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Abstract

Background: Growing interest and burgeoning technology for discovering genetic
mechanisms that influence disease processes have ushered in a flood of genetic
association studies over the last decade, yet little heritability in highly studied
complex traits has been explained by genetic variation. Non-additive gene-gene
interactions, which are not often explored, are thought to be one source of this
“missing” heritability.

Methods: Stochastic methods employing evolutionary algorithms have
demonstrated promise in being able to detect and model gene-gene and gene-
environment interactions that influence human traits. Here we demonstrate
modifications to a neural network algorithm in ATHENA (the Analysis Tool for
Heritable and Environmental Network Associations) resulting in clear performance
improvements for discovering gene-gene interactions that influence human traits.
We employed an alternative tree-based crossover, backpropagation for locally fitting
neural network weights, and incorporation of domain knowledge obtainable from
publicly accessible biological databases for initializing the search for gene-gene
interactions. We tested these modifications in silico using simulated datasets.

Results: We show that the alternative tree-based crossover modification resulted in a
modest increase in the sensitivity of the ATHENA algorithm for discovering gene-
gene interactions. The performance increase was highly statistically significant when
backpropagation was used to locally fit NN weights. We also demonstrate that using
domain knowledge to initialize the search for gene-gene interactions results in a
large performance increase, especially when the search space is larger than the
search coverage.

Conclusions: We show that a hybrid optimization procedure, alternative crossover
strategies, and incorporation of domain knowledge from publicly available biological
databases can result in marked increases in sensitivity and performance of the
ATHENA algorithm for detecting and modelling gene-gene interactions that
influence a complex human trait.
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Background
Genome-Wide Association Studies, Complex Disease, and Epistasis

The genome-wide association study (GWAS) is a widely used technique in human

genetics research to investigate DNA variations associated with common human dis-

eases. The last several decades have ushered in technological advances that have

allowed investigators to progress from coarse genomic coverage with linkage maps and

candidate gene association studies, to very high resolution association studies using

single nucleotide polymorphisms (SNPs). The initial completion and ongoing develop-

ment of the International HapMap Project [1,2] catalogs common human genetic var-

iation at millions of polymorphic sites in several diverse human populations,

facilitating more powerful and strategic association study designs. Several contempor-

ary genotyping technologies enable rapid, highly accurate genotyping of up to millions

of common SNPs at low cost per genotype [3].

We have yet to fully explore the abundance of data generated by the studies made

possible by these advances in genotyping technology in part because maturation of our

analytical strategies for data of this scale have not kept pace. The most commonly

used analytical procedures for analyzing GWAS data are very simple tests of associa-

tion looking at one SNP at a time. This approach has been somewhat successful in

identifying genetic variants associated with complex traits, including age-related macu-

lar degeneration [4], type II diabetes [5], hypertension [6], and blood cholesterol levels

[7,8], among others [9]. However, these single SNPs collectively explain little of the

genetic contribution to the trait variance that is expected based on family and twin

studies [10]. For instance, HDL-cholesterol level is highly under genetic control - up to

73% of variation in HDL can be explained by genetic factors [11] - yet even the most

highly powered genetic studies examining a single SNP at a time found that collectively

only ~5% of this variance could be accounted for by single-SNP analysis [7]. Many

agree that a portion of this “missing heritability” likely lies in gene-gene and gene-

environment interactions [10,12,13]. Indeed, it is well accepted that common traits are

complex, and are likely influenced by an elaborate interplay of multiple genetic and

environmental factors [14-16]. This is attributed in part to the nature of biomolecular

interactions that are essential for regulation of gene expression and complex metabolic

networks, and are likely to play a role in influencing human traits [17]. Moreover, sev-

eral recent perspectives have emphasized that most true single locus genetic associa-

tions to complex traits carry a vanishingly small effect size [18,19], and experimental

data from model organisms illustrates that gene-gene interaction is pervasive and often

carries surprisingly large effects [20,21].

Compelling evidence suggests that gene-gene interaction exists and influences com-

plex traits in both humans and model organisms, yet there is no consensus on how to

best examine existing GWAS data for gene-gene interactions that may be influencing

the trait of interest. One approach is to evaluate multi-SNP combinations for potential

interactive effects based on biological criteria [22]. This may include, for instance, test-

ing interactions between genes that share a similar structure or function, or genes in

the same pathway or biological process, such as a receptor and its ligand. Using this

strategy would bias the statistical analysis in favor of models with a well-established

biological foundation in the literature, and novel biology would remain undiscovered.

Furthermore, the entire analysis depends upon the quality of the biological information
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used. Another approach is to select SNPs based on the strength and statistical signifi-

cance of their independent main effects, evaluating interactions only between SNPs

that meet a certain effect size or significance threshold [23]. This strategy makes the

simplifying but false assumption that statistical interactions affecting the outcome can

only occur between variants that independently have a detectable effect on the

phenotype.

Another strategy to search for influential gene-gene or gene-environment interaction

is to exhaustively evaluate the relationship between the outcome of interest and every

possible combination of genetic and environmental exposures. While one may wish to

fit standard regression models to every possible 2-, 3-, or n-way combination of SNPs,

this approach becomes problematic for several reasons. First, when interactions among

multiple genetic and/or environmental components are considered, there are many

combinations that are present in only a few samples or perhaps none at all. This is

known as the curse of dimensionality [24], and results in unstable estimates of popula-

tion parameters from large-sample based methods. Furthermore, while interpreting the

statistical significance of models fit using traditional methods is fairly straightforward,

correction must be made for multiple testing. Tests of interactions are large in number

and are not independent, making multiple testing corrections difficult. Finally, regard-

less of the statistical issues associated with exhaustive interaction testing, the computa-

tional burden is enormous - there are 1.25 × 1011 two-SNP models among 500,000

SNPs - the number typically represented on contemporary GWAS platforms. Memory

issues aside, it would take many years on a desktop computer to run this analysis. Par-

allel processing drastically reduces this computational burden but does not eliminate

it. As the number of three-way interactions in such a dataset is over 2 × 1016, search-

ing exhaustively for higher order interactions would be infeasible even on multiproces-

sor computing clusters. This limitation is the motivation for developing techniques

that still utilize the full dimensionality of the data without exhaustively searching all

possible combinations of variables with the goal of discovering a well-fitting model

that explains variance in an outcome of interest.

Grammatical Evolution Neural Networks (GENN) and Domain Knowledge: ATHENA

Neural networks (NNs) are a robust and flexible modelling technique that attempt to

mimic the basic structure and function of biological neurons to solve complex pro-

blems. NNs have been applied to many research fields, including robotics, speech

recognition, optical character recognition, task scheduling, and industrial processing

among many others. NNs have also been widely applied to various problems in biolo-

gical science, including microarray data analysis [25], genotype calling [26,27], human

linkage analysis [28], genetic association studies [29], medical expert systems [30], sur-

vival analysis [31], and protein folding [32]. The conventional approach for applying

NNs to a classification problem is to specify a network architecture, select which vari-

ables (SNPs) are included as inputs to the network, and fit network weights using a

gradient-descent based approach such as backpropagation (BP) [33]. While BP is cap-

able of quickly fine-tuning weights in a NN, variable selection and modelling are goals

which cannot be accomplished using this traditional approach. Recently, numerous

evolutionary search strategies have been applied to NN classification problems to

reduce the issues associated with the traditional NN approach [34]. Genetic
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Programming Neural Networks [35] and Grammatical Evolution Neural Networks

(GENN) [36] use genetic programming [37] or grammatical evolution (GE) [38] to

evolve populations of neural networks for human genetics classification problems.

These populations are a heterogeneous mix of architectures, weights, and input vari-

ables which undergo mating, crossover, and recombination to ultimately identify an

optimum NN solution, simultaneously finding influential SNPs and fitting networks

weights. Recent work has shown that certain features characteristic of human genetic

data may provide advantages to methods that evolve NNs to detect gene-gene interac-

tions by transforming the fitness landscape from a “needle in a haystack” to a broader,

smoother surface [39].

The application of GE to find epistatic gene-gene interactions is still exceedingly dif-

ficult, especially when the underlying disease model is purely epistatic, where each var-

iant has no independent effect on the phenotype [40]. After demonstrating the critical

need for expert knowledge when applying genetic programming to GWAS [41], others

have shown that using expert knowledge guided mutation, selection, and crossover is

highly beneficial, and dramatically improves the performance of evolutionary algo-

rithms [42,43]. In much of the previous work showing that expert knowledge increases

the performance of natural computing algorithms for finding epistatically interacting

SNPs, the statistical expert knowledge was gleaned intrinsically - typically using a data-

driven approach using variants of the Relief algorithm for feature selection [43-45].

Here we extend our previous work with NN training [46] to evaluate several funda-

mental modifications to the algorithm in a new tool, ATHENA (the Analysis Tool for

Heritable and Environmental Network Associations). First, we implemented an alterna-

tive tree-based GE crossover strategy as previously described [46,47]. A potential weak-

ness of GE is the destructive single-point binary crossover (SPBXO) operator [38].

Tree-based crossover (TBXO) instead swaps functionally analogous branches by first

translating the grammar into functional neural network trees, identifying branches

with identical root nodes, then initializing a crossover back at the genome level which

would correspond to the crossover between the whole branches. This renders GE to

be much more like genetic programming (GP), while still maintaining some of the key

advantages of GE. We also evaluate the performance improvement when we combine

GE with the traditional approach of fitting network weights with backpropagation.

Finally, we evaluate with simulation whether utilizing available biological domain

knowledge gleaned extrinsically would increase ATHENA’s performance in discovering

epistatic interactions between genetic variants contributing to a quantitative trait out-

come. Here we present results of a simulation study showing that (1) using an alterna-

tive crossover strategy (TBXO) results in a considerable performance increase in some

scenarios, (2) a hybrid backpropagation-GENN training algorithm has better perfor-

mance than GE alone, and (3) incorporating biological knowledge from external

sources results in an increase in ATHENA’s ability to detect and model gene-gene

interactions among a large pool of unassociated noise variables.

Methods
Genetic data simulation with genomeSIMLA

Simulated data where the true identity and size of the genetic or environmental effect

in the population is known is a necessity for developing and testing novel
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methodology. It is also important that these true effects are embedded in a dataset

containing many other nonfunctional polymorphisms and environmental factors, as is

the case when real genetic data is collected. We developed genomeSIMLA [48] for

simulating genome-wide scale data in population based case-control samples with a

categorical outcome. Here we use an extension of genomeSIMLA capable of simulating

gene-gene interactions in the presence of main effects, all of which influence a quanti-

tative trait at a desired effect size [46]. The genomeSIMLA source code and binaries

can be downloaded freely online [49].

Whereas the common measure of effect size in genetic association studies employ-

ing a case-control design is the odds ratio, studies of continuously distributed out-

comes, such as HDL cholesterol level, estimate effect size as the proportion of

variance explained [8,50], or R2. This variance explained, or heritability, can be

further divided into genetic and nongenetic components, and the genetic component

can be further divided into additive, dominant, and epistatic variance components

[51]. The variance component explained uniquely by a single source of genetic varia-

tion (e.g. the main effect of one member of an interacting pair of variants, or the

epistatic effect of the interaction term) is given by the semi-partial squared correla-

tion coefficient [52]:

sr R Ri Y x x x x Y x x x xi k i k

2 2 2
1 2 1 2

= −. , ,... ,... . , ,...( ),...

The first term on the right side of the equation is the overall variance explained by

fitting a full model (regressing the outcome, y, on each main effect and the interaction

term between them). The second term on the right-hand side is the proportion of var-

iance explained by the model when a predictor variable of interest is omitted from the

model - for instance, omitting the interaction term. The difference between these two

quantities is the semi-partial squared correlation coefficient [52], and describes the

unique impact on the phenotype, y, for the particular variance component, xi. These

estimates do not take into account the bias corrections discussed by Boerwinkle and

Sing [50]. As these investigators showed, the bias in these estimators for the number

of genotype classes represented here quickly approaches zero as sample size increases

past n = 100. Since our simulated datasets comprise 2000 samples, the bias discussed

by these investigators is essentially zero.

Datasets were simulated as previously described [46]. Briefly, samples are drawn

from a homoscedastic normal distribution with the mean being determined by the

genotypes at the corresponding functional genetic variants. We simulated 500 SNPs

in 2000 samples, where only two SNPs were functional and the other 498 SNPs were

unassociated “noise” variables. We simulated a gene-gene interaction between these

two SNPs that carried a narrow-sense heritability (h2) of 0.05, meaning that only 5%

of the variation in the quantitative trait could be explained by this gene-gene interac-

tion. This low effect size is typical of most findings in human genetic epidemiology

[18,19]. We simulated this interaction in the context of very small main effects at

each locus (h2 = 0.01). Both main effects and the gene-gene interaction were addi-

tive. A scenario such as this where main effects explain little of the overall outcome

variance represents a very difficult problem [53] for an evolutionary search proce-

dure to model.
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Domain knowledge

A recently developed tool called Biofilter is capable of integrating information from

several publicly available biological databases in order to assess specific combinations

of genetic variations and their effect on the outcome based on prior statistical and bio-

logical knowledge [54]. Specifically, this tool uses the Gene Ontology [55], the Data-

base of Interacting Proteins [56], the Protein Families Database [57,58], the Kyoto

Encyclopedia of Genes and Genomes (KEGG) [59], Reactome [60], NetPath [61], and

the Genetic Association Database (GAD) [62] in order to construct two-SNP models

that are supported by the biological literature. Their degree of support in the literature

is characterized by an implication index - which is a count of how many times a rela-

tionship between a pair of two genes appears across multiple databases incorporated

into Biofilter.

To determine whether incorporation of domain knowledge into NN training in

ATHENA can improve its performance, simulated domain knowledge that mimics

information obtained from Biofilter must be generated. Here, 4000 random undirected

edges are drawn between a subset of the 500 SNPs simulated as described above. The

implication index is the number of edges drawn between two models. This number

typically ranges from 0 to 5, where implication index of zero indicates no support in

the simulated knowledge pool, while an implication score of 5 indicates that this

model is very well supported. The implication index corresponding to the functional

two-SNP model where the true effect was embedded could be manually specified. Our

specific goals were to determine if and to what degree ATHENA’s performance would

diminish if irrelevant domain knowledge were incorporated, and if and to what degree

ATHENA’s performance would increase if accurate domain knowledge were incorpo-

rated into the training process.

Alternative crossover and incorporation of domain knowledge in ATHENA

NN training in ATHENA has been implemented as previously described [36,46].

Briefly, grammatical evolution (GE) is a variation of genetic programming (GP), an

evolutionary algorithm originally proposed by Koza as a procedure to optimize NN

architecture [37]. In GE, randomly initialized binary strings are transcribed into an

ordered list of integers which are used to select from production rules in a Backus-

Naur form grammar. Our grammar applies GE to construct neural networks, and can

simultaneously select important predictor variables and optimize network weights and

architecture. We also implemented an alternative tree-based GE crossover strategy as

previously described [46,47]. A potential weakness of GE is the destructive single-point

binary crossover (SPBXO) operator [38]. Tree-based crossover (TBXO) instead swaps

functionally analogous branches by first translating the grammar into functional neural

network trees, identifying branches with identical root nodes, then initializing a cross-

over back at the genome level which would correspond to the crossover between the

whole branches. This renders GE to be much more like genetic programming (GP),

while still maintaining some of the key advantages of GE. Representative NNs pro-

duced by GE, and the TBXO process are shown in Figure 1, under the “TBXO” panel.

The NNs in this figure have either two or three inputs, corresponding to numerically

coded values (-1, 0, 1) for SNP genotypes [63]. A weight vector corresponds to each

layer of weights in the NN. In TBXO, functionally analogous branches are crossed
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Figure 1 ATHENA algorithm. The ATHENA algorithm begins by optionally accepting a list of SNP-SNP
models which are derived from biological knowledge sources. This domain knowledge is used to initialize
a proportion of the NN population. BP is used to optimize the initial weights. After a round of selection, GE
is used to simultaneously optimize variable selection, NN architecture, and weights. Another round of BP
takes place midway through training, and at the end of training. Crossover can occur via single point
binary (SPBXO) or tree-based crossover (TBXO). In SPBXO, crossover occurs at the binary string level, but in
TBXO, NNs are first translated, and crossover occurs at the binary genome level that results in a crossover
at functionally similar root nodes. The NNs in this figure have either two or three inputs, corresponding to
numerically coded values (-1, 0, 1) for SNP genotypes. A weight vector corresponds to each layer of
weights in the NN. In TBXO, functionally analogous branches are crossed over, indicated by the asterisk,
resulting in a 2-2-1 neural network with SNPs 1 and 2 as inputs. If SNPs 1 and 2 are the functional SNPs
responsible for the gene-gene interaction and if the weight vectors on this NN are favorable, then this NN
should be capable of modelling a gene-gene interaction between these two SNPs.
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over, indicated by the asterisk, resulting in a 2-2-1 neural network [64] with SNPs 1

and 2 as inputs. If SNPs 1 and 2 are the functional SNPs responsible for the gene-gene

interaction and if the weight vectors on this NN are favorable, then this NN should be

capable of modelling a gene-gene interaction between these two SNPs.

In the first set of experiments, ATHENA was run for 100, 200, and 400 generations,

in runs consisting of population sizes 100, 200 and 400, in each of 10 demes (for a

total NN population size of 1000, 2000, and 4000 respectively), on 100 simulated data-

sets. We varied the number of generations where tree-based crossover was used

(TBXO). This could range from using single-point binary crossover (SPBXO) for every

generation (i.e. no TBXO), TBXO for the first half of the total number of generations

before switching back to SPBXO, or TBXO for the total number of generations run.

This resulted in trials using 54 different combinations of ATHENA parameters, com-

prising 5,400 in silico datasets. The mean runtime per dataset was approximately

14 minutes spread across five 1.8 GHz Opteron PCs. The respective probability of a

crossover and mutation were 0.9 and 0.01, typical values for these parameters in many

genetic algorithms [65]. Addition was the only production rule available for the arith-

metic operator at each activation node, as described previously [46,63]. This allowed

for the implementation and optional usage of backpropagation (BP), a local fitting pro-

cedure designed to optimize the weights in a neural network [33]. BP was either not

used at all, or used at initialization and again at generations 100 and 200, using a

learning rate of 0.3. BP was halted after either a maximum of 100 epochs had been

run, or when further BP showed no improvement (mean squared error is reduced by

less than 1 × 10-6), after which the GE process continues. After every network had

undergone BP, NNs were reverted back to a binary genome by marking blocks of

codons corresponding to a weight, which was then replaced with a block containing a

grammar compatible block that generates the appropriate weight when GE continues

after BP.

In the second set of experiments, domain knowledge was used to perform sensible

initialization. Rather than initializing a population of NNs randomly, the initial genera-

tion is partially composed of NNs containing as input variables SNPs that are repre-

sented in a domain knowledge source. This source can be two-SNP models supported

by biological literature derived from Biofilter [54] or simulated domain knowledge

which mimics domain knowledge derived from Biofilter. Part of the population is still

initialized randomly. Here the proportion of the initial population which is initialized

from domain knowledge was varied from 0 to 99% in intervals between 1-10%. Two-

SNP models from domain knowledge are prioritized for incorporation in the initial

generation based upon implication index - models with higher implication index are

initialized first. The implication index on the functional two-SNP model in these

experiments ranged from 0 (negative control - all domain knowledge incorrect/irrele-

vant) to 3 (functional two-SNP model is somewhere in the top half of the implication

index-ranked list of 4000 domain knowledge two-SNP models). Here, ATHENA was

run for 200 generations using 10 demes with population sizes of either 50, 100, or 200

individual NNs. The mean runtime per dataset was approximately 6 minutes spread

across five 1.8 GHz Opteron PCs. As above, probability of a crossover and mutation

were 0.9 and 0.01, and the production rule for the activation node function was

restricted to addition only, which allowed for the optional use of backpropagation.
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In addition to locally fitting weights to improve the model fit when NNs are initialized

randomly, this hybrid algorithm allows for weight optimization in the event that sensi-

ble initialization from domain knowledge resulted in the inclusion of either of the two

functional variables in the initial generation.

Results & Discussion
For the in silico studies described above, sensitivity was measured as the proportion of

datasets out of 100 simulated datasets for each scenario where the best performing

neural network model contained the two functional SNPs, with no other SNPs in the

model, i.e. a perfect match [46]. The best neural network model for each dataset was

chosen using the following algorithm. First, 5-fold cross-validation (CV) was imple-

mented. The data is divided into fifths, training initially occurs on four fifths of the

data where a best model is chosen based on minimizing mean square error. The fit of

this model to unseen data was tested on the fifth of the data initially left out using the

standard coefficient of determination, R2. This process was repeated for each CV inter-

val, i.e., each 4/5-1/5 split of the data. At this point there are 5 models - one best

model from each CV interval. The model that consistently appears most often across

CV intervals is chosen as the best overall model for the entire dataset [16,66]. In case

of a tie (e.g. two different models replicated across two CV intervals), the model with

the higher R2 is chosen as the overall best model.

Tree based crossover (TBXO)

First we wanted to evaluate whether the alternative TBXO strategy described in the

methods section resulted in increased performance in the context of GE alone or with

the hybrid BP-GE algorithm in ATHENA which also used backpropagation (BP) in

addition to GE. These results are summarized in Figure 2. Separate panels show the

total number of generations and the size of the population in each deme. Dashed and

solid lines show the performance (sensitivity) when BP was and was not used, respec-

tively. The horizontal axis on each panel shows the proportion of the total number of

generations in which TBXO was used. These results also show that our implementa-

tion of TBXO yields a modest yet notable increase in sensitivity, but when BP was not

used, the performance increase is observed only when TBXO is used exclusively in the

early generations of training (see the center point in the solid lines in each panel in

Figure 2). When BP was used in addition to GE to locally fit NN weights, using TBXO

for the first half of training resulted in increased performance that did not change

when TBXO was used throughout the rest of training (dashed lines in Figure 2). This

is in contrast to previous work where TBXO showed little improvement when the

simulated model was an interaction contributing to a discrete trait in the complete

absence of main effects [47]. We then statistically evaluated this performance increase,

summarized in Figure 3. Here, boxplots show the distribution of sensitivity across all

combinations of generations and population sizes, and P-values indicate whether there

is a statistically significant increase in sensitivity gained by using TBXO (one-way ana-

lysis of variance). The top panel of Figure 3 shows the combined results from using

and not using backpropagation. Bottom panel shows the results considering simula-

tions using and not using backpropagation independently. This indicates that the bene-

fit from using TBXO when concurrently using BP is highly statistically significant, but
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there is little evidence to suggest using TBXO with the standard GE crossover alone

results in any appreciable performance gains.

These results indicate that when BP is used, GE with TBXO is more efficient at vari-

able selection, while GE with normal crossover allows more variation in building

Figure 2 Sensitivity to detect both functional loci as the best GENN model. Each panel shows
sensitivity over the proportion of total generations (none, half, all) where tree-based crossover was used
instead of binary crossover. Solid line shows when GE alone was used to train NNs (no BP). Dashed line
shows sensitivity when using the hybrid BP-GENN algorithm (see methods). Individual panels show
combinations of the total number of generations GENN was run and the population size per deme.
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architecture and fitting weights. We postulate that TBXO is preserving “building

blocks” which are functionally useful to the resultant neural network models. Our

simulations contained a modest interaction effect (h2 = 0.05) in the presence of very

small main effects (h2 = 0.01) at each of the interacting genetic variants. These small

main effects may provide the building blocks upon which TBXO can capitalize. Syntac-

tic preservation of NN genomes coding for the inclusion of these variables in NN

models while allowing the full variability and broader search capability of SPBXO in

the latter generations of evolution appears to be more powerful than using SPBXO or

Figure 3 Statistical analysis of effectiveness of tree-based crossover. Boxplots show the distribution of
sensitivity across all combinations of generations run and population sizes (see Figure 2). P-values indicate
whether there is a statistically significant increase in sensitivity gained by using TBXO (one-way analysis of
variance). Top panel shows the combined results from using and not using backpropagation. Bottom panel
shows the results considering simulations using and not using backpropagation independently.
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TBXO exclusively. Furthermore, recent work has shown that linkage disequilibrium

(correlation between genetic variants) may provide building blocks to an evolutionary

algorithm which builds neural networks when the true underlying model is an interac-

tive effect in the complete absence of any main effect at each of the two functional

variables [39]. It is expected that the TBXO strategy discussed here may be optimal in

this situation as well. Because our TBXO procedure mimics the function of genetic

programming (GP), further studies should compare this against GP or any hybrid GP-

GE NN training algorithm.

Incorporation of domain knowledge

Next we evaluated whether initializing the NN population with two-SNP models from

domain knowledge sources resulted in any changes in performance. These results are

summarized in Figure 4. The results here show that sensitivity to detect both genetic

variants contributing to the trait is always higher when BP was used in conjunction with

GE, as also shown in Figure 2. When the implication index is 0 (i.e. all domain knowl-

edge is irrelevant), the sensitivity when using BP decreases substantially as the propor-

tion of the initial population initialized from domain knowledge increases (upper left

panel of Figure 4, dashed line). This is likely due to the fact that as more NN models are

initialized from a list of models from irrelevant domain knowledge, there is a smaller

chance that either of the functional variables can be initialized by chance. When the

implication index is at least 1 (meaning the functional two-SNP model is supported in

our domain knowledge), as this proportion increases, sensitivity fluctuates around the

baseline sensitivity (37%) at random initialization when BP is not used. This is not sur-

prising, because even if a NN is initialized containing both functional variables which

influence the trait, it is unlikely that by chance the NN would have suitable weights and

architecture. An increase in performance can be seen when BP is then used to optimize

the weights in the sensibly initialized NNs from relevant domain knowledge (dashed

lines in panels in Figure 4 where implication index > 0). Furthermore, as the implication

index for the domain knowledge model containing the functional variables increases

from 1 to 3, this model is more likely to be incorporated into NNs in the initial genera-

tion. For instance, when the implication index of the functional model is 1, approxi-

mately 99% of the population must be initialized from domain knowledge in order to

see any benefit. When the implication index is 2 or higher, it is very likely that the initial

generation will contain a NN with the truly functional variables even when only a small

proportion of the initial population is initialized from domain knowledge. Finally, look-

ing down the rows of panels in Figure 4, it is clear that although the overall performance

increases as the population size increases, as expected, the benefit of utilizing domain

knowledge becomes less apparent. The benefits gained from utilizing domain knowledge

to initialize a population of solutions is most apparent when the search space is large

relative to the number of candidate solutions, as seen in the top right panel (implication

= 3, population size = 50), dashed line.

These results demonstrate that the sensitivity of using GE to train NNs to find genes

with a nonlinear influence on a quantitative outcome can be improved by effectively

using extrinsic domain knowledge in conjunction with local weight fitting by BP. We

showed that initializing a proportion of the NN population from two-SNP models

incorporated from domain knowledge when BP is employed to locally optimize the
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weights in a NN can result in a performance improvement in ATHENA’s ability to

detect and model SNPs influencing a quantitative trait. The performance increase was

most notable when a smaller population size was used. This indicates that when the

search space is small enough to be searched very thoroughly or exhaustively, using

domain knowledge is less beneficial than when the search space is very large compared

to the number of individual solutions being evolved. In this scenario (such is the case

in genome-wide association studies), using domain knowledge to bias an evolutionary

Figure 4 Sensitivity increases with the proportion population initialized from domain knowledge.
This figure illustrates the sensitivity of GENN to detect both functional SNPs as the proportion of the NN
population initialized from domain knowledge increases from 0 to 99%. Panels going left to right show the
increasing implication index of the model that includes both functional variables. Rows of panels show the
population size per deme. The X-axis in each panel shows the proportion of the initial NN population
which was seeded with two-SNP models from a domain knowledge source. Solid line shows when GE
alone was used to train NNs (no BP). Dashed line shows sensitivity when using the hybrid BP-GENN
algorithm (see methods). Faint horizontal solid and dashed lines show for reference the baseline sensitivity,
for GENN and BP-GENN, when the population was initialized randomly, i.e. 0% initialized from domain
knowledge. This figure indicates that sensitivity increases as the proportion of the NN population initialized
from domain knowledge increases, and the increase is more notable in smaller population sizes.
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search in favor of important features will be critical for acceptable performance. While

the benefits of using intrinsically obtained statistical expert knowledge [42,43] have not

been explored in the ATHENA algorithm, using this framework to initialize an evolu-

tionary search for disease genes based on domain knowledge obtained from public bio-

logical databases is another means to improve the performance of genetic algorithms

for selection of important SNPs in a model.

Comparison with other methods

As discussed in the background section, other methods are available for probing the

effect of gene-gene interactions on quantitative phenotypes. One exhaustive approach

to testing gene-gene interaction among quantitative traits is the restricted partitioning

method (RPM)[67], an improvement over the combinatorial partitioning method [68].

RPM exhaustively evaluates all possible combinations of 2, 3,..., n-way combinations of

SNPs, restricting the partitioning of each multilocus genotype into subsets that are

likely to explain the most variation. While RPM should have high power and favorable

computational performance in small datasets, as with any exhaustive approach to

detecting interactions, its performance will decrease substantially as the number of

SNPs in a dataset approaches that seen in genome-wide association studies. In addition

to being extremely computationally intensive, exhaustive evaluation of all possible

SNP-SNP interactions among GWAS data comes with an extraordinary loss of power

due to the extremely large number of statistical tests being performed. Alternatively,

parametric linear regression, when assumptions of normality and homoscedasticity are

met, is uniformly the most powerful statistical method for ascertaining differences in

group means [52,69]. In fact, when the functional variables are explicitly modelled, lin-

ear regression has >80% power to detect the gene-gene interaction effects simulated

here (n = 2000, sr2main = 0.01, sr2interaction = 0.05), determined using standard power

calculation techniques for gene-gene interaction [70,71]. This regression-based interac-

tion-testing approach has been successfully used in a study of 13 SNPs in the APOE

gene that influence ApoE protein levels in the blood [72]. Furthermore, regression

models offer a very straightforward interpretation compared to NN models, which are

often and unfortunately dubbed “black box” models [73]. However, in addition to the

disadvantages discussed previously (curse of dimensionality, assumption violations,

computational and multiple testing burdens with large datasets) that make exhaustive

regression-based approaches impractical, it is also difficult to incorporate a priori

information into a parametric regression analysis as it has been done here. Several

approaches have been applied to prioritize gene-gene interaction testing [54,74-76] in

large datasets. These methods, however, limit statistical tests only to models supported

by a priori knowledge. By contrast, the method proposed here only initializes a set of

candidate solutions using domain knowledge - these solutions are then free to mutate

and crossover, resulting in new and interesting combinations that may not be directly

supported by the existing domain knowledge.

Conclusions
Here, we simulated a small effect size nonlinear interaction between two SNPs carrying

minimal main effects and assessed the sensitivity of using GE to evolve NNs for detect-

ing both functional SNPs out of a much larger set of unassociated variables. We
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showed that (1) using backpropagation, a fast NN weight optimization procedure, sig-

nificantly improves ATHENA’s performance, (2) using an alternative crossover strategy

(TBXO) may allow for functional preservation of network information, and results in a

statistically significant performance increase when used early in training in combina-

tion with backpropagation, and (3) incorporation of biological knowledge from the

public domain can substantially improve ATHENA’s performance at finding genes that

interact to influence a trait. The general ATHENA algorithm is shown schematically in

Figure 1.

Supplementing an evolutionary search using domain knowledge will be critical when

using evolutionary procedures to find and model the effect of disease genes on com-

plex human traits. Natural biological data will likely have many effects which will be

enriched in knowledge sources, resulting in an improvement of the overall ability to

find many members in the collection of influential loci. Genome-wide association stu-

dies offer very inexpensive measurement of over 1 million SNPs per sample. It is clear

that there are more fruitful approaches for understanding the genetic architecture of

common human phenotypes than ignoring the complexity of biology by testing single

variants in isolation [77]. One of the strengths of the method presented here is that if

any arbitrarily complex interaction of genetic and environmental exposures influences

disease risk, a NN can approximate this function [78], given proper training. These

experiments show that using a hybrid BP-GENN training algorithm, alternative cross-

over strategies, and incorporating domain knowledge into the search for genes related

to disease can aid the variable selection and model fitting process of ATHENA.

One limitation in the current study is that these experiments make the assumption

that loci involved in gene-gene interactions contributing to a heritable trait will carry

with them some small main effect at either variant. This is a reasonable assumption to

make, in that there are few, if any, examples of a consistently replicating, experimen-

tally verified gene-gene interaction in the complete absence of main effects contribut-

ing to a complex quantitative trait in humans. Perhaps the reason for this, however, is

the inadequacy of our methods for finding gene-gene interactions in the absence of

main effects rather than the absence of such effects altogether. Biologically, redundancy

and compensatory mechanisms at other loci can mitigate the effects of a devastating

mutation or polymorphism at another locus, thus rendering its effect undetectable.

This is evident in the many gene knockout mouse lines that show no apparent pheno-

type [79-84]. Statistically, main effect components and interactions between them are

mathematically independent effects [69]. Furthermore, theoretical studies have shown

that traits can be influenced exclusively through the interaction of two or more genetic

variants [85,86]. Finally, one group has shown that main effects at variants involved in

an epistatic interaction are highly dependent on the allele frequency in different popu-

lations at each locus, which may explain the lack of replication of many gene-gene

interaction studies which rely on main effects [87]. Future studies should aim to assess

these and other extensions of ATHENA in their ability to detect and model epistatic

interactions contributing to a quantitative trait in the absence of main effects, and

should attempt to apply these methods in a natural biological data analysis.
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