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Abstract: Synthetic antigens based on consensus sequences that represent circulating viral isolates
are sensitive, time saving and cost-effective tools for in vitro immune monitoring and to guide
immunogen design. When based on a representative sequence database, such consensus sequences
can effectively be used to test immune responses in exposed and infected individuals at the population
level. To accelerate immune studies in SARS-CoV-2 infection, we here describe a SARS-CoV-2
2020 consensus sequence (CoV-2-cons) which is based on more than 1700 viral genome entries in
NCBI and encompasses all described SARS-CoV-2 open reading frames (ORF), including recently
described frame-shifted and length variant ORF. Based on these sequences, we created curated
overlapping peptide (OLP) lists containing between 1500 to 3000 peptides of 15 and 18 amino acids in
length, overlapping by 10 or 11 residues, as ideal tools for the assessment of SARS-CoV-2-specific
T cell immunity. In addition, CoV-2-cons sequence entropy values are presented along with
variant sequences to provide increased coverage of the most variable sections of the viral genome.
The identification of conserved protein fragments across the coronavirus family and the corresponding
OLP facilitate the identification of T cells potentially cross-reactive with related viruses. This new
CoV-2-cons sequence, together with the peptides sets, should provide the basis for SARS-CoV-2
antigen synthesis to facilitate comparability between ex-vivo immune analyses and help to accelerate
research on SARS-CoV-2 immunity and vaccine development.
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1. Introduction

Since the start of the COVID-19 pandemic in December 2019, researchers around the world
have put major efforts towards a better understanding of the immune response to its causative agent,
the SARS-CoV-2. Although an impressive amount of scientific information has been generated in a very
short period of time, there remain significant gaps in our understanding of SARS-CoV-2 immune control.
In particular, it remains unclear what kind of adaptive immunity should be triggered by vaccination
in order to achieve sterile immunity, or at least lead to an ameliorated disease course, in cases where
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vaccination cannot provide absolute protection from infection. We know from the available literature
on other coronaviruses (mainly SARS-CoV-1 and MERS) that antibodies can neutralize the infection,
although these humoral responses are short lived in many individuals, and that long-lived T cells
responses are present in people with less severe disease outcomes [1–5]. The emerging data on the
immune response to SARS-CoV-2 demonstrate the essential contribution of the virus-specific T-cell
responses, possibly in addition to the action of neutralizing antibodies, in viral control [3,6–13]. Thus,
improved tools to assess host T cell immunity in detail are urgently needed to better identify these
responses and to define their role in the outcome of SARS-CoV-2 infection.

Ex-vivo immune analyses of samples from infected individuals can identify T cell responses
to specific pathogens like viruses. Such analyses can help to better understand the role of host
immunity in virus control and to guide successful vaccine development. However, they rely on the
use of the correct recall antigens that can elicit specific responses in vitro. The urgency of the current
SARS-CoV-2 pandemic has led researchers to tackle the problem of screening the 10,000 amino acids
of the SARS-CoV-2 proteome for T cell responses by selecting viral sequences based on different
criteria: (i) bioinformatically predicted epitopes, (ii) homology of SARS-CoV-2 sequences with epitopes
defined in other coronaviruses (mainly SARS-CoV) or (iii) selecting some specific SARS-CoV-2 proteins
over others [5,7,9,11,14–19]. However, all these approaches have intrinsic limitations. Bioinformatic
prediction tools are trained on sets of previously described epitopes, but since the available epitope
repertoire for many human leukocyte antigen (HLA) alleles is limited, its prediction capacity is
also limited [20,21]. Inferences based on epitope sequence homology with other coronaviruses are
hampered because past studies on SARS-CoV-1 and MERS only included few selected viral proteins.
This is of concern, since screening only a part of the SARS-CoV-2 proteome will potentially miss an
important portion of the virus-specific T cell response. Indeed, recent data indicate the existence of
T cell responses against structural and non-structural proteins [5,9] for SARS-CoV-2 and other viral
infections [22]. Finally, no study has considered the existence of T cell responses to epitopes encoded
by open-reading frames (ORF) in alternative frames, as reported for other viral infections [23–26].

In order to reliably measure total virus-specific T cell immunity, the recall antigens used need to be
as representative as possible of the worldwide viral sequences, even for genetically more stable viruses
like coronaviruses. T cell recognition of epitopes is very sensitive to mismatches and not matching the
recall antigen with the autologous virus can lead to missed responses [27]. For this reason, different
test antigen design strategies, trying to cope with the diversity of circulating viral isolates in a single
sequence, have been developed in the past. These strategies include central sequence designs such as
Center of Tree (COT) [28–32], Ancestral [33–36] or Consensus sequences [29–32,35,37–43]; which may
(Ancestral, COT) or may not (Consensus) represent naturally occurring sequences of replication
competent viruses. All these designs are sensitive to the underlying sequence database and may change
over time as new sequence information on additional isolates becomes available. Direct comparisons
of these different central sequence approaches have been performed for a highly variable pathogen
(human immunodeficiency virus, HIV) and shown that the different designs yielded comparable
results when synthetic peptides covering these sequences were used to measure virus-specific T cell
responses [42,43]. However, the additional costs in terms of peptide synthesis and cells needed for
ex-vivo experiments, may not warrant inclusion of all the different variants into a single test set.

Thus, the characterization of the complete T cell responses to SARS-CoV-2 urgently needs T cell
antigens that cover the whole SARS-CoV-2 proteome while covering sequence diversity, and which
can be combined in different experimental set-ups and immune assays. To this end, we created a
consensus sequence to cover the genetic diversity of SARS-CoV-2 (CoV-2-cons) for all ORF, including
those described in alternative open reading frames. Given the computational ease for its initial
generation and periodic updates, we designed a consensus sequence using more than 1700 CoV-2
full-genome sequences and designed overlapping peptide (OLP) sets as recall antigens in T cell assays.
The CoV-2-cons OLP sets are presented here in different designs, balancing costs for synthesis with the
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sensitivity of detecting T cell responses and with the intention to provide a common test antigen that
will allow data comparability across laboratories.

2. Methods

2.1. Consensus Sequence ORF Generation and Entropy Calculation

A total of 1731 full-length SARS-CoV-2 sequences were downloaded from NCBI (30 April 2020,
txid2697049, minimum length = 29,000 bp) and aligned using MAFFT [44]. The alignment was visually
inspected and curated using Genbank NC_045512.2 as a coordinate reference [45]. A nucleotide
consensus sequence was generated by keeping all nucleotides present in at least 25% of the sequences in
the alignment. The amino acid consensus sequence was then created by using NC_045512.2 annotated
Open Reading Frames (ORFs) plus additional ORFs described in Finkel et al. [46] using the Biostrings
R package. Mixed nucleotide positions were either resolved if they were synonymous or flagged
for downstream analysis. Positional entropy was calculated at the amino acid level both as the
standard and 22-aminoacid-normalized Shannon entropy for every ORF using Bio3d R package on the
alignment [47], and afterward, the mean OLP normalized entropy was calculated.

2.2. Overlapping Peptide Set Design and Variability Plots

For the automated design of overlapping peptides with variable length, we used the previously
described Peptgen algorithm available at the Los Alamos National Laboratories HIV Immunology
database [48]. This OLP generator allows predefining peptide length and level of the desired overlap
between adjacent OLP. Peptgen is also set up to exclude from the C-terminal end of OLP certain
“forbidden” amino acids (G, P, E, D, Q, N, T, S and C) that are rarely seen to serve as the C-terminal
anchor position of HLA class I presented epitopes [49]. Using this optional modification can lead to
length variation in the OLP set, which can be controlled by limiting the maximal length of an OLP in
regions with numerous serial “forbidden” residues. The settings used for the present SARS-CoV-2
consensus OLP design were a) OLP length of 15 or 18 amino acids, with maximal extension or truncation
of up to ±3 residues to avoid forbidden C-terminal residues. In addition, the overlap between adjacent
OLP was set at 10 or 11 residues. The no-glutamine at N-terminal setting was applied to prevent OLP
starting with a glutamine residue as this can lead to complications with peptide synthesis. For positions
where two or more amino acids were present above 25% of the sequences in the alignment, two or
more sequence variants for those OLPs were generated. Sequence logos were generated for these cases
with the ggseqlogo R package [50].

2.3. Detection of Conserved Peptides Among Coronavirus

In an attempt to detect protein fragments that are conserved across a wide range of members
of the coronavirus family, full-length consensus ORF from SARS-CoV-2 were aligned with other
coronavirus sequences. Three alignments were performed based on different sequence selection
criteria: (i) 50 reference sequences (RefSeq) with the lowest E-values resulting from a pBLAST
search [51] using the ORF-specific consensus sequences (pan-coronavirus alignment) (ii) homologous
proteins from 17 viruses representing the Betacoronavirus taxon (beta-coronavirus alignment) or,
(iii) homologous proteins from the 7 full-genome sequenced human coronaviruses (including SARS-CoV,
MERS-CoV, and common cold species OC43, NL63, 229E, HKU1, human-coronavirus alignment).
Selected sequences were aligned using the MUSCLE algorithm in MEGA X [52]. Conserved protein
fragments were identified using BioEdit with the following criteria: minimum length of 8 amino acid,
maximum average entropy of 0.25, maximum entropy per position of 1 and limiting the search to 1 gap
per segment. Sequence logos were generated for the aligned peptides on Weblogo [53].
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2.4. Identification of Previously Described Epitopes in CoV-2 Conserved Regions

To identify previously reported epitopes in the conserved regions of coronaviruses (pan-coronavirus,
betacoronaviruses, and human coronaviruses), and match them with the SARS-CoV-2 consensus
sequence, searches for experimentally described epitopes were carried out in the Immune Epitope
Database [54]. The search criteria were as follows: “linear peptide; blast option: 90%; Host: Homo
sapiens; Any MHC restriction; Positive assays only; All assays; Any disease”. The search yielded
141 epitopes, of which 14 B-cell epitopes and 2 epitopes from a hypothetical protein were removed.
The remaining identified epitopes were subsequently used to generate an epitope map of the respective
conserved regions.

3. Results

3.1. Open Reading Frames and Sequence Isolates for CoV-2-Cons Sequence Creation

For creation of the CoV-2 Consensus sequence, nucleotide sequences from 1731 SARS-CoV-2
genomes were aligned and a full genome nucleotide consensus was created, 23 open reading frames
(ORF) were then located in the alignment using the NC_045512.2 and the Finkel et al. [46] coordinates
and translated to amino acids. Of the 23 ORF, 12 were canonical ORF as annotated in NC_045512.2 and
11 in alternative reading frames described by Finkel et al. [46] (Table 1). In addition, the membrane
protein glycoprotein (M), is completely embedded inside an extended ORF (exORFM) without any
frameshifts and was not used for separate OLP set design.

Table 1. Canonical and alternative open reading frames (ORF) in SARS-CoV-2. iORF: internal OPF,
extORF: extended ORF, upORF: upstream ORF.

Gene Start End Protein Protease Products Frame

ORF1a.iORF1.ext 59 136 upORF1a1 - Alternative

ORF1a.iORF2.ext 163 264 upORF1a2 - Alternative

ORF1ab 266 13483 pp1a

leader protein

Canonical

nsp2
nsp3
nsp4

3C-like proteinase
nsp6
nsp7
nsp8
nsp9
nsp10
nsp11

ORF1ab 13468 21555 pp1ab

RNA-dependent RNA
polymerase

Canonical
helicase

3′-to-5′ exonuclease
endoRNAse

2′-O-ribose methyltransferase

S 21563 25384 surface glycoprotein S1
CanonicalS2

ORFS.iORF1 21744 21863 inORFS - Alternative

ORF3a 25393 26220 ORF3a protein - Canonical

ORF3a.iORF1 25457 25582 inORF3a1 - Alternative

ORF3a.iORF2 25596 25697 inORF3a2 - Alternative

E 26245 26472 envelope protein - Canonical

ORFM.ext 26484 27191 exORFM - Alternative

M 26523 27191 membrane glycoprotein - Canonical

ORFM.iORF 27151 27195 inORFM - Alternative

ORF6 27202 27387 ORF6 protein - Canonical
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Table 1. Cont.

Gene Start End Protein Protease Products Frame

ORF7a 27394 27759 ORF7a protein - Canonical

ORF7b 27756 27887 ORF7b protein - Canonical

ORF7b.iORF2 27862 27897 inORF7b - Alternative

ORF8 27894 28259 ORF8 protein - Canonical

ORF8.iORF 27965 27994 inORF8 - Alternative

N 28274 29533 nucleocapsid
phosphoprotein - Canonical

ORFN.iORF1 28284 28577 ORF9b - Alternative

ORF10.upORF 29538 29570 upORF10 - Alternative

ORF10 29558 29674 ORF10 protein - Canonical

ORF position is referred to the NC_045512.2 reference sequence.

3.2. Overlapping Peptides (OLP) Sets Design

In order to achieve a balance between the number of peptides needed to cover the whole
SARS-CoV-2 proteome, the costs for peptide synthesis and the design of peptide sets that allow for
detecting T cell responses with high sensitivity, three OLP sets were designed (Table 2). Shorter
peptides (15 mers) with longer sequence overlap between adjacent OLP (11 amino acids) offer high
resolution detection of responses, thus lowering the risk of missing longer epitopes located in the OLP
overlap. The consequence, however, will be a higher number of peptides to synthesize and screen,
in this case a set of 2821 OLP. When the overlap between OLP was reduced from 11 amino acids to
10, the sensitivity of OLP testing is maintained, but some longer epitopes located in the overlap of
two OLP may be missed. With this caveat in mind, an OLP set of 15-mers overlapping by 10 residues
helped reduce the number of peptides needed by 560 OLP (total number OLP required 2262). Similarly,
longer peptides (18 mers) significantly reduce the number of OLP to be synthesized, but tend to reduce
in vitro sensitivity [55]. This approach, with an 11 mer overlap, reduced the number of needed OLP
to 1561. The final decision for a specific design may also be driven by the assay system used for
screening, an a-priori focus on fewer or more viral proteins and the available cells and funding to
test immunogenicity. The three full OLP sets with their entropies are included in Table S1. Of note,
the 15–11 OLP sequences were subjected to a search for homologies in the human genome to predict
molecular mimicry events related to the autoimmune process. A blastp search (>8aa consecutive
identical amino acids per OLP) of the whole set against the human genome yielded no hits.

Table 2. Description of the three CoV-2 OLP sets.

Set Length Overlapp Number Variants

15–11 15 11 2821 31
15–10 15 10 2262 23
18–11 18 11 1561 22

3.3. CoV-2-Cons Variability Analysis by Entropy Scores across the Full Genome

Mismatches between the sequence of in vitro antigen sets and the autologous virus in an infected
individual can lead to missed responses. This has been described for highly variable pathogens, such
as HCV and HIV, and showed a direct relationship between sequence entropy and the frequency
of detected responses [56,57]. Even though the variability of SARS-CoV-2 reported is substantially
lower than for HIV and HCV, the sequence entropy was calculated at the amino acid level and as
the mean OLP entropy in order to identify positions and OLP that may escape detection in T cell
screening assays.

Amino acid positional Shannon entropies were generally highly conserved, although specific
more variable positions were identified (Figure S1), linked to specific amino acid variants. The ORF1ab
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protein, including three of the most variable positions, is shown in Figure 1. In the CoV-2-cons 15–11
OLP set, mean OLP normalized entropies were overall low (Range: 0.947–0.758) and comparable
between OLP covering the canonical ORF (Range: 0.947–0.879) and OLP matching the alternative
frameshift ORF (Range: 0.932–0.758).Vaccines 2020, 8, x 6 of 14 
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3.4. Variant OLP Sequences to Cover CoV-2 Sequence Diversity

Based on the SARS-CoV-2 alignment used to design the consensus, only nine amino acid positions
in the entire SARS-CoV-2 genome showed two amino acids present in at least 25% of the sequences
(Figure 2). Three of them were located in ORF1ab, one in the RNA polymerase and two in the Helicase
sub-proteins. None of them were located close enough to each other to affect the same OLP. Still,
the synthesis of a single consensus peptide could miss T cell responses in individuals exposed to
the virus with the subdominant sequence variant. To prevent missing responses, a small number of
additional OLP containing each of the variants were generated to cover the variability of these OLP,
creating an additional set of 31 different variant OLP in the 15–11 OLP set (Table 2).
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3.5. Conserved Protein Sequences Matching Other Coronavirus Family Member and Identification of
Pan-Coronavirus Sequences

In addition to variable positions, we also evaluated the presence of protein regions conserved
among coronavirus species, as these may support the design of immunogen sequences for
pan-coronavirus vaccines. A total of 26 regions, ranging from 8 to 23 amino acids, were identified as
being conserved in at least one of the three different sequence alignments (Table 3). Fifteen fragments
were identified in the pan-coronavirus alignment, 17 in the beta-coronavirus alignment and 12 in
the human coronavirus alignment. Seven of them were detected in all three alignments. To identify
potential T cell epitopes in these conserved regions, we searched the IEDB for described T-cell epitopes
similar (>90% sequence identity) to the conserved peptides present in the CoV-2 consensus sequence.
Interestingly, the majority of the conserved regions contained several matches, most of which were
described epitopes derived from SARS-CoV. In total, 125 similar epitopes were identified, from all but
two of the conserved regions (Table 3). The similar epitopes were found to be derived from the following
organisms; SARS-CoV: 71, Human coronavirus 229E: 1, Alphacoronavirus 1: 1, Unknown origin: 3,
and Homo sapiens: 47. Interestingly, 24 out of 26 fragments contained the described SARS-CoV T cell
epitopes, indicating that these regions are immunogenic in humans and reinforcing the idea that some
degree of cross-reactivity among coronavirus can be expected [11,58]. Also, the majority, i.e., 40 of the
47 human epitopes, clustered around one single region conserved in the beta-coronavirus alignment
(QGPPGTGKSH). Several conserved peptides have thus been identified, which could potentially
contain epitopes cross-reactive among different Coronavirus species. These conserved peptides can
thus provide valuable information to understand if the immune response to SARS-CoV-2 is affected by
previous infection with other coronaviruses and for pan-coronavirus vaccine design (Figure S2).

Table 3. Conserved sequences among different coronavirus. I: Pan-coronavirus, II: Betacoronavirus,
III: Human coronavirus alignment. The black squares that indicted which alignments contained the
conserved sequences.

Consensus Sequence ORF
Consensus

Start
Position

Alignment Hit Epitopes

I II III Unknown SARS-
CoV Human Other

Coronavirus
VGVLTLDNQDLNG ORF1b 193 1 4 - -

TQMNLKYAISAKNRARTVAGVSI ORF1b 530 - 5 2 -
VIGTSKFYGGW ORF1b 580 - 3 - -

LMGWDYPKCDRAMPN ORF1b 605 1 3 - -
LANECAQVL ORF1b 646 - 1 - -

YVKPGGTSSGDATTA ORF1b 665 - 3 - -
KHFSMMILSDDAVVCFN ORF1b 743 - 2 1 -

LYYQNNVFMS ORF1b 778 - - - -
GPHEFCSQHT ORF1b 800 - 2 - -
LPYPDPSRIL ORF1b 820 - 2 3 -

ERFVSLAIDAYPL ORF1b 849 - 5 - 1
SQTSLRCG ORF1b 934 - 1 - -

LYLGGMSYY ORF1b 986 - 3 - -
LKLFAAET ORF1b 1054 - 4 - -

QGPPGTGKSH ORF1b 1205 1 2 40 -
TACSHAAVDALCEKA ORF1b 1231 - 1 - -

GDPAQLPAPR ORF1b 1324 - 3 - -
AVFISPYNSQN ORF1b 1432 - 4 1 -
NRFNVAITRA ORF1b 1483 - 2 - -
CNLGGAVC ORF1b 2002 - 1 - -

KYTQLCQYLN ORF1b 2443 - 3 - -
RSFIEDLLF Spike 815 - 2 - -

QIDRLITGRL Spike 993 - 5 - 1
KWPWYIWL Spike 1211 - - - -
WSFNPETN M 110 - 3 - -

PRWYFYYLGTGP N 106 - 7 - -
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4. Discussion

We here report the design of a CoV-2-cons sequence and the matched OLP sets for the
comprehensive analysis of the adaptive T cell immune response against SARS-CoV-2. Three sets of
OLP reported here provide enough flexibility to balance exhaustive screening for T cell responses and
available resources. Ideally, the wide use of such a CoV-2-cons sequence and a specific OLP set (ideally
15 mer with 11 overlap) would ensure the comparability and reproducibility of immunological data
across laboratories worldwide to accelerate SARS-CoV-2 immunological studies.

Fifteen-mer designs allow sensitive screens for both, CD4+ and CD8+ T cell responses while 18 mer
allow for cheaper peptide synthesis and require less cells for comprehensive screenings. However,
longer test peptides tend to yield fewer responses and imply bigger efforts for subsequent epitope
mapping. For the 15 mer design, an alternative 10 amino acid overlap was proposed to reduce peptide
synthesis, while maintaining the sensitivity. This approach may be valuable, but may miss epitopes
restricted by HLA class I molecules known to presented longer peptides (such as HLA-B*27, -B*57
and others). Regardless of the final OLP design, the use of large OLP data sets for immune screening
raises several challenges. How to pool peptides in suitable numbers may depend on the downstream
analyses, whether or not subsequent epitope identification are planned, on the experimental setup and
whether long incubation periods will be required. The latter may be especially important as pooling of
a large number of peptides will possibly require lyophilization of the pooled peptides to eliminate
dimethyl sulfoxide (DMSO) as this can be toxic for the cells during culture [11]. Also, as we gain more
insights into the distribution of virus-specific T cell responses across the full proteome, more or less
reactive regions can be pooled based on expected reactivity, protein expression level, and/or degree of
conservation [46].

Canonical and alternative frame ORF were considered in the present CoV-2-consensus sequence
design to ensure an as broad as possible screening for all potentially expressed protein sequences.
Whether all these putative ORF are indeed expressed remains to be confirmed. If shown that not all
these sequences are indeed expressed, the OLP set could be reduced by some 65 peptides, focusing
exclusively on the canonical ORF. Consensus sequence design is highly dependent on the sequences
included in the alignments used to construct them. We used publicly available sequences in the
growing SARS-CoV-2 NCBI repository as a representative set of worldwide sequences. As noted,
coverage of sequence diversity for in-vitro antigen test sets is critical as responses to autologous viral
variants may be missed if these variant sequences are not matched [27]. This may be most critical for
highly variable pathogens, such as HCV and HIV, where it has been shown that sequence entropy
was directly related to the frequency of OLP reactivity in vitro and essential to identify the potential
emergence of immune escape variants [59,60]. However, even genetically more stable pathogens
such DNA viruses (for instance Epstein Barr Virus, EBV) have been reported to exist as a swarm of
quasi-species and to lose specific T cell epitopes over time [61,62]. This is also supported by recent
data showing some degree of adaptation to host immunity and sequence variability for SARS-CoV-2 as
it moves through the global human population [63]. To cover these variant sites, variant OLP can be
synthesized. An alternative approach to the synthesis of individual variant peptide sequences is the use
of “toggled peptides”, where the sequence variation is directly incorporated into the peptide synthesis.
To achieve this, peptide synthesis uses mixes of amino acids at variable positions, so that the resulting
OLP resembles a mini-peptide library that can achieve an a-priori set coverage of circulating viral
variants [64]. This would readily allow to cover more sequence diversity beyond the 25% frequency
cut-off that was applied in the present study.

The existence of protein fragments conserved among different coronavirus species has several
implications. For the interpretation of T cell responses, it has to be taken into account that some
degree of cross-reactivity can exist among human coronavirus [5,65]. This implies that responses to
these regions could be associated with previous infections by other human coronaviruses, some of
them triggering much milder infections that can pass unnoticed, like those by coronaviruses causing a
common cold. This observation will need to be taken into consideration when interpreting immune
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data on SARS-CoV-2. On the other hand, the existence of conserved sequences among beta- or even the
whole coronavirus family suggests that T cell responses to these regions could provide broad protection
and that the creation of a pan-coronavirus vaccine may be feasible. Such a vaccine could allow to
prevent infection not only with SARS-CoV-2, but also with other, clinically relevant coronavirus like
SARS-CoV-1 and MERS, and even with new coronaviruses jumping the species barrier to humans.
However, the design of a pan-coronavirus vaccine will critically depend on the identification of epitopes
shared among them. These pan-coronavirus epitopes are likely to exist in conserved sequences, but
need to be experimentally validated. At the same time, the existence of SARS-CoV-2 homologous
regions in the human genome, together with the existence of described epitopes in these regions
raise some concern that coronaviruses could be involved in a molecular mimicry process triggering
autoimmune diseases like the Guillain-Barré syndrome [66–69].

The present study is currently limited to the design of the CoV-2 consensus sequence, without
functional immune analyses of the OLP sets in samples from infected individuals. However,
the principal aim here was to provide a SARS-CoV-2 T cell test reagent, including all described
ORF and covering as much viral variability as possible, for its implementation in future screening
efforts. In addition, the OLP sets will certainly elicit T cell responses in vitro as partial evaluation has
been performed by others in studies using peptides spanning some of the regions covered by the present
consensus sequence [5,9,11] and since the current peptide designs (length, overlap) has been shown to
be effective in the past [55,70]. Thus, the present peptide designs will afford a high-resolution analysis
of the T cell response to SARS-CoV-2, the nature of the targeted epitopes and the functionality and T
cell receptor use of the T cells targeting these epitopes, thereby increasing our knowledge of factors
that drive COVID-19 disease progression and which could be implemented in vaccine development.

5. Conclusions

We here present the first SARS-CoV-2 Consensus sequence for all described SARS-CoV-2 ORF,
including those in alternative frames covering the SARS-CoV-2 sequence variability represented by
1700 available sequences. The description of this sequence and of the matching OLP sets will aid the
further immune analyses in SARS-CoV-2 infection and ensure reproducibility between laboratories.
In light of recent studies, the T cell response to SARS-CoV-2 can be crucial to control SARS-CoV-2
infection. To date, published studies are generally limited to a few viral proteins, using recall
antigens that do not reflect sequence diversity nor alternative ORFs. To overcome these limitations,
the description of the global landscape of T cell responses to SARS-CoV-2 urgently needs unbiased,
comparable, full-proteome screens for virus-specific T cell responses. The CoV-2-cons and matched
OLP sets described here will allow to integrate data globally, generating crucial information for vaccine
development. We also include measures of sequence entropy to identify the most variable segments
and design additional OLP sequences that cover these sites. Of note, these entropy analyses, together
with sequence alignments across a wide range of coronaviruses, also allowed the identification of
highly conserved regions among different coronaviruses. These regions may be targeted by T cells,
which could target a wide range of coronaviruses and may be relevant targets for T cell vaccine design.
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