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Abstract: Internal tandem duplications (ITDs) of the gene encoding the Fms-Like Tyrosine 

kinase-3 (FLT3) receptor are present in approximately 25% of patients with acute myeloid 

leukemia (AML). The mutation is associated with poor prognosis, and the aberrant protein 

product has been hypothesized as an attractive therapeutic target. Various tyrosine kinase 

inhibitors (TKIs) have been developed targeting FLT3, but in spite of initial optimism the 

first generation TKIs tested in clinical studies generally induce only partial and transient 

hematological responses. The limited treatment efficacy generally observed may be 

explained by numerous factors; extensively pretreated and high risk cohorts, suboptimal 

pharmacodynamic and pharmacokinetic properties of the compounds, acquired TKI 

resistance, or the possible fact that inhibition of mutated FLT3 alone is not sufficient to avoid 

disease progression. The second-generation agent quizartinb is showing promising outcomes 

and seems better tolerated and with less toxic effects than traditional chemotherapeutic 

agents. Therefore, new generations of TKIs might be feasible for use in combination therapy 

or in a salvage setting in selected patients. Here, we sum up experiences so far, and we 

discuss the future outlook of targeting dysregulated FLT3 signaling in the treatment of AML. 
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1. Introduction 

1.1. Acute Myeloid Leukemia 

Acute myeloid leukemia (AML) is the most frequent acute leukemia in adults [1,2]. It is a 

heterogeneous clonal disorder of the myeloid precursor cells [3], and although patients today are treated 

with similar nonspecific treatment regimens that have remained more or less unchanged for decades [4–6], 

it has for an equally long period been recognized that there is considerable genetic, biological, and 

clinical heterogeneity in the patient group [7,8]. This variation is clearly reflected in the diverging relapse 

rate and overall survival in response to standard of care, ranging from 10%–70%, dependent on both 

patient and disease related factors [9,10]. Current risk stratification at the time of diagnosis usually 

include age, performance status, white blood cell count, determining if the disease is de novo, secondary 

or therapy related, cytogenetics, and mutation analysis [11]. Several cytogenetic [12,13], molecular genetic 

(e.g., Fms-Like Tyrosine kinase-3 (FLT3), nucleophosmin 1 (NPM1), CCAAT enhancer-binding  

protein-α (CEBPA)) [14], and epigenetic changes [15], as well as aberrantly expressed RNA, and 

microRNA [16] have been identified as prognostic markers for disease outcome, and as shown in other 

hematological malignancies it is thought that some of these changes represent feasible therapy targets. 

The challenge we are facing today is to translate this knowledge into tailored treatment for AML, 

identifying and directing the treatment towards cancer-specific pathways aiming for improved  

patient outcome. 

1.2. Mutations and Signaling Pathways in AML 

Normal hematopoiesis is controlled by the microenvironment and external signaling molecules, 

transmitting signals through intracellular signal transduction pathways via cell surface receptors.  

These intracellular pathways form a highly complex network of signaling cascades, including receptors, 

kinases, phosphatases and transcription factors that cross-talk extensively on multiple levels.  

Changes in this network by cytogenetic abnormalities, mutations or epigenetic alterations may lead to  

non-functional or hyper-activated pathways, that in turn can lead to anti-apoptosis and increased 

proliferation of the cells [17,18]. 

The group of genes most frequently mutated in AML is signaling genes, including genes coding for 

receptor tyrosine kinases such as FLT3 and KIT, Serine-Threonine kinases, KRAS/NRAS and protein 

tyrosine phosphatases [19]. Aberrant regulation of intracellular signaling pathways accordingly appears 

to be an important leukemia promoting mechanism, and like inhibition of Bcr-Abl revolutionized patient 

outcome in chronic myeloid leukemia [20], targeting signaling onco-proteins seems like a feasible 

strategy in AML [21].  

The one most frequent mutated gene in AML, with mutations detected in up to 35% of the patients, 

is the Fms-Like Tyrosine kinase-3 (FLT3) gene on chromosome 13q12. Two major classes of FLT3 

mutations have been identified: length mutations, predominantly internal tandem duplications (ITD) in 
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the juxtamembrane domain of FLT3, first described by Nakao et al. in 1996 [22], and tyrosine kinase 

domain (TKD) point mutations [23,24]. ITDs are detected in 20%–25% of AML patients, while about 

5%–10% of patients have point mutations within the TKD, with a mutation at codon 835 being the most 

frequent one [22–24].  

1.3. Aberrant FLT3 Activation in AML 

FLT3 is a member of the tyrosine kinase III family and functions as a membrane bound growth factor 

receptor, usually expressed by human hematopoietic progenitor cells [25]. Binding of its ligand,  

FLT3-ligand (FL) induces a conformational change in the protein that causes activation of the intrinsic 

tyrosine kinase domain. The enzyme phosphorylates intracellular molecules and consequently  

activates multiple downstream signaling pathways involved in cellular survival, proliferation and 

differentiation [26]. The expression of FLT3 is normally lost upon differentiation [27,28], but as AML 

is caused by a block in differentiation and uncontrolled proliferation of the myeloid progenitor cells the 

expression is frequently “captured” in many AML blasts, and remains highly expressed in most AML 

cases [29,30]. While overexpression of the receptor has been associated with poor prognosis [31], the 

presence of FLT3-ITD mutations confers even stronger independent prognostic information as it 

significantly correlates with an increased risk of relapse and dismal overall survival, in comparison to 

the TKD mutation where such an associations is absent [32–34]. Although FLT3-ITD positive AML is 

not considered a distinct entity of AML, FLT3-ITD status has been included in the WHO 2008 guidelines 

and the European LeukemiaNet recommendations for classification of AML, providing important 

prognostic information [11,35]. The survival advantage of leukemic blasts driven by mutant FLT3 is to 

a large extent thought to be explained by a constitutive activation of the receptor causing FL independent 

autophosphorylation [36], and initiation of two major intracellular pathways essential for growth, 

survival and proliferation; PI3K/AKT/mTOR and RAS/RAF/MEK/ERK [37]. The signal transducers 

and activators of transcription (STATs) are usually not regulated via RTKs, but for mutations like  

FLT3-ITD a constitutive phosphorylation and transcriptional activation of STAT5 also occur [38,39].  

With aberrant signaling appearing as a key component in FLT3-ITD mutated AML the constitutive 

active surface protein stands out as an attractive target for small molecule receptor inhibitor-based 

therapy [40,41]. Over the 15 years since the discovery of the mutated receptor and its clinical 

significance, more than a dozen different tyrosine kinase inhibitors (TKI) have been developed and 

tested preclinically, and many have shown to selectively induce cell death in FLT3 mutated AML blasts 

by suppressing FLT3 autophosphorylation and downstream signaling pathways [40–42]. Several of the 

agents, including the first generation agents lestaurtinib, linifanib, midostaurin, semaxanib, sorafenib, 

sunitinib, and tandutinib as well as the second generation agent quizartinib, have reached clinical trials 

where their safety, tolerability, and efficiency have been assessed. In the following section we will 

discuss and compare the most relevant FLT3 TKIs in clinical trials. Both trials where the TKIs are used 

as monotherapy and trials where conventional treatment is combined with a TKI will be assessed and 

summarized, with focus on antileukemic efficacy and side effects (Table 1). 
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Table 1. Overview of evaluated clinical trials. 

Agent Study Phase Patient Population n 
Median/Mean 

Age (years) 
FLT3-ITD 

FLT3-Point-Mutation 

Only 
Treatment Dose Ref. 

Lestaurtinib—

CEP-701 

Phase 1/2 AML, refractory/relapsed 17 61 (18–71) 94.1% (n = 16) 5.9% (n = 1) Monotherapy 40 mg–80 mg × 2 [43] 

Phase 2 AML, untreated 29 73 (67–82) 6.9% (n = 2) 10.3% (n = 3) Monotherapy 60 mg–80 mg × 2 [44] 

Phase 2 

(Randomized)
AML, first relapse 224 56.5 (20–81) 92% (n = 206) 7.6% (n = 17) 

+ Mitoxantrone, Etopside & 

Cytarabine 
80 mg × 2, [45] 

Linifanib— 

ABT-869 
Phase 1 AML, refractory/relapsed 47 56.3 (23–81) 12.8% (n = 6) 10.6% (n = 5) Monotherapy/+ Cytarabine 5–25 mg [46] 

Midostaurin—

PKC412 

Phase 2 
AML, refractory/relapsed, 

High risk MDS 
20 62 (29–78) 90% (n = 18) 10% (n = 2) Monotherapy 75 mg × 3 [47] 

Phase 2B 
AML, refractory/relapsed, 

High risk MDS 
95 64% ≥ 65 years 27.4% (n = 26) 9.5% (n = 9) Monotherapy 50 mg–100 mg × 2 [48] 

Phase IB AML, untreated 69 48.5 17.4% (n = 12) 8.7% (n = 6) + Daunorubicin & Cytarabine 50 mg–100 mg × 2 [49] 

Semaxanib— 

SU5416 

Phase 2 
AML, refractory or 

advanced, High risk MDS
33 64 (23–76) 4.5% (n = 1/22) NA Monotherapy 145 mg/m2, twice weekly [50] 

Phase 2 AML advanced, c-kit pos. 43 65 (27–79) 20% (n = 7/35) NA Monotherapy 145 mg/m2, twice weekly [51] 

Phase 2 
AML refractory,  

High risk MDS 
55 64–66 (22–80) NA NA Monotherapy 145 mg/m2, twice weekly [52] 

Sorafanib—

BAY 43-9006 

Phase 1 AML, refractory/relapsed 16 61.5 (48–81) 43.8% (n = 7) 12.5% (n = 2) Monotherapy 200 mg–600 mg × 2 [53] 

Phase 1 
AML refractory/relapsed, 

High risk MDS 
42 71.3 33% (n = 9/27) NA Monotherapy 100 mg–400 mg × 2 [54] 

Phase 2 

(Randomized)
AML, >60 years 197 68 (61–80) 14% NA 

+ Cytarabin and 

Daunorubicun 
400 mg × 2 [55] 

Phase 1 
Acute leukemia, 

refractory/relapsed 
12 9.5 (6–17) 41.7% (n = 5) NA + Clofarabine & Cytarabine 150 mg/m2/200 mg/m2 × 2 [56] 

Phase 1/2 AML, refractory/relapsed 43 64 (24–87) 93% (n = 40) NA + 5-Azacytidine 400 mg × 2 [57] 
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Table 1. Cont. 

Agent Study Phase Patient Population n 
Median/Mean 

Age (years)
FLT3-ITD FLT3-Point-Mutation Only Treatment Dose Ref. 

Sunitinib—

SU11248 

Phase 1 AML 29 67 (19–82) 10.3% (n = 3) 6.9% (n = 2) Monotherapy
50 mg–350 mg as a 

single dose 
[58] 

Phase 1 AML, refractory 15 72 (54–80) 14.3% (n = 2/14) 14.3% (n = 2/14) Monotherapy 50 mg–75 mg [59] 

Tandutinib—

MLN-518 
Phase 1 AML, High-risk MDS 40 70.5 (22–90) 20% (n = 8) 2.5% (n = 1) Monotherapy 50 mg–700 mg × 2 [60] 

Quizartinib—

AC220 

Phase 1 AML 76 60 (23–83) 27% (n = 18/65) NA Monotherapy 12–450 mg × 1 [61] 

Phase 2 AML, refractory/relapse 76 53 (19–77) 100% (n = 76) NA Monotherapy 30–60 mg [62] 

Phase 2 AML, refractory/relapse, unfit 270 60.4 (19–85) 70.7% (n = 191) NA Monotherapy 90–135 mg [63,64] 

Phase 1 AML, untreated >60 years old 55 69 (62–87) 7.3% (n = 4) NA 

+ Cytarabin, 

Daunorubicin & 

Etoposide 

40–135 mg [65] 

Phase 1 
AML, MLL-rearranged ALL, 

>1 month, ≤21 years 
22 NA 27.3% (n = 6) NA 

+ Cytarabin & 

Etoposide 
25–60 mg/m2 [66] 
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2. Evaluation of Selected Small Molecule Inhibitors against FLT3 Used in Clinical Trials 

2.1. First Generation TKIs 

2.1.1. Lestaurtinib (CEP-701) 

Lestaurtinib is an orally bioavailable polyaromatic inolocarbazole alkoid compound that is 

synthetically derived from the bacterial fermentation product K-252a. It was originally identified as an 

inhibitor of the neurotropin receptor TrkA, and was initially studied in patients with solid tumors [42]. 

It has successively been found to be a potent FLT3 inhibitor, and has been investigated in AML  

patients [43–45]. In a phase 1/2 trial FLT3-mutated patients with advanced AML the drug was found to 

be generally well tolerated; with observed treatment related toxicities including mild nausea and emesis, 

and generalized weakness and fatigue. Clinical activity was observed in 29% of the patients during a 

limited time period, ranging from two weeks to three months. The drug significantly lowered peripheral 

blood blasts, and some patients had evidence of transient normal hematopoiesis [43]. In a phase 2 trial, 

lestaurtinib was administered in monotherapy as first-line treatment in 29 older AML patients not 

considered eligible for intensive chemotherapy. The drug was given for eight weeks, regardless of  

FLT3-mutation status. Observed toxicities included mild gastrointestinal side effects. No complete or 

partial remissions were seen, but transient reduction in bone marrow and peripheral-blood blasts was 

achieved in 60% (3/5) of the FLT3-mutated patients, compared to a 22.7% (5/22) response rate in the 

FLT3-wild-type group. The clinical response was however of short duration, with a median time to 

progression of 25 days [44]. In a bigger randomized phase 2 trial, 220 FLT3 mutated AML patients at 

first relapse received either chemotherapy alone or chemotherapy followed by lestaurtinib. There was 

no significant difference in the rate of adverse effects in the two groups, however, the seriousness of 

adverse effects was higher in the lestaurtinib-treated group. Of the patients receiving lestaurtinib 25.9% 

(29/112) patients achieved complete remission or complete remission with incomplete platelet recovery, 

compared to 20.5% (23/112) patients attaining equal treatment responses in the control group. There 

was however no significant difference in overall survival between the two groups, providing no clear 

benefit to adult AML patients with FLT3 mutations [45].  

2.1.2. Linifanib (ABT-869) 

Linifanib is an orally available potent inhibitor of FLT3 and VEGFR. Preclinically it has shown  

antileukemic effects both as monotherapy and in combination with cytarabine in FLT3-mutated human 

AML xenograft models [67]. In a phase 1 dose-escalation study, relapsed or refractory AML patients 

were treated either with linifanib alone or linifanib in combination with intermediate-dose cytarabine. 

Generally linifanib was well tolerated, and the most common side effects related to the treatment were 

fatigue, gastrointestinal distress and infections. The primary objective in the study did not include 

efficacy, but antileukemic effects were observed both in patients with FLT3 mutated as well as FLT3 

wild-type patients [46].  
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2.1.3. Midostaurin (PKC412, N-Benzoylstaurosporin) 

Midostaurin is a derivate of staurosporine, initially developed as a protein kinase C inhibitor, and 

extensively used as model agent for the study of apoptosis. It is a multi-targeting TKI, inhibiting tyrosine 

kinases such as c-Kit and PDGFR as well as FLT3 [68]. In a phase 2 trial FLT3 mutated patients with 

relapsed or refractory AML or high-risk MDS not considered candidates for chemotherapy, were treated 

with midostaurin in monotherapy. The drug was generally well tolerated with the most frequent 

treatment related adverse effect being nausea and vomiting. The drug showed some transient clinical 

activity, reducing the amount of peripheral blasts by 50% in 70% (14/20) of the patients, and reducing 

bone marrow blast counts by 50% in 30% (6/20) of the patients [47,69]. In a larger phase 2B trial 95 

AML/high risk MDS patients were randomized to receive either 50 mg or 100 mg of oral midostaurin 

twice daily, independently of FLT3 mutation status. Midostaturin was generally well tolerated in both 

concentrations and there were no clear difference in results according to dose regime. Side effects 

included nausea and vomiting. In the 92 patients, treatment efficiency could be assessed the reduction 

in peripheral blood or bone marrow blasts by 50% or more was 71% in the FLT3-mutated group 

compared to 42% in the FLT3-wild-type group. The majority of patients with FLT3-mutations responded 

with a reduction in blast count. One partial response was seen in a FLT3-ITD positive patient at the  

100 mg per day regime. Hematological improvement was seen in 46% of the patients with FLT3-ITD 

versus 35% of the FLT3-wild-type patients. All therapy naive FLT3-ITD patients had a clear reduction 

of peripheral blood and bone marrow blasts [48]. In a phase 1B study, 69 younger newly diagnosed 

AML patients were treated with midostaurin in addition to a standard of care regime consisting of 

daunorubicin and cytarabine. The treatment cycle run for 28 days with one group getting the inhibitor 

concomitant starting on day 1–7 and day 15–21 and a second group getting the inhibitor administered 

sequentially starting on day 8–21 with 14 treatment days per cycle. The first 29 patients received 

midostaurin 100 mg orally twice daily. This dosage regime was discontinued because of adverse effects 

and followed by 40 AML patients who received midostaurin 50 mg twice daily. The treatment at the  

50 mg twice-daily regime was generally well tolerated. The complete remission rate of the patients in 

the FLT mutant group (n = 18) and wild-type group (n = 51) was 92% and 74%, respectively [49]. Initial 

results from a phase 1/2 study of midostaurin and 5-Azacytinine in combination in refractory or relapsed 

AML demonstrates that it is a feasible alternative with a complete remission rate of 25%, and 

additionally 20% of patients achieving complete remission with incomplete platelet recovery [70]. An 

additional phase 1 study of midostaurin, bortezomib and chemotherapy shows promising antileukemic 

activity in refractory/relapsed AML patients and further investigation is ongoing [71]. A larger placebo 

controlled phase 3 trial (ClinicalTrials.gov identifier: NCT00651261), comparing midostaurin in 

addition to standard induction therapy is currently in completion and may indicate the pathway forward 

for midostaurin in AML treatment. 

2.1.4. Semaxanib (SU5416) 

Semaxanib is an indolinone derivate that inhibits VEGFR, c-Kit and FLT3. It produces a dose 

dependent inhibition of tumor progress in a diversity of xenograft models, comprising malignant 

melanoma, glioma, fibrosarcoma and carcinomas of the lung, breast, prostate, and the skin [72]. In a 



J. Clin. Med. 2014, 3 1473 

 

	

phase 2 study of 33 patients, either with refractory AML or advanced MDS, the effect of semaxanib in 

monotherapy was assessed. Semaxanib was infused intravenously twice weekly in a dose of 145 mg/m2. 

Objective responses were seen in 18.2% (4/22) of the AML patients; three patients attained a partial 

response while one patient achieved a hematologic improvement [50]. In a second phase 2 trial, c-Kit 

positive patients with advanced AML were treated with semaxanib in monotherapy. Observed toxicities 

included nausea, musculoskeletal pain, headache, insomnia, vomiting, vertigo, fatigue/malaise, 

abdominal pain, sweating, and arthralgia. Half of the patients included in the study experienced severe 

adverse effects, with pneumonia and sepsis being the most frequent. Of the 25 patients evaluable for 

clinical response, no remissions were observed among the FLT3-ITD positive patients (n = 7). One 

patient achieved a morphologic remission while 28% (7/25) patients experienced a transient partial 

response with at least 50% reduction in bone marrow and peripheral blood blasts. The mean response 

duration of all eight responding patients was 1.6 months until disease progression. Patients with AML 

blasts expressing high levels of VEGF mRNA had a significantly higher response rate compared to the 

rest of the patient group, indicating that the main antileukemic effect was mediated by semaxanib’s 

antiangiogenic properties rather than direct growth inhibition [51]. In a third phase 2 trial, 55 patients 

with refractory AML or advanced MDS were treated with semaxanib in monotherapy. Observed 

toxicities included headache, dyspnea, fatigue, thromboembolic events, bone pain and gastrointestinal 

events. Objective responses were obtained in 7.3% of the patients; three patients achieved partial 

responses and one patient experienced a hematologic improvement [52]. 

2.1.5. Sorafenib (BAY 43-9006) 

Sorafenib is an orally available bi-aryl urea that inhibits several kinases, including RAF-kinase, 

VEGFR-2, c-Kit, and FLT3. It is currently approved for the treatment of metastatic renal cancer and 

advanced hepatocellular carcinoma [73]. In a phase 1 trial, refractory or relapsed AML patients were 

treated with sorafenib 200 mg twice daily. A clinical response was seen in 56.3% (9/16) of the patients, 

including all of the FLT3-ITD positive patients (n = 6). Both circulating and bone marrow blasts were 

strongly reduced in patients with FLT3-ITD mutation, while there was no essential change in the patients 

without FLT3-ITD [53]. In a randomized phase 1 clinical and biologic study of sorafenib, 42 patients 

with either AML or MDS were randomized either to continuously administration of the drug, or 

intermittent. The drug was administered twice daily, and the dose increased during the trial to evaluate 

dose-limiting toxicity. Of the patients assessed 33% (9/27) were FLT3-ITD positive. Dose-limiting 

toxicity was prevalent at the 400 mg twice-daily regime. The most seen drug related side effects were of 

gastrointestinal character, including abdominal pain, nausea, and vomiting. Palmar-plantar dysesthesia 

among other toxic skin reactions were also seen. Three patients experienced arterial thrombosis; 

myocardial infarction, brain stem infarction and splenic infarcts. One complete remission, lasting  

2.7 months, was observed in a FLT3-ITD positive patient. In 33.3% of the FLT3-ITD positive patients, 

an improvement in peripheral blood and bone marrow blast counts was observed [54]. Recently, the 

results from a randomized, placebo-controlled trial concluded that the combination of standard induction 

treatment with sorafenib as consolidating treatment was of no benefit for AML patients older than  

60 years of age compared to standard induction therapy alone. On the contrary, this combination seemed 

to cause worse outcomes with more adverse effects. Event-free survival and overall survival was not 
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significantly improved, and these results were consistent also in the FLT3-ITD positive subgroup of 

patients [55]. Initial results from a similar study however indicated that the addition of sorafenib to 

standard chemotherapy is associated with a high rate of complete remission and an acceptable toxicity 

profile in FLT3-mutated older AML patients [74]. In a phase 1 pharmacokinetic and pharmacodynamic 

trial sorafenib was studied in concurrence with the cytotoxic agents clofarabine and cytarabine in 

pediatric acute myeloid leukemia patients, who all had either relapsed or refractory disease. All patients 

experienced hand-foot skin reactions and/or rash, which was also the dose-limiting toxicities, with 

maximum tolerated dose determined to 150 mg/m2 twice daily. On day 8, sorafenib decreased blast 

percentages in 83.3% (10/12) of the patients. After combination chemotherapy three of five patients with 

FLT3-ITD mutations and three FLT3-wild-type patients achieved complete remissions. One additional 

FLT3-wild-type patient with AML attained a partial remission [56]. A retrospective assessment of  

FLT3-ITD positive pediatric patients suggested that post-transplant therapy with sorafenib might also 

improve outcome in patients that have been treated with hematopoietic stem cell transplantation [75]. In 

a phase 2 trial, 43 AML patients, mainly FLT3-ITD positive (93%), were treated with sorafenib in 

combination with 5-Azacytidine. Antileukemic efficacy was observed in 46% of the assessable patients, 

including a 27% complete remission rate [57].  

2.1.6. Sunitinib (SU11248)  

Sunitinib is an oral multi-targeting TKI, predominantly targeting PDGFR, VEGFR, c-Kit and FLT3. 

It has been used in treatment for multiple solid malignancies, and is approved for the treatment of 

metastatic renal cell carcinoma and gastrointestinal stromal tumors [76]. In a phase 1 clinical trial,  

29 AML patients were treated with a single dose of sunitinib. The dose was escalated in 50 mg 

increments from 50 mg to a highest dose of 350 mg. Adverse effects occurred in 31% of patients reported 

at the 250–350 mg dose levels. The toxicities were mainly of mild gastrointestinal character, like 

diarrhea and nausea. Determination of clinical response was not a study target and was not assessed 

thoroughly. Peripheral blood blast counts were however analyzed at 24 and 48 hours after treatment and 

five patients exhibited a large decrease in blast count. Of these five patients, two had an FLT3-ITD 

mutation [58]. In a phase 1 study, 15 patients with refractory or resistant AML or patients not amenable 

for conventional therapy were treated with sunitinib in 4-week cycles at the starting dose of 50 mg, 

followed by 75 mg. In total, 33.3% of the patients were FLT3-mutated. Treatment related side effects 

were generally of mild character. At the 50 mg treatment regime three patients experienced grade 2 

adverse effects. One patient experienced lower limbs edema and fatigue, a second patient experienced 

taste disturbances and dry skin, and a third patient experienced fatigue, nausea and vomiting, tenesmus, 

mouth ulcerations, gingivitis, circulation disorders, hematuria, proteinuria and increased creatinine. Both 

patients treated with 75 mg experienced dose limiting side effects. Forty percent of the patients 

experienced transitory morphologic or partial responses with reduction of the percentage of leukemic 

blasts in peripheral blood and bone marrow, including 100% of the patients within the FLT3-mutated 

group in comparison with 20% of the FLT3 wild-type patients [59]. 
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2.1.7. Tandutinib (MLN-518) 

Tandutinib is a piperazinyl quiazoline type III TKI with very limited inhibition of kinases outside this 

receptor family of FLT3, PDGFR and KIT [77]. In a phase 1 study, 40 patients were given tandutinib 

orally in doses ranging from 50 mg to 700 mg twice daily. The patients had either AML, or high-risk 

MDS. The most frequent toxicities associated with tandutinib treatment were nausea and vomiting, less 

frequent diarrhea and peripheral and periorbital edema. Muscular weakness and fatigue were the dose 

limiting toxicities, and were observed at dose levels of 525 mg and 700 mg twice daily. One patient 

experienced hyperreflexia with clonus. Preclinical evaluation of tandutinib suggested that it might 

prolong the QT interval, and one patient had a 270 ms increase of QTc on day 28. The QT interval 

however returned within normal range during continuous dosing. No complete or partial remissions were 

seen in this study. However, of the five patients with FLT3-ITD mutations that were assessed for 

treatment efficacy, antileukemic activity was shown in two patients. They both had a greater than 99% 

decrease in absolute peripheral blast count and a decrease in bone marrow blast percentage from 91% to 

62% and 80% to 15% over the first 28 days of treatment. Within two months however they both 

experienced disease progression. Four patients without FLT3-ITD mutation sustained steady peripheral 

blood counts and bone marrow blast counts in periods ranging from 154–190 days [60]. 

2.2. Second Generation TKIs 

Quizartinib (AC220) 

Quizartinib is unique among FLT3 inhibitors currently in development, in that it combines high 

potency and high kinase selectivity with favorable pharmacokinetic properties, and it is currently 

suggested as the most promising FLT3 targeting TKI [78]. It showed promising results already in a phase 

1 study [61], and the optimism has remained high until now. In a phase 2 study, quizartinib was 

administered as monotherapy in 333 relapsed or refractory AML patients. The most frequent experienced 

treatment-related adverse events were nausea, anemia, QT interval prolongation, vomiting, febrile 

neutropenia, diarrhea, and fatigue. Quizartinib seemed to reduce blasts in both FLT3-wild-type as well 

as FLT3-ITD positive patients, though more efficiently in FLT3-ITD positive patients, and the overall 

clinical response rates were high, however few complete remissions were seen [63,64]. Results from a 

phase 2 study assessing quizartinib as monotherapy comparing two different dosing scheduled confirm 

a high degree of antileukemic activity of quizartinib in FLT3-ITD positive AML patients with half of 

included patients achieving a hematological response, and as many as 33% of patients were successfully 

bridged to hematological stem cell transplantation [62]. A pilot establishing that quizartinib safely can 

be combined with chemotherapy demonstrated a 79% complete remission rate in evaluable patients [65]. 

Quizartinib in combination with cytarabine and etoposide was also assessed in 18 pediatric AML 

patients, either with relapsed or refractory disease. Eight of the patients were FLT3-ITD positive and of 

the six assessed four patients achieved complete remission or complete remission with incomplete 

platelet recovery [66].  
  



J. Clin. Med. 2014, 3 1476 

 

	

3. Discussion 

Current clinically established therapy regimes for AML mainly fail to achieve durable responses due 

to high relapse rates associated with development of drug resistance. Those patients who harbor a 

constitutively activating FLT3-ITD mutation have particular poor initial therapy response, high relapse 

rate, and inferior overall survival. Optimism was substantial when the therapeutic principle based on 

inhibition of FLT3 emerged, and multiple compounds have been developed and tested. Eight of the TKIs 

investigated in clinical trials have here been presented and the results of their clinical efficacy compared, 

including the first-generation agents; lestaurtinib, linifanib, midostaurin, semaxanib, sorafenib, sunitinib 

and tandutinib, as well as the second-generation TKI quizartinib. Though the various compounds diverge 

in degree of treatment responses as well as character and seriousness of adverse effects, they are 

generally well tolerated with less toxic effects than conventional chemotherapy provided in high or 

intermediate dose levels. However, TKIs seems only to induce modest clinical effects, including partial 

and transient responses, usually only in peripheral blasts.   

There may be several reasons for why AML patients with FLT3-ITD mutations do not respond to 

treatment as anticipated. In the majority of the clinical trials, the treatment with TKIs were limited to 

patients with relapsed or refractory disease, or to patients not eligible for conventional treatment. The 

experience from this selected patient group might not be applicable to the group of newly diagnosed or 

younger AML patients.  

In vivo inhibition of FLT3 autophosphorylation seems to be greatly associated with remission rate, 

and insufficient prolonged inhibitory drug levels might be another reasons for treatment failure [79]. 

Clinical response occurred in patients who sustained plasma FLT3 inhibitory activity and had an inherent 

sensitivity of blasts to the cytotoxic effects of lestaurtinib [44]. Several second generation TKIs, in 

addition to quizartinib, are under development, offering improved pharmacodynamic and pharmacokinetic 

properties including increased potency and selectivity towards FLT3-mutated cells [80]. VX-322 [81], 

BPR1J-097 [82], TT-3002 [83,84], AKN-028 and AKN-032 [85,86] are examples of novel FLT3 

inhibitors that are showing promising in vitro and in vivo antileukemia activities.  

Many of the compounds tested in clinical trials gave an initial response but of short duration before 

relapse, indicating development of resistance. Acquired point mutations in the molecular target of FLT3 

in response to TKI treatment, precluding the drug from adequate binding appears to be an important 

mechanism in this process [87,88]. Aberrant activation of alternate growth and viability pathways is yet 

another possible mechanism for acquired resistance [89–91].  

Unexpectedly, it was not so easy to predict who would benefit from the treatment as assumed. Not 

all FLT3-ITD positive patients responds to TKI therapy, while on the contrary some FLT3 wild-type 

patients seem to benefit from TKI treatment. Biomarkers predictive of therapy response are warranted. 

It is suggested that quizartinib does not induce complete remission, but decrease blast numbers with 

presence of dysplastic changes in the bone marrow [92]. In a small study of quizartinib-treated AML 

patients examined by mass spectrometric super-SILAC of phospho-protein, the team of Hubert Serve 

have indicated that a profile of four proteins may determine responders of quizartinib independent of 

FLT3-ITD [93]. This proposes phophoprotein profiling in prediction of therapy response, and may be 

transferred to a clinical diagnostics assay format like flow cytometric analysis of intracellular 

phosphoproteins [94]. 
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Although FLT3 is a well-characterized oncoprotein in AML, and its role as an important player in 

AML leukemogenesis established, our knowledge of the normal and pathologic FLT3 signaling network 

may still be inadequate for identification of the most effective therapeutic approach, as there are many 

aspects of the mutation we do not fully comprehend.  

An initial concern in the study of FLT3 in AML was the heterogeneity of the mutations, both the 

difference between point mutations and ITDs and within the group of ITDs. The mutation can appear in 

various lengths in the same patient, either simultaneously or over time, and in response to intensive 

chemotherapy the mutation can appear in previously FLT3-ITD negative patients, it can disappear or 

dramatically change at relapse [95–99]. The size of the ITD has been reported as a prognostic marker, 

with patients with a insertion of 48–60 base pairs seems to have worse outcome compared to patients 

with shorter or longer insertions in one study [100], and with increasing size as a marker for poor 

outcome in another [101]. High mutational load measured by a high FLT3-ITD/FLT3wt ratio, indicative 

of loss of heterozygosity, has been associated with inferior outcome [102,103], as well as the site of  

the ITD insertion, with insertions within the tyrosine kinase domain-1 conferring unfavorable  

prognosis [104]. Also, the number of FLT3-ITD mutations affects disease outcome [105]. 

Methodological advances have recently shed further light to the complex interplay of events that 

contribute to AML leukemogenesis [106]. In addition to formerly well-characterized frequent 

cytogenetic lesions, next generation sequencing of AML patient material has revealed 23 recurrently 

mutated genes probable to be involved in AML pathogenesis. Based on patterns of co-occurring and 

mutually exclusive genetic lesions probable biological co-operations driving disease progression are 

emerging [19,107]. Additionally, mapping of variant allele frequencies makes it possible to assess the 

intra-tumor clonal hierarchy, while temporal assessment of leukemic cell populations makes it 

achievable to determine the clonal evolution and the sequential order of acquisition of somatic mutation 

during disease development and progression, from pre-leukemic hematopoietic stem cells to AML  

blasts [108–110]. Accumulating evidence indicate that mutations in the FLT3 gene are disease 

promoting rather than disease initiating events [111,112], and that mutant FLT3 cooperates with other 

oncogenes and aberrantly regulated proteins associated with AML, e.g., NPM1, DNMT3A [19], 

NUP98/NSD1 [113] DEP-1, PML-RAR and AXL [114–116]. The potency of the TKI alone may 

consequently not be the best measure for the antileukemic effect, and a multi-targeted therapeutic 

approach may rather be of potential clinical benefit, combining agents targeting cooperative lesions, 

inhibitors of alternate pathways, or targeting downstream signaling molecules. The superior efficiency 

of sorafenib compared to other inhibitors supports this theory, as the effect might be a result of 

sorafenib’s ability to suppress the activity of multiple pathways [53]. The pathways that most frequently 

are activated, PI3K/AKT/mTOR and RAS/RAF/MEK/ERK, may be feasible to target with a combined 

inhibitor approach. Effective AKT/mTOR inhibitors and MEK/ERK inhibitors are in clinical  

trials [117,118]. FLT3-ITD is additionally shown to accumulate in the endoplasmic compartment of the 

cell [119], and may form intracellular signaling protein complexes that represent a different signaling 

context compared to transmembrane FLT3 signaling [120], that might also be important to take  

into consideration. 

The nature of internal tandem duplication mimic damages in DNA repair caused by  

anthracyclines [121,122]. Clinical studies with increasing doses of daunorubicin suggested that this dose 

escalation was not beneficial in FLT3-ITD patients [123]. Additionally, a retrovirally induced mouse 
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leukemia model comprising FLT3-ITD indicated that the FLT3-ITD responded to cytarabine but not 

anthracycline in a p53 dependent manner [124]. Additionally, excessive receptor tyrosine kinase activity 

has been associated with increased endogenous DNA damage [125], and FLT3-ITD is associated with 

high redox activity in the leukemic cells, also related to increased DNA damage [126]. In the discussion 

of driver and passenger role for FLT3-ITD, it is difficult to neglect the possibility that leukemia with 

FLT3-ITD may be created through a fundamental genomic instability. This genomic instability may be 

targeting the FLT3 gene due to structural DNA features through the myelopoiesis when FLT3 expression 

is modulated as function of differentiation. This predisposition of FLT3-ITD may make these leukemia 

cells particularly vulnerable for anthracyline therapy, generating more FLT3-ITD mutations when 

exposed for this topoisomerase II inhibitor. Together, these observations indicate that FLT3-ITD positive 

patients does not benefit from anthracycline therapy. If this is correct, a dramatic change in current AML 

therapy needs to be undertaken, since all current induction therapy include anthracycline.  

Together, the proven high relapse rate in FLT3-ITD and the emerging speculations in an underlying 

mutational vulnerability in the FLT3 gene should spur investigators to develop non-genotoxic therapy 

in particular for FLT3-ITD positive AML patients.  

4. Concluding Remarks 

A fundamental question that remains unanswered is whether the fairly modest clinical activity of first 

generation FLT3 inhibitors can be improved through the second generation of TKIs, offering better 

pharmacodynamic and pharmacokinetic properties, or if the potential benefits of FLT3 inhibitors are 

essentially inadequate. We are still awaiting results from ongoing clinical trials investigating various 

combinations of TKIs in different subgroups of AML patients. The preliminary conclusion concerning 

the agents investigated is that their therapeutic efficiency is limited when administered in monotherapy. 

It seems like the FLT3 inhibitors currently in clinical trials will have to be used in conjunction with 

established treatment or in combination with additional targeted therapeutics to ultimately improve 

outcomes in AML patients with FLT3-ITD mutations. It is also to be decided in which phase of the 

treatment is should be used; as part of first line induction therapy, as consolidation or post-remission 

treatment or in a relapse or refractory setting.  

If presence of FLT3-ITD is a marker for less effective anthracycline therapy, we will need to  

perform a difficult switch to alternative induction regimes in these patients. Future trials should  

explore targeting of downstream FLT3 signaling, particular signaling unique for FLT3-ITD, and with a 

clear strategy for blocking bypass mechanisms that may cause TKI resistance. These alternative 

strategies of signal transduction therapy may be tested in future trials incorporating in vitro leukemic 

resistance screens [127,128] determining the value of functional genomics in individualized therapy 

strategies [126,127].  
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