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Seabed sediments of commercial ports are often characterized by high pollution levels. Differences in number and distribution of
bacteria in such areas can be related to distribution of pollutants in the port and to sediment conditions. In this study, the bacterial
communities of five sites from Leghorn Harbor seabed were characterized, and the main bacterial groups were identified. T-RFLP
was used for all samples; two 16S rRNA libraries and in silico digestion of clones were used to identify fingerprint profiles. Library
data, phylogenetic analysis, and T-RFLP coupled with in silico digestion of the obtained sequences evidenced the dominance of
Proteobacteria and the high percentage ofBacteroidetes in all sites.The approach highlighted similar bacterial communities between
samples coming from the five sites, suggesting a modest differentiation among bacterial communities of different harbor seabed
sediments and hence the capacity of bacterial communities to adapt to different levels and types of pollution.

1. Introduction

Sea stretches of commercial ports are often characterized by
high levels of pollution in sediments, low oxygen concentra-
tions in the water column, and low biodiversity of benthic
communities [1] that may cause the decrease of fauna in their
seabed [2]. Further reasons of impact on harbor sea stretches
often come from high concentrations of organic matter due
to eutrophication, time variability of sediment deposition,
allochthonous inputs, and low hydrodynamism [3, 4]. These
reasons demonstrate that the activities conducted in ports
lead to critical conditions in the environments, and the
organisms develop several ways to adapt to the alterations of
water and sediments parameters [5]. A crucial characteristic
of harbor sites is the removal of organicmatter. Consumption
capacity of organic matter is mainly due to biotic uptake and
degradation performed by microorganisms. This process is
generally insufficient to maintain the equilibrium of ecosys-
tems; in most cases, the presence of detrital organic matter
(which increases anoxic conditions), heavy metals, polychlo-
rinated biphenyls (PCBs, [6]), and other toxic compounds

plays also a crucial role in negatively impacting the seabed
biocenosis [7, 8]. Although the origin and concentration
of pollutants in seabed harbor sediments can be different,
many studies demonstrate that, in most cases, pollution is
mainly due to the presence of hydrocarbons, heavy metals
[9], and organic matter. Possible methods for hindering the
problemof contaminated aquatic sediments have beenwidely
discussed [10]. Polluted seabed sediments can be sanitised via
in situ actions, which always require an accurate knowledge
of the local biocenosis [11]. Moreover, it was demonstrated
that bacterial communities have great potential to be used
as sensitive indicators of contamination in aquatic sediments
[12]. New and accurate methods to study the composition
of microbial communities in harbor seabed sediments are
necessary for these reasons. Differences in number and
distribution of bacteria, in such a large area as a harbor,
can be related to pollutant distribution and general sediment
state. Today, Leghorn’s Harbor is one of the most important
ports in the Mediterranean Sea, linked with more than
300 ports worldwide. It is a multipurpose port that can
cater for all kinds of vessels and handle all kinds of goods,

http://dx.doi.org/10.1155/2013/165706


2 The Scientific World Journal

as well as passenger traffic. It sports a marine area of 1.6 km2
and a useable land area of 2.6 km2.TheHarbor offers 11 km of
quays withmore than 90 berths, with up to 13m draught.The
total extension covers one km2 surface outdoor and 70000m2
indoor areas.

In the present research, the bacterial community compo-
sition of Leghorn Harbor seabed sediments was studied with
a molecular fingerprint approach and with the construction
of libraries of the 16S rRNA gene. The Terminal Restriction
Fragment Length Polymorphism (T-RFLP) approach was
used for all samples to identify the community structure. in
silico digestion of clones retrieved from two clone libraries
(one for a less polluted sample and one for a more polluted
sample) was used for the identification of bacterial Opera-
tional Taxonomic Units (OTUs) in the T-RFLP fingerprint
profiles. The aim of the study was to highlight how the
different conditions of port seabed influence the composition
of microbial communities and provide hints of dynamics for
nutrient removal.

2. Materials and Methods

2.1. Description of the Study Area: Collection and Storage
of Samples. Figure 1 shows Leghorn’s Harbor area. The five
sampling sites are located with tagged marks and briefly
described within the figure. In each site, three samples were
collected for a total of fifteen samples. According to the site
assessment performed by the port authority [13] and the
chemical parameters reported in Table 1, site one, which is
located in the passenger terminal, represents the less polluted
spot, while site two, which is located inside the “Darsena
Calafatari” ship repairing section and has never been dredged
for 60 years, has the highest concentrations of heavy metals
and hydrocarbons. In this work, the samples named 2.1 (site
2, sample 1) and 1.2 (site 1, sample 2) were used. They were
collected on the November 3, 2009, by a scuba diver and
immediately brought to the laboratory for the extraction of
the total DNA.

2.2. DNA Extraction, Construction of 16S rRNA Gene
Libraries, Sequencing, T-RFLPAnalysis, and In SilicoDigestion
of Sequenced Clones. Total DNA extraction was performed
on all of the 15 samples using a soil master DNA extraction kit
(Epicentre Biotechnologies, WI, USA). The library was built
with samples 1.2 and 2.1 using the procedure described by
Amann et al. [14]: 16S rRNA genes were directly amplified
from extracted DNA using universal bacterial primers, 8F
(5-AGA GTT TGA T(CT)(AC) TGG CTC AG-3) and
reverse 1492R (5-GG(AGCT)(AT)AC CTT GTT ACG ACT
T-3) [15]; the amplification products were cloned in a
plasmid vector (pCRs2.1-TOPOs, TOPO TA Cloning Kit,
Invitrogen, UK) and inserted in chemically competent cells
(OneShot TOP10, Invitrogen, UK). The inserted fragments
from a representative number of clones were then amplified
by control PCR with M13F and M13R universal primers. The
inserted genes showing a size similar to the 16S rRNA gene
size were directly sequenced with primersM13F andM13R by
the Macrogen Inc. sequencing service (Republic of Korea).

For T-RFLP analysis, the amplification of the 16S rRNA
gene was performed with the same procedures of the library
construction, and primer 8F was labeled with FAM fluo-
rochrome (Applied Biosystem CA, USA). The template was
digested with two different restriction endonucleases: BsuRI
(GG∧CC, 0.2 u/𝜇L, Fermentas, Canada) and RsaI (GT∧AC,
0.2 u/𝜇L, Fermentas). Digested DNA was precipitated with
cold ethanol 100% to eliminate salts at 4∘C and 10,000 RCF.
For each reaction, a mix was prepared with 1.2𝜇L of
loading buffer (GeneScan 600 LIZ, Applied Biosystem), a
maximum of 5.5𝜇L of sample (calculated after cold ethanol
precipitation on the bases of its final concentration), and
13.3 𝜇L of deionized formamide (Applichem, Germany).
Capillary electrophoresis was performed with Abi Prism
310 Genetic Analyzer (Applied Biosystem); T-RFLP profiles
were analyzed using GeneScan analysis software (Applied
Biosystem), and the datamatrix was transformed for statistics
as described in Iannelli et al. [13]. Nonmetric Multidimen-
sional Scaling (NMDS) was performed on the whole T-RFLP
dataset with the Bray-Curtis coefficient and the Shannon
diversity index was also calculated. All statistical analyses
were performed using PAST software v.2.15 (Paleontological
Statistic, [16]). Further details on the applied techniques are
reported in Chiellini et al. [17]. All sequences obtained from
the construction of both libraries were digested in silico by
searching the restriction site on Arb database, as recognized
by restriction enzymes BsuRI and RsaI in order to know the
size of the terminal restriction fragments representative of
the OTUs. With the in silico digestion of retrieved clones,
we could correlate the peaks on T-RFLP fingerprints of the
15 samples from Leghorn Harbor seabed (3 replicates in 5
different sites) to specific OTUs. The coverage percentages
of the peaks corresponding to the recognized OTUs and
corresponding bacterial phyla and classes were calculated for
each electropherogram.

2.3. Detection of Chimeric Sequences and Phylogenetic Anal-
ysis. All the retrieved sequences were scanned with the
Bellerophon server [18] to identify chimeras. We decided to
analyze chimeric sequences by “cutting” them in proximity
of the recombination site identified by Bellerophon software
and considering the obtained fragments as independent
sequences belonging to different organisms. Fragments were
treated in the same way as complete sequences from other
screened clones; they were included in 16S rRNA library anal-
ysis, but they were not included in the construction of phylo-
genetic trees, due to their short length. NCBI BLAST analysis
[19] was used to determine a preliminary affiliation of clone
sequences. After BLAST analysis, sequences were inserted in
SILVA 104 database [20] and aligned using the appropriate
tool from the ARB program package [21]. A deeper phyloge-
netic analysis was performed on the Proteobacteria phylum,
because (i) it included the most represented 15 T-RFLP pro-
files in the two libraries, and (ii) it was one of themain groups
previously retrieved in marine sediments (e.g., [37, 38]).
Two phylogenetic reconstructions on different subclasses of
Proteobacteria were performed independently. The analysis
focuses in particular on two groups of sequences: the first
one including bacteria belonging to the Deltaproteobacteria
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Figure 1: Representation of the Leghorn’s Harbor area. The tagged marks represent the sampling sites in the seabed of the area, which are
briefly described as follows. Site 1: ferry boat departure area (sandy loam; water depth 11m). Site 2: seldom dredged shipbuilding area (loam;
water depth 4m; last dredging 60 years ago). Site 3: container terminal (silt loam; water depth 13m; located by the open sea mouth of the
Navicelli canal). Site 4: cargo ferry transit (loam; water depth 6m). Site 5: chemical processing and oil refinery terminal (silty clay loam; water
depth 9m; located by the mouth of Ugione stream, which crosses the inland industrial area and collects some spare wastewater discharges).

Table 1: Chemical parameters of the five sampling sites [13].

Samples Cd Ni Pb Cr Cu Zn TPH TOC TN TP NO
3

− Cl− SO
4

2−

mg/kgdw mg/kgdw mg/kgdw mg/kgdw mg/kgdw mg/kgdw mg/kgdw mg/kgdw mg/kgdw mg/kgdw mg/kgfw g/kgfw mg/kgfw
1.1 1.06 37.7 33.2 25.2 75.0 313 1433 6102 197 917 831 10 3587
1.2 0.63 25.2 271.0 34.7 73.5 353 1066 8938 225 1024 975 12 4211
1.3 0.71 39.6 104.0 15.8 268.0 407 1030 7720 304 1321 903 11 3899
2.1 1.16 41.0 249.0 48.8 80.5 308 1915 25460 2170 696 1161 17 3192
2.2 1.42 75.4 221.0 35.4 375.0 854 2031 33540 1580 759 1363 19 3747
2.3 1.31 94.9 171.0 27.7 485.0 884 1798 27500 1890 722 1262 18 3469
3.1 1.22 101.0 47.1 32.1 74.4 257 900 19664 1019 568 708 16 3417
3.2 1.44 98.4 36.5 35.6 71.5 336 766 25736 1325 651 832 19 4012
3.3 1.20 118.0 37.8 29.2 71.4 228 633 21200 1631 455 770 17 3714
4.1 1.09 63.1 58.4 16.9 123.0 568 1765 19572 730 616 1929 17 3848
4.2 1.20 67.0 54.3 18.7 91.3 277 1563 21100 878 504 2265 20 4517
4.3 1.11 67.4 90.0 25.0 86.4 247 1666 16628 602 570 2097 18 4183
5.1 1.36 100.0 62.0 34.6 119.0 500 1266 17148 1993 864 491 17 2807
5.2 1.59 103.0 65.6 39.4 127.0 476 1331 26652 1660 724 576 20 3295
5.3 1.48 135.0 67.7 42.6 135.0 368 1032 23900 1327 844 534 19 3051
TPH: total petroleum hydrocarbons; TOC: total organic carbon; TN: total N; TP: total P; dw: dry weight; fw: fresh sample weight. All parameters are means of
three replicates.
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subclass using Epsilonproteobacteria as an outgroup, and the
second one focusing on theGammaproteobacteria groupwith
some sequences of Alphaproteobacteria used as an outgroup.
Both trees were constructed using maximum likelihood
algorithm, 100 bootstraps, and a filter specifically designed
for the selection of sequences in each tree, considering only
positions conserved in at least 10% of sequences. A distance
matrix, constructed using the neighbor joining algorithm,
was also calculated and examined for clone sequences of
the two samples that clustered together with described and
cultivated bacterial species, in order to understand which
clades represented the species-level or the genus-level groups.
In the construction and interpretation of similarity matrices,
we used the 95% limit to represent the threshold for genus
definition and the limit of 97% to represent the threshold for
OTUs [22].

2.4. Statistical Analysis of Clone Libraries. OTUs were identi-
fied in each library using MOTHUR software [23]. Richness
and alpha diversity indices, including the Chao 1 estimator
[24] and the Shannon index, were calculated for each library
at different cutoff levels (0.01, 0.03, and 0.05).

The Chao 1 estimator evaluates the richness of a total
species as

Chao 1 = Sobs +
𝑛
2

1

2𝑛
2

, (1)

where Sobs is the number of observed species, 𝑛
1
is the

number of singletons (species captured once), and 𝑛
2
is the

number of doubletons (species captured twice).
Shannon’s diversity index [25] was obtained as

𝐻 = −Σ𝑝
𝑖
ln𝑝
𝑖
, (2)

where 𝑝
𝑖
is the population of each species 𝑖, and the resulting

product is summed up across species and multiplied by −1
[26].

The MOTHUR software was also applied to calculate the
number of OTUs shared among the two different libraries at
different cutoff levels.The LIBSHUFF software [27], based on
the Jukes-Cantor pairwise distance matrix, was also applied
to find out similarities in the two libraries, as described by
Zhang et al. [28].

3. Results

3.1. Construction of 16S rRNA Gene Libraries and Detection
of Chimeric Sequences. Two libraries were constructed on
samples 1.2 and 2.1. A total of 194 clones were sequenced,
101 of which taken from sample 1.2 and 93 from sample
2.1. All obtained sequences were submitted online on the
DDBJ/EMBL/GenBank databases. They are available under
the accession numbers from HE803828 to HE804037. The
percentages of detected chimeric sequences were 11.9%
in sample 1.2 (12 sequences) and 4.3% in sample 2.1 (4
sequences). All chimeric sequences were composed of par-
tial sequences coming from only two different organisms.
Considering fragments constituting chimeras as independent

sequences belonging to different organisms, the library from
sample 1.2 was composed of a total of 115 sequences and
the library from sample 2.1 of 95 sequences. The affiliation
of nucleotide sequences was determined by BLAST analysis.
In both libraries, the highest percentage of screened clones
emerged as belonging to the Proteobacteria phylum (74%
to library 1.2 and 73% to library 2.1, Figure 2(a)). Within
this group, bacteria belonging to Alpha-, Gamma-, Delta-,
and Epsilonproteobacteria classes were present in all libraries,
while bacteria belonging to the Betaproteobacteria class were
detected only in library 2.1 with low percent values (1%). In
particular, the Gammaproteobacteria subclass was the most
represented one in both 1.2 and 2.1 libraries (35% and 38%,
resp.), followed by the Deltaproteobacteria subclass (resp.,
24% and 20%). The second most represented bacterial taxon
detected in both libraries was the Bacteroidetes phylum,
represented by 12% of the total sequences in library 1.2,
and by 6% of the sequences in library 2.1. There are some
differences in the distribution of bacterial phyla detected in
the two libraries, especially for minor groups such as the
Lentisphaerae, Nitrospirae, andThermotogae phyla, that were
present only in sample 1.2 with percent values lower than
1%, and the Chlorobi, Verrucomicrobia, Deferribacteres, and
Gemmatimonadetes phyla, that were detected in sample 2.1
with fractions ranging from 1% to 2%.

3.2. T-RFLPAnalysis. NMDSanalysis onT-RFLPdatamatrix
highlights some groups of samples that correspond to the
five sampling sites (Figure 3). The grouping of the triplicates
is mainly evident for sites 1 (samples 1.1, 1.2, and 1.3) and 4
(samples 4.1, 4.2, and 4.3). Triplicates of sites 2 and 3 clustered
together in the central part of the plot, and the triplicates from
site 5 (samples 5.1, 5.2, and 5.3) were all located in the second
quadrant of the plot, isolated from all the other samples.

The Shannon diversity index calculated from the T-RFLP
data matrix ranged from 3.17 to 3.75. Figure 4 presents some
of the results of the attribution of the peaks obtained by in
silico clone digestion, in comparison with the peaks detected
in the microbial communities of the five sampling sites.
The coverage percentages of the bacterial groups in T-RFLP
profiles are shown in Figure 2(b). Not all the bacterial OTUs
detected with the rDNA clone library could be retrieved in
the T-RFLP electropherograms of the 15 samples. All OTUs
retrieved in the T-RFLP electropherograms through in silico
digestion belong to subclasses of the Proteobacteria phylum,
with the only exception of the Betaproteobacteria class, which
has not been detected. Figure 2(b) highlights a dominance
of Gammaproteobacteria in sites 1 and 2 and a dominance
of Deltaproteobacteria organisms in sites 3, 4, and 5. The
less represented group of Proteobacteria was the Epsilonpro-
teobacteria in all BsuRI samples. When considering the RsaI
restriction endonuclease, the Alphaproteobacteria subclass
emerged as the less represented group in each case.

3.3. Phylogenetic Analysis. In order to assess the relative
abundance ofProteobacteria related sequences, we focused on
the phylogenetic analysis of this group of organisms. In par-
ticular, two phylogenetic trees were built: the first one com-
prised all the retrievedDelta- and Epsilonproteobacteria clone
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Figure 2: (a) Comparison among main bacteria phyla detected in the two clone libraries; the larger pink sectors represent Proteobacteria. (b)
Coverage percentages of the main bacterial groups attributed through in silico digestion of the 15 T-RFLP electropherograms. Each of the five
sites is represented by the means of three replicates; the black bars represent the standard deviations.
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Figure 4: T-RFLP peak attribution after in silico digestion.
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sequences and their closer relatives (Figure 5); the second one
included all the retrieved Gamma- and Alphaproteobacteria
clone sequences and their closer relatives (Figure 6).The trees
were constructed using PHYML with 100 bootstraps [29]
from the ARB package.Themajority of sequences in the trees
are derived from studies about marine sediment samples.
Some of our clones are closely related to symbiotic bacteria
found in marine metazoan bodies [30, 31]. These sequences
belong to the Gammaproteobacteria subclass; clone 147b
from library 2.1 shows a 99% similarity with the already
mentioned Spongiispira norvegica (AM117931, [31]), while
the OTU composed of clones 228, 143, 162, 61, and 160,
all coming from library 1.2, shows a 98% similarity with
Endozoicomonas elysicola (AB196667, [30]). All the clones
related to the Deltaproteobacteria subclass cluster together
with species having a metabolism involving the presence
of sulphur (most sulphate reducing microorganisms). The
majority of published sequences that are closely related to
our clone sequences belong to uncultured bacteria, with
the exception of some Deltaproteobacteria, which belong to
Desulfobulbus, Desulfosarcina, and Desulfonema genera, all
providing the sulfate reduction in the marine environment.
The similarity matrix evidenced that within the Deltapro-
teobacteria subclass our clone 188b from library 2.1 showed
a 95% similarity with the described Desulfobulbus japonicus
species (AB110549, [32]), while the 52b clone from library 2.1
showed a 96% similarity with the described Desulfosarcina
ovata (Y17286, [33]). The 124b and 130b sequences from
library 2.1 and the sequence 184 from library 1.2 are all parts
of the same OTU. They cluster together with the described
Epsilonproteobacteria species Arcobacter nitrofigilis (L14627,
[34]), symbiotic bacteria characterized by a nitrogen fixing
metabolism.

3.4. Statistical Analysis of Clone Libraries. Table 2 shows the
results concerning richness and alpha diversity indices in
each of the two constructed libraries at three different cutoff
levels. The Shannon diversity index shows similar values in
both sampling sites, at all cutoff levels. The richness index
(Chao1 estimator) emerged as being higher in sample 1.2 at
0.01 cutoff level and lower in sample 1.2 at 0.03 and 0.05 cutoff
values. The number of detected OTUs emerged as being very
similar in both sites. The OTUs at a 0.03 cutoff value were
represented by the same number in both cases; library 2.1 at
0.01 and 0.05 cutoff values shows less detected OTUs than
library 1.2 at the same cutoff levels (Table 2).

Table 3 presents the MOTHUR analysis of OTUs that
are shared between the two different libraries. At 0.01 cutoff
(specie level), there are 7 OTUs shared between sites 1.2 and
2.1; at the 0.03 cutoff there are 12 shared OTUs; at 0.05 cutoff,
the number of shared OTUs, which usually represents the
genus level, rises up to 17.

Figure 7 presents the results of the LIBSHUFF analysis.
The two lines, representing the homologous and heterologous
curves, are almost totally overlapping, thus indicating that the
samples are similar to each other, as confirmed by the high 𝑃
value (𝑃 > 0.025 with Bonferroni correction, as described in
[27]).

Table 2: Alpha diversity indices for the two samples at different
cutoff values.

Sample cutoff Observed
richness (OTUs)

Chao 1
estimator Shannon index

1.2
0.01 82 667,2 4,36
0.03 75 258,3 4,24
0.05 71 193,8 4,17

2.1
0.01 80 620,2 4,33
0.03 75 306,1 4,24
0.05 68 239,1 4,07

Table 3: OTUs shared between site 1.2 and 2.1 calculated with
MOTHUR software.

Cutoff Observed richness shared between 1.2 and 2.1
0.01 7
0.03 12
0.05 17

4. Discussion

The molecular approach is commonly used in the recent
literature for the study of bacterial communities in marine
sediments [35–38] and to study the influence of bacterial
communities in removing pollutants from marine sediments
[39]. The two libraries highlighted a substantial similarity
concerning the abundance and diversity of the sequences rep-
resented in the two different sites, even though the chemical
composition was different [13]. The similarity between the
two clone libraries is shown by the alpha diversity indices
calculated with MOTHUR software (Table 2). The Shannon
diversity index calculated for both libraries at different cutoff
levels, on the base of the DNA sequences obtained after the
library construction, ranged from 4.07 to 4.36. The same
Shannon diversity index calculated on the base of T-RFLP
profiles of the 15 samples ranged from 3.17 to 3.75. This
difference can be explained because the diversity in a sample
is underestimated when only T-RFLP profiles are used. This
approach does not register rare OTUs.The Shannon diversity
index used in this work should provide more reliable values,
although an increase of the sample size of the sequenced
clones of each library could probably provide even more
accurate values.

The construction of the two libraries and the screening of
clones coupled with T-RFLP peak identification highlighted
the dominance of Proteobacteria related microorganisms
in all the five sites. There are no significant differences
among the coverage percentages of different subclasses of the
Proteobacteriaphylumamong the two libraries and the 5 sites;
these data are in agreementwith previously published studies,
where PCR-based techniques on marine sediment samples
revealed a dominance of bacteria related to Proteobacteria
phylum [35, 37] or to Firmicutes, Delta-, and Gammapro-
teobacteria [40, 41]. In other papers, the analysis of marine
sediment showed a dominance of Actinobacteria [38]. In this
study, no significant differences in the coverage percentage
of different subclasses of the Proteobacteria phylum were
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observed among the five sites; this agrees with other studies
in which different libraries of marine sediments collected
in different sites showed similar bacterial compositions [35].
The Bacteroidetes phylum is the only further phylum with
an appreciable presence in all sites, and the percentages of
abundance are comparable to those found by other authors
[35, 38].This result can mean that bacteria belonging to these
groups play the main role in nutrient recycling in the harbor
seabed ecosystem.

Considering the digestion profiles obtained with the
BsuRI restriction endonuclease, Gammaproteobacteria
emerged as being dominant in sites 1 and 2, while the sed-
iments were dominated by Deltaproteobacteria organisms
in sites 3, 4, and 5. Considering the RsaI restriction endo-
nuclease, sites 2, 4, and 5 emerged as being dominated by
Deltaproteobacteria microorganisms, while sites 1 and 3
were dominated by Epsilonproteobacteria and Bacteroidetes,
which are groups of bacteria sharing the same peak interval.
Some groups of bacteria could be detected only with one
of the two adopted restriction enzymes. For instance,
Alphaproteobacteria were not detected with BsuRI and
Gammaproteobacteria were not detected with RsaI. This
circumstance can be explained by the fact that the first
restriction site in the gene sequences of those bacteria is
located outside the interval 50–500 bp, which is the interval
covered by our T-RFLP analysis. In fact, the use of more than
one restriction enzyme is a recommended practice in this
technique, in order to facilitate the resolution of bacterial
populations [42, 43]. The fact that other OTUs identified
through clone library construction were not identified in
T-RFLP profiles can be in part explained by their poor
representation in the sediment samples, causing the failure
of their T-RFLP quantification.

Overall, our results are in agreement with results of
other authors that examined samples of port sediments.

In the study performed by Wu et al. [44], three different
samples of marine sediments were investigated in order to
characterize their bacterial communities. In all samples, the
dominant phylum was Proteobacteria with a presence of
82%, 42%, and 42% in the three samples. Zhang et al. [28]
analyzed four sites characterized by different pollution levels
in Victoria Harbor (Hong Kong). In all sites, they found
the dominance of bacteria belonging to the Proteobacteria
phylum and, especially, to the same subclasses detected in
our work. The dominance of Proteobacteria was also found
in many other studies (e.g., [37, 45, 46]). The diversity index
calculated by Zhang et al. [28] did not highlight significant
differences among the four analyzed sites; this result is
similar to the finding of this work, where the two ana-
lyzed libraries highlighted similar Shannon diversity values.
Bacteria belonging to the Alphaproteobacteria subclass are
important for hydrocarbon degradation [47].The presence of
these bacterial taxa in all five sites confirms a contamination
of hydrocarbons in Leghorn seabed sediments [13].

A large portion of the sequences detected in our clone
libraries belong to the Deltaproteobacteria subclass. With a
deep phylogenetic analysis, we discovered that all these clones
are closely related to bacteria characterized by a metabolism
involved in the removal of sulphur. This observation is in
agreement with other two works performed on marine port
sediments [28, 48]. The percentage of Deltaproteobacteria
detected in the two different samples is not significantly
different (24% library 1.2 and 20% library 2.1), and T-
RFLP results suggest that their abundance should be roughly
comparable among all the five sites. This result does not
agree with the chemical results published in Iannelli et al.
[13], which evidenced that the concentration of SO

4

2−

in site 2.1 (4399mg/(kg dw)) was double that in site 1.2
(2321mg/(kg dw)).
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An interesting finding concerns the Gammaproteobac-
teria subclass, in particular the sequences 228, 143, 162,
61, and 160, from library 1.2, and the sequence 147b from
library 2.1. The first group of sequences, all representing the
same OTU, shows a 98% similarity with Endozoicomonas
elysicola, which is a typical symbiont of the Elysia ornata
slug. Conversely, the sequence 147b is 99% similar to the
sequence of Spongiispira norvegica, a typical symbiont of
sponges. This observation possibly suggests that site 1.2 is
richer in marine metazoans characterized by a symbiotic
association with bacteria than site 2.1. This difference is
probably due to the chemical characteristics of the sediments
in Leghorn seabed area. Site 1.2 in fact, emerged as being
less polluted than site 2.1, and probably more suitable for
being colonized by marine metazoans harboring bacterial
symbionts.

5. Conclusions

In the present study, bacterial communities from five sites of
LeghornHarbor seabedwere analyzed and identified through
T-RFLP analysis, 16S rRNA library construction, and in silico
digestion of retrieved clones. Some considerations emerged
about organisms involved in the recycling of organic matter.

Both the diversity indices and the phylogenetic affiliation
of bacterial sequences obtained from themolecular screening
highlighted a substantial similarity in the composition of
the bacterial communities. This finding contrasts with the
chemical characterization of an earlier study, where the same
sites evidenced significant differences in the presence of
nutrients and pollutants, and the T-RFLP analysis evidenced
a heterogeneity among the different sites of the harbor.

Retrieved sequences from the two libraries were more
than sufficient to provide generic information onmetabolism
present in all of the 15 seabed sediment samples and to
compare them with previous similar studies. Only a sig-
nificantly higher sequencing coverage would have probably
allowed to distinguish between the samples that looked rather
similar in the presented analysis. The T-RFLP approach
proved to be more efficient in highlighting the bacterial
community structure in the whole harbor area, whereas
the present work helped in clarifying the role of specific
bacteria present in the studied samples and their related
metabolisms.
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[40] T. Köchling, P. Lara-Mart́ın, E. González-Mazo, R. Amils,
and J. L. Sanz, “Microbial community composition of anoxic
marine sediments in the Bay of Cádiz (Spain),” International
Microbiology, vol. 14, pp. 143–154, 2011.

[41] D. Castle and D. L. Kirchman, “Composition of estuarine
bacterial communities assessed by denaturing gradient gel elec-
trophoresis and fluorescence in situ hybridization,” Limnology
and Oceanography, vol. 2, pp. 303–314, 2004.

[42] W.-T. Liu, T. L. Marsh, H. Cheng, and L. J. Forney, “Char-
acterization of microbial diversity by determining terminal
restriction fragment length polymorphisms of genes encoding
16S rRNA,”Applied and EnvironmentalMicrobiology, vol. 63, no.
11, pp. 4516–4522, 1997.

[43] T. L. Marsh, “Terminal restriction fragment length polymor-
phism (T-RFLP): an emergingmethod for characterizing diver-
sity among homologous populations of amplification products,”
Current Opinion inMicrobiology, vol. 2, no. 3, pp. 323–327, 1999.

[44] H. Wu, Y. Guo, G. Wang, S. Dai, and X. Li, “Composition of
bacterial communities in deep-sea sediments from the South
China Sea, the Andaman sea and the Indian Ocean,” African
Journal of Microbiology Research, vol. 5, no. 29, pp. 5273–5283,
2011.

[45] M. V. Brown, G. K. Philip, J. A. Bunge et al., “Microbial
community structure in theNorth Pacific ocean,” ISME Journal,
vol. 3, no. 12, pp. 1374–1386, 2009.



The Scientific World Journal 13

[46] R. Schauer, C. Bienhold, A. Ramette, and J. Harder, “Bacterial
diversity and biogeography in deep-sea surface sediments of the
South Atlantic Ocean,” ISME Journal, vol. 4, no. 2, pp. 159–170,
2010.

[47] L. Rocchetti, F. Beolchini, K. B. Hallberg, D. B. Johnson, and
A. Dell’ Anno, “Effects of prokaryotic diversity changes on
hydrocarbon degradation rates and metal partitioning during
bioremediation of contaminated anoxic marine sediments,”
Marine Pollution Bulletin, vol. 64, no. 8, pp. 1688–1698, 2012.

[48] W. Zhang, L.-S. Song, J.-S. Ki, C.-K. Lau, X.-D. Li, and P.-
Y. Qian, “Microbial diversity in polluted harbor sediments II:
sulfate-reducing bacterial community assessment using termi-
nal restriction fragment length polymorphism and clone library
of dsrAB gene,” Estuarine, Coastal and Shelf Science, vol. 76, no.
3, pp. 682–691, 2008.


