmin

Ip∈Q
∅
(
Ip
)
, ∅

(
Ip
)
=

1
2
⃦
⃦g(n+1) − g

⃦
⃦2

2 +α
⃦
⃦g(n+1)

⃦
⃦

TV , g
(n+1) = I(n+1)

p + λI(n+1)
s (7)  

where Q is the set of feasible Ip, which is the {I(1)p , I(2)p , … I(end)
p } updated via Eq. (7). The optimal I*

p is considered to be the one that 

Fig. 1. Simplified schematic of the proposed framework to compensate the scatter radiation component.  
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minimizes the object function ∅ among the various Ip. The factor α is the balance parameter between the fidelity term and TV reg-
ularization penalty term, and λ is the balance factor to control the update step of g(n+1). The iteration loop is repeated until the error 
between g(n+1)(x, y) and g(x, y) is below the tolerance value. Here, Eq. (7) can be solved approximately using the accelerated gradient- 
projection-Barzilai-Borwein (GPBB) method [25]. The proposed method minimizes the impact of noise through TV regularization and 
achieves accurate results through the Barzilari-Borwein (BB) step size selection in GPBB method [26]. Based on the updated primary 
image, I(n+1)

p , derive the degraded image, g(n+1)(x,y), as in Eq. (7) (⑤). Repeat steps ④ and ⑤ after predicting the scatter image, IS(n+1), 
using the thickness based scatter kernel and I(n+1)

p until the error between g(n+1)(x, y) and g(x, y) is below the tolerance value, ε. Here, 
the tolerance value was used to ε = 10− 4 by trial and error (⑥). In this study, satisfactory results were empirically derived after 
approximately 10 iterations. Finally, the scatter corrected image, I*

p , was derived from degraded image. 

2.2. Simulation and experimental setup 

Based on the aforementioned description, we implemented the proposed algorithm using the Geant4 application for tomographic 
emissions (GATE) software package (ver. 9.0, Geant4 10.7 patch 1, OpenGATE collaboration) and MATLAB software (ver. 8.3, 
MathWorks, USA), and performed a systematic simulation and experiment to evaluate the feasibility of the method. The GATE 
simulation was modeled to verify the usefulness of the proposed method. We modeled an X-ray imaging system with the following 
conditions: the X-ray tube potential was 30 kVp at poly-energy spectrum, which was generated by the IPEM Rep78 software; the 
number of photons was 1012; the source-to-detector distance was 65 cm; the detector pixel size was 0.1 mm and the matrix dimensions 
were 650 × 650 pixels; the focused grid (line density: 66 lp/mm) was positioned between the detector and object; and the examined 
numerical step phantom was composed of methyl methacrylate (PMMA, thicknesses: 8, 10, 12, 14, and 16 cm). The scatter kernels 
corresponding to 10 sets of water slabs with a thickness of 30 mm were measured in advance under the system conditions modeled in 
the simulation. We used an X-ray system consisting of an X-ray tube (M-113T, Varian, exposure condition: tube voltage = 29 kVp, tube 
current = 45 and 60 mAs, focal spot size: 0.1 mm) and an indirect conversion-type flat-panel detector (ROSE-M Sensor, Aspenstate, 
pixel dimension: 3032 × 3800 pixels, pixel size: 0.076 mm). In addition, a carbon graphite-interspaced grid for mammography (JPI 
Healthcare, dimensions: 18 × 24 cm, line density: 103 lp/inch, ratio: 5:1, focal distance: 65 cm) was used for performance comparison 
purposes. Scatter correction was performed using MATLAB software based on the thickness-specific scatter kernel and the acquired 
degraded images through simulation and experiment. To compute the minimization problem in Eq. (7), we used the image processing 
toolbox and optimization toolbox of MATLAB software. We empirically applied the following parameters to solve the minimization 
problem in Eq. (7): balancing parameter α = 10, balance factor λ = 0.25, and tolerance value of 10− 4. 

Fig. 2(a) illustrates the physical phantom of an acrylic step (thickness: 8–14 cm) and Fig. 2(b) also presents the mammographic 
accreditation phantom (ACR phantom, serial number: AAC763, Model 015, CIRS, USA) with the inserted materials. The ACR phantom 
had embedded structures—including fibers, specks, and masses—in the wax insert in place of fibrous structures, microcalcifications, 
and tumors. 

2.3. Quantitative evaluation of image performance 

To evaluate the performance of the proposed method, various quantitative and qualitative analyses were performed. The full width 
at half maximum (FWHM) can be expressed using Eq. (8). 

FWHM= 2
̅̅̅̅̅̅̅̅̅̅̅
2 ln 2

√
σ, (8) 

Fig. 2. Examples of (a) hand-made acrylic step phantom (thickness = 8–14 cm at five steps) and (b) mammographic accreditation phantom (ACR 
phantom) for experiment. 
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where σ is the standard deviation of the profile, which is a function of the density of the normal distribution form. Thus, we can 
estimate that a smaller FWHM value of the profile improves the scatter-correction effect. 

The contrast-to-noise ratio (CNR) is a commonly used factor for image quality [27,28] and is defined by Eq. (9): 

CNR=
|SROIS − SROIBG |̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σROIS

2 + σROIBG
2

√ (9)  

In Eq. (9), the parameters SROIS and σROIS are the mean and standard deviation of the signal in the target region of interest (ROI), 
respectively, and SROIBG and σROIBG are the average and standard deviation of the background signal, respectively. The objective was to 
investigate similarities in CNR values between a scatter-rejection image with a physical grid and one using the proposed algorithm. 
Larger CNR values are generally associated with higher image quality. 

3. Results and discussion 

Fig. 3 (a) presents a complete set using the MC simulation with a numerical PMMA step phantom of the reference image generated 
solely by the primary component, a scatter-rejected image with the physical grid, and a scatter-corrected image using the proposed 
approach. To evaluate the performance of the algorithm, Fig. 3 (b) depicts the measured intensity profiles, with line AB shown in Fig. 3 
(a). These results indicate that the profile tendency of the proposed thickness-based scatter-correction method is more similar to that of 
the physical grid than that of the degraded image without a physical grid. Compared to the profile of the scatter-rejection image 
obtained using the physical grid, the profile of the degraded image without the physical grid shows increased intensity in the staircase 

Fig. 3. Sample images of numerical PMMA step phantom using the Monte-Carlo simulation: (a) degraded image without the physical grid, scatter- 
rejected image with physical grid, and scatter-corrected image using the proposed method; and (b) the profiles of three images at line AB. 
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edge region, primarily due to the scatter radiation. This phenomenon is responsible for reducing the contrast of the region with respect 
to the height of the stair phantom. In clinical mammography, scatter radiation causes a decrease in contrast, making it difficult to 
distinguish tumors or small calcifications. The proposed method corrects the degraded image based on the thickness of scatter kernels. 
In the case of a single material object, we demonstrated that the effect on the scatter radiation was corrected based on the accurate 
separation of thickness and its scatter kernels, which proves that the proposed algorithm is effective in scatter radiation correction. 
During scatter correction, we found that some areas dropped owing to excessive compensation of thickness, as denoted by the arrows 
in Fig. 3 (b). However, the proposed scatter-correction algorithm was overall effective in terms of accurately estimating the scattering 
image from a single projection. 

To verify the practical viability of the simulation results, we performed experiments using an acrylic step phantom shown in Fig. 2 
(a). Fig. 4 (a) presents the imaging results of the experiment with the acrylic step phantom using the three approaches. Here, the tube 
current of the acquired image without a physical grid (left) was 45 mAs, whereas that of the acquired image with a physical grid (right) 
was 60 mAs. Fig. 4 (b) shows the intensity profiles measured along the line CD of the images. The intensity profile of the scatter- 
corrected image was closer to that of the image acquired with a physical grid than that of the scatter-rejected image without a 
physical grid. Consistent with the trend of the simulation results, the profile of the image acquired without a physical grid increased 
towards the step edge region owing to scatter radiation, which reduces the contrast of the image. The proposed scatter-correction 
algorithm proves viable in the experiment, obtaining a corrected image with a profile similar to that of the image using the phys-
ical grid. This result shows that it is possible to acquire high-contrast images without exposing the patient to radiation overexposure 
associated with the use of traditional physical grid technique. Moreover, the profile using the proposed method is less noisy compared 
to the profile using the physical grid. When using the physical grid, it is more irradiated than without the physical grid to compensate 
for the photons loss. This method increases the patient dose. The proposed method has the advantage of obtaining a contrast ratio 
similar to a physical grid with less radiation exposure, thus increasing CNR, an important factor in determining image quality. 

To confirm the results of the quantitative evaluation, Fig. 5 shows the differential profiles from 380 to 420-pixel positions in Fig. 4 
(b). Note that the FWHM of the differential profile in the scatter-corrected image was approximately three pixels, representing an 
approximately 1.5-times decrease from that of the scatter-rejected image with the physical grid. Furthermore, the FWHM value of the 
degraded image was approximately five pixels. Notably, these results demonstrate that the proposed method achieves a scatter 
compensation performance comparable to that of the physical grid. However, the proposed algorithm incurs an overshoot, as indicated 
by the red arrows in Fig. 4 (a), when the scatter kernel prediction according to object thickness is set too high compared to that of the 

Fig. 4. (a) Experimental results of an acquired image without a grid, a scatter-rejected image with a physical grid, and an image using the proposed 
method; (b) intensity profiles as measured along the line CD. 
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real object. 
Fig. 6 (a) presents experimental imaging results of the acquired image without the physical grid, acquired image with the grid, and 

restored image using the proposed method. Fig. 6 (b) shows the enlarged images indicated by the box ROIA in Fig. 6(a). The enlarged 
images can be examined to qualitatively investigate the improvement in sharpness and contrast of the speckle region by using the 
proposed method. Furthermore, most of the embedded structures (fibers, specks, and masses) in the ACR projection image are much 
more clearly visible in the proposed image, similar to the acquired physical-grid-based image. The qualitative results demonstrate that 
the proposed algorithm provides a significant improvement in scatter radiation, even for objects made of various materials and 
thicknesses. Notably, the contrast in the ROIA increased, improving the ability to distinguish speckles, even though the proposed ACR 
image was acquired with a 0.75-time dose reduction compared with the image without the physical grid. This shows the ability of the 
proposed method to favor the identification of cancers or microcalcifications on mammograms, which is expected to improve diag-
nostic accuracy. We visually evaluated non-uniformity due to scatter radiation; Fig. 7 shows the profile results along the line EF in 
Fig. 6 (a). In terms of uniformity, the profile of the scatter-corrected image obtained using the proposed method was similar to that of 

Fig. 5. Differential profiles and FWHM values from 380 to 420 position (pixels) in Fig. 4 (b).  

Fig. 6. Results with ACR phantom; (a) the acquired image without a grid, physical grid image, and restored image with proposed method; (b) 
enlarged images indicated by box ROIA in Fig. 6 (a). 

K. Kim et al.                                                                                                                                                                                                            



Heliyon 10 (2024) e24862

8

the scatter-rejection image. Despite the regions of equivalent compressed average breast having the same thickness, the uniformity of 
the image without the physical grid was inconsistent owing to scatter radiation. Correcting uniformity using the proposed method is 
critical to improving the diagnostic accuracy of mammographic images for qualitative microstructures and small lesions. 

The proposed algorithm improved contrast, uniformity, and sharpness by compensating for scattered radiation. However, the 
problem of amplified noise following the proposed scatter correction is a limitation to image-quality improvement. Although the level 
of noise amplification is quite low compared to that of the direct inverse filtering method by Star-Lack et al. [23], it is essentially 
high-pass filtering, and this issue must be addressed. Table 1 lists the CNR values presented in Fig. 6 (a). We observe that the CNR 
values of the scatter-corrected image obtained using the proposed method were increased by approximately 1.2 times compared to 
those of the degraded image without the grid. However, compared to the CNR values of the physical grid, they were approximately 1.4 
times lower. As shown in Fig. 7, noise amplification occurs when scattered radiation is removed. When the low-frequency scatter 
component is corrected, the variability among image values increases, which improves sharpness but amplifies noise [29]. Amplified 
noise is difficult to identify when the anatomical structures and noise components are indistinguishable. Recently, techniques have 
been proposed to reduce noise while preserving the edge structure, and we plan to apply these methods to improve the performance of 
the proposed method in continuous R&D [30,31]. 

Another limitation is the blurring artifact, which occurs owing to finite characteristics of the imaging system (such as focal spot size 
and detector pixel size) [32] and patient movement during mammogram exposure [33]. The blurring component can be categorized as 
low-frequency information, such as scatter radiation, and when the proposed method attempts to apply a thickness-specific scatter 
kernel to an object, inaccurate thickness measurements can prevent accurate scatter correction. Various methods have been proposed 
to correct blur artifacts in mammography and digital breast tomosynthesis [34,35]. We plan to apply the proposed method to further 
experimental and clinical validation in the future. 

Finally, the error propagation probability of the algorithm for grid-line artifact removal is used as the reference image. Kykanen 
et al. mentioned that scattered radiation is one of the primary causes of quality degradation in mammography images [36]. A physical 
grid is a representative method for removing the scattered radiation that may be generated in X-ray-based images. However, the use of 
a grid presents the disadvantage that the exposure dose received by the patient inevitably increases owing to an increase in exposure 
conditions from the partial absorption of primary X-rays. Veldkamp et al. demonstrated that although the quality of mammographic 
images can be significantly improved using a physical grid, the exposure dose may reach a three-fold increase [37]. When the proposed 
scatter-corrected method is used instead, we expect that it will be possible to simultaneously improve imaging quality and decrease the 
exposure dose for the patients. Therefore, we chose the reference image using the physical grid. However, the grid-line artifacts in 
Fig. 6 (a) can be observed in the image acquired with a physical grid. These artifacts, which are caused by the grid shadow, reduce the 
accuracy of lesion detection in mammographic images. Because grid-line artifacts are a critical part of quality control, periodic testing 
is specified by the Mammography Quality Standards Act (MOSA) [38]. These artifacts were not prominent in the physical grid-based 
X-ray images examined in this study owing to the removed components of grid-line artifacts in the Fourier domain. The existing 
grid-line removal filtering methods, including the windowed adaptive switching minimum filters, adaptive optimum notch filters, and 
adaptive Gaussian notch filters, were applied to the image with the physical grid [39–41]. Based on these algorithms, effective grid-line 
removal was performed; however, a high-frequency blurring artifact occurred due to the resolution loss during the grid-line artifact 
removal. This may affect the results obtained and have a negative impact on the accuracy of deep-learning training for scatter 
correction. In the future, we plan to perform a comparative evaluation between scatter-corrected technology and various existing 
software technologies, including the automated grid-artifact-detection algorithm proposed by MacLellan et al. [38]. Extended clinical 
studies using multi-modality imaging systems will examine the clinical applicability of the proposed algorithm. It is expected that 
efficient mammography examinations can be performed in clinical practice. 

Image-guided biopsy is widely employed in diagnostic medicine when breast imaging findings include mammography [42]. Among 
breast tissue biopsy techniques, the stereotactic-based method is known to be well-validated, and radiologists often use grids to 
identify target areas. Mango et al. studied the effect of grid-based breast X-ray images on the efficiency of stereotactic biopsy [43]. As a 
result, an increase in the stereotactic biopsy efficiency was confirmed with an increase in total procedure time and the exposure dose, 
when the grid was used. We therefore expect that the physical grid time and table time can be reduced by applying the software-based 
grid, as proposed in this study, to stereotactic biopsy. Consequently, we expect the accuracy of biopsy to improve without increasing 
exposure. 

4. Conclusion 

The objective of this study was to achieve effective scatter correction based on software used in conventional mammography 
without a physical grid. The software predicts and eliminates scatter components from acquired images; the prior scatter kernel is 
repeatedly calculated until the difference between the preceding and current restored images is below a threshold value. Here, the 
scatter kernels were calculated using a water phantom according to thickness. We investigated the proposed software and performed a 
systematic simulation and experiment to demonstrate its viability. The uniformity of a scatter-corrected image was closer to that of a 
scatter-rejected image with a physical grid than that of a degraded image without a grid. In particular, the FWHM value of a scatter- 
corrected image was approximately 1.5 times smaller than that of the corresponding scatter-rejected image. Furthermore, the CNR 
factor of the proposed image was approximately 1.2 times higher than that of the degraded image. These results demonstrate the 
efficiency of the proposed framework in compensating for the scatter components in mammography. Furthermore, the proposed 
method is expected to produce satisfactory results for scatter correction using various radiographic imaging modalities. 
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