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Summary

The increasing availability of the genome sequences
of microorganisms involved in important bioremedia-
tion processes makes it feasible to consider develop-
ing genome-scale models that can aid in predicting
the likely outcome of potential subsurface bioreme-
diation strategies. Previous studies of the in situ
bioremediation of uranium-contaminated ground-
water have demonstrated that Geobacter species
are often the dominant members of the groundwater
community during active bioremediation and the
primary organisms catalysing U(VI) reduction.
Therefore, a genome-scale, constraint-based model
of the metabolism of Geobacter sulfurreducens was
coupled with the reactive transport model HYDRO-
GEOCHEM in an attempt to model in situ uranium
bioremediation. In order to simplify the modelling, the
influence of only three growth factors was consid-
ered: acetate, the electron donor added to stimulate
U(VI) reduction; Fe(III), the electron acceptor primarily
supporting growth of Geobacter; and ammonium, a
key nutrient. The constraint-based model predicted
that growth yields of Geobacter varied significantly
based on the availability of these three growth factors
and that there are minimum thresholds of acetate and
Fe(III) below which growth and activity are not pos-
sible. This contrasts with typical, empirical microbial
models that assume fixed growth yields and the pos-
sibility for complete metabolism of the substrates.

The coupled genome-scale and reactive transport
model predicted acetate concentrations and U(VI)
reduction rates in a field trial of in situ uranium bio-
remediation that were comparable to the predictions
of a calibrated conventional model, but without the
need for empirical calibration, other than specifying
the initial biomass of Geobacter. These results
suggest that coupling genome-scale metabolic
models with reactive transport models may be a good
approach to developing models that can be truly pre-
dictive, without empirical calibration, for evaluating
the probable response of subsurface microorganisms
to possible bioremediation approaches prior to
implementation.

Introduction

The current inability to predictively model the growth and
activity of microorganisms in the subsurface severely
limits the capacity to predict the fate and transport of
subsurface contaminants and to confidently design bio-
remediation strategies prior to field trials. Several codes
for simulation of groundwater flow, solute transport and
geochemical reactions (‘reactive transport models’) have
been extensively developed, and can be effectively used
for evaluating management alternatives and designing
bioremediation strategies (Steefel et al., 2005). In con-
trast, it is well recognized that current models to predict
the activity of the microbial community, which can sub-
stantially impact contaminant mobility via a diversity of
degradation and transformation reactions, are woefully
inadequate. In general, microbial activity is described in
current reactive transport models by overly simplified rep-
resentations that fail to capture: (i) the complex nature in
which a diversity of environmental conditions influence
microbial metabolism and (ii) the ability of microorganisms
to adapt their metabolism to optimize growth and activity
in a given environment. Models that can accurately
predict microbial growth and activity are particularly
important when dealing with the dynamic conditions that
are expected when microbial activity in the subsurface is
artificially stimulated in order to promote desired bioreme-
diation reactions. These temporally dynamic conditions
are further magnified by hydrologic flow and mass
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transport processes in heterogeneous geological systems
that create a spatially variable environment within which
microbial communities exist.

The era of complete genome sequencing of microorgan-
isms has made it conceivable to apply much more sophis-
ticated, genome-scale microbial models to bioremediation
(Lovley, 2003; Lovley et al., 2008). However, such models
need to be experimentally and computationally tractable.
For example, from an understanding of which genes are
present as well as their function and expression patterns
under different environmental conditions, it is theoretically
possible to construct reaction-based models for the bio-
chemical mechanisms involved in cellular metabolism.
However, experimentally validating the kinetic parameters
for hundreds of such reactions and measuring pools of a
large number of metabolites under various conditions is
not feasible with current methods. An alternative approach
is constraint-based modelling (Price et al., 2004; Reed
et al., 2006; Feist and Palsson, 2008). In this method the
potential metabolic reactions of the organism are first
mapped based on the genome sequence and other avail-
able physiological data. Then the objective for which the
metabolic function of the microorganism will be optimized
must be chosen. Typically, this is set to maximize biomass
production, that is, growth, although other choices such as
minimization of resource utilization, maximization of ATP
production etc. have been reported (Schuetz et al., 2007).
Then for a given environmental condition (e.g. a specific
electron donor) the optimal flux of all metabolites through
the possible metabolic reactions is then calculated with
linear programming methods.

The constraint-based modelling approach has been
shown to accurately predict microbial growth under a
variety of environmental conditions (Reed et al., 2006;
Feist and Palsson, 2008). It can even predict the growth
rates that microorganisms will achieve when they are
placed in new environments that require the accumulation
of beneficial mutations in order to evolve the appropriate
metabolic capabilities to effectively compete in that new
environment (Ibarra et al., 2002; Fong and Palsson,
2004). The constraint-based modelling approach may
be particularly well suited for modelling microorganisms
in heterogeneous environments because it does not
assume constant yield coefficients and has been shown
to account for the changes in the metabolic network
in response to nutrient limitations (Varma et al., 1993;
Schuetz et al., 2007). Dynamic extensions of the
constraint-based modelling approach have been pro-
posed to model the temporal changes in the metabolic
state such as the diauxic growth of Escherichia coli on
mixtures of multiple susbstrates (Mahadevan et al., 2002;
Covert et al., 2008).

The typical microbial component of subsurface reactive
transport models treats growth yield for a given form of

metabolism as a constant (Schäfer et al., 1998; Regnier
et al., 2005; Scheibe et al., 2006). However, in reality a
range of environmental conditions are likely to influence
growth yields. The influence of environmental param-
eters on growth yields can be captured with constraint-
based models. For example, during in situ uranium
bioremediation solid-phase Fe(III) oxides are the primary
electron acceptor for the growth of Geobacter species on
the acetate released into the subsurface (Finneran et al.,
2002). There is only a finite concentration of Fe(III) at
any particular location in the subsurface. Therefore, over
time the Fe(III) in the sediments closest to the site of
acetate injection is depleted and can limit the Geobacter
activity (Anderson et al., 2003; Vrionis et al., 2005). As
an initial step towards the goal of including a constraint-
based microbial sub-model in a comprehensive model
for in situ uranium bioremediation, a constraint-based
model of Geobacter sulfurreducens was previously con-
structed (Mahadevan et al., 2006). This model accurately
describes the growth of G. sulfurreducens under various
conditions and predicted the phenotype of gene dele-
tions with 90% success (qualitative prediction of growth
or no growth) (Segura et al., 2008). The model was a
valuable tool for developing strategies for increasing the
respiration rate of G. sulfurreducens for microbial fuel cell
applications (Izallalen et al., 2008). The G. sulfurre-
ducens constraint-based model predicts that metabolic
fluxes under Fe(III)-limiting conditions are significantly
different than when the electron donor, acetate, limits
metabolism. Under electron acceptor-limiting conditions
the predicted growth yield is 25% of that under electron
donor-limiting conditions as more of the acetate that is
consumed is directed towards catabolic reactions. Fur-
thermore, under electron acceptor-limiting conditions
some of the electrons derived from acetate oxidation are
released as hydrogen. These predictions are consistent
with decreased growth yields observed in Fe(III)-limited
chemostats (Esteve-Nunez et al., 2005) and hydrogen
production in such cultures (A. Esteve-Nunez, in prepa-
ration). These results further support the ability of the G.
sulfurreducens genome-scale metabolic model to accu-
rately represent the network level changes in physiology
in response to perturbations in the local environment and
suggest that the metabolism of Geobacter species can
change dramatically as conditions change during in situ
uranium bioremediation.

Nutrient availability may also greatly influence growth
yields during bioremediation. For example, at the uranium
bioremediation field study site in Rifle, CO, ammonium
concentrations varied from 300 mM to undetectable within
a small field plot (P. Mouser, unpublished data). Due to the
high energetic cost of nitrogen fixation growth yields of
Geobacter species per mole of acetate consumed are
significantly higher in the presence of ammonium than
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when nitrogen fixation is required (Bazylinski et al., 2000;
Methe et al., 2005) and this yield difference is captured in
the constraint-based model. A range of other environmen-
tal variables such as the availability of phosphate
(N’Guessan et al., 2008), dissolved iron for assimilation
into iron-containing proteins (O’Neil et al., 2008) and
oxygen (Mouser et al., 2009) among others are likely to
also be important factors influencing the growth of Geo-
bacter species during in situ uranium bioremediation.

Communities of multiple organisms can be modelled
with constraint-based modelling (Stolyar et al., 2007), but
for simplicity, we have chosen an example of in situ
subsurface bioremediation application that is essentially
catalysed by one microbial genus as an initial attempt
to apply constraint-based modelling to bioremediation.
Uranium is mobile in the oxidized form, U(VI), but rela-
tively insoluble in the reduced form, U(IV). Various micro-
organisms can reduce U(VI) (Lovley et al., 1991; Lovley
and Phillips, 1992; Lloyd and Macaskie, 2000; Lloyd and
Lovley, 2001; Lovley et al., 2004). Stimulating microbial
reduction of U(VI) to U(IV) in the subsurface is a promising
strategy for immobilizing subsurface uranium contamina-
tion and preventing its further mobility (Finneran et al.,
2002; Anderson et al., 2003; Vrionis et al., 2005; Wall and
Krumholz, 2006). Molecular analyses have revealed that
stimulating microbial U(VI) reduction with the addition of
simple organic electron donors such as acetate or ethanol
commonly results in the growth of Geobacter species
as the primary U(VI)-reducing microorganisms (Holmes
et al., 2002; Chang et al., 2005; Mohanty et al., 2008),
although other organisms have been observed to pre-
dominate in some cases (Cardenas et al., 2008). At a
uranium-contaminated study site in Rifle, CO the addition
of acetate to the groundwater effectively stimulated
removal of U(VI) from the groundwater (Anderson et al.,
2003; Yabusaki et al., 2007). U(VI) removal is associated
with a bloom of Geobacter species with this one genus
accounting for over 80% of the microbial population
during active U(VI) removal from the groundwater
(Anderson et al., 2003; Holmes et al., 2005; Holmes
et al., 2007). This predominance of Geobacter sug-
gests that if it was possible to predictively model the
growth and activity of Geobacter this would provide a
microbial model sufficient to predictively model acetate-
dependent in situ uranium bioremediation at the Rifle
site.

Here we demonstrate how constraint-based modelling
is likely to contribute a better representation of the growth
and activity of Geobacter species in the subsurface than
other commonly employed microbial models and describe
a method for coupling the constraint-based G. sulfurre-
ducens model with existing hydrological and geochemical
models. We demonstrate that even this first-generation
coupled model is able to adequately describe U(VI)

reduction in a recent in situ uranium bioremediation field
experiment.

Results and discussion

Influence of environmental conditions on growth yields

For the initial modelling effort described here, the three
factors whose concentrations are known to vary greatly
during in situ uranium bioremediation, acetate, Fe(III) and
ammonium were considered. Other factors will be incor-
porated into future modelling efforts. The physiology of
subsurface Geobacter was modelled for 1000 possible
combinations of environmental conditions during in situ
uranium bioremediation representing all possible combi-
nations for 10 discrete concentrations within environ-
mentally relevant ranges for acetate (0–3 mM), Fe(III)
(0–10 mM) and ammonium (0–1 mM). To increase reso-
lution of the table at low concentrations (where metabolic
limitations are expected and fluxes change most rapidly),
we used an exponential distribution of sampling points
within the ranges above rather than uniform spacing. Note
that for consistency in reaction stoichiometry all concen-
trations are expressed in molar units; the method of con-
verting solid-phase Fe(III) concentrations to molar units
is described in the Experimental procedures section.
Rates of substrate uptake are required as inputs to the
constraint-based model. These were modelled with
Michaelis–Menten kinetics because uptake of acetate and
Fe(III) follows Michaelis–Menten kinetics (Esteve-Nunez
et al., 2005) and presumably this is also true for ammo-
nium. This coupling of the constraint-based model with a
Michaelis–Menten kinetic model is referred to as the
hybrid constraint-based model.

The hybrid model predicted no growth of Geobacter for
600 of the 1000 different potential environmentally rel-
evant combinations of acetate, Fe(III) and ammonium
availability that were modelled. It was predicted that under
these conditions, the concentration of one or more sub-
strates was too low to supply enough ATP for mainte-
nance energy requirements. For example, when acetate
availability is the factor limiting growth a minimum flux
of 0.9 mmol gdw-1 h-1 is required (Fig. 1A) where ‘gdw’
represents grams dry weight of microbial biomass.
When Fe(III) availability limits growth a minimum flux
of 7.2 mmol gdw-1 h-1 for Fe(III)s) is needed to provide
enough ATP for maintenance energy requirements
(Fig. 1C). Flux rate is related to substrate availability and
the inability to grow at low concentrations of limiting sub-
strate results in a minimum threshold concentration of that
substrate, below which Geobacter cannot metabolize the
substrate (Fig. 1B and D). Similar minimum thresholds
for the substrate butyrate have been observed during
the growth of Syntrophus aciditrophicus (Jackson and

276 T. D. Scheibe et al.

© 2009 Battelle Memorial Institute
Journal compilation © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd, Microbial Biotechnology, 2, 274–286



Mcinerney, 2002). Predicted thresholds are ~0.001 mM
for acetate, and ~0.1 mM for Fe(III)s).

For the remaining 400 out of the 1000 possible combi-
nations of nutrient availability the predicted biomass yield
varied over nearly an order of magnitude, from approxi-
mately 0.5 to 4.2 g of cell dry weight per mole of acetate
consumed (Fig. 2). Note that, because of lumping of

values into histogram bins, the range of the individual
values is larger than the range of bin midpoints shown in
Fig. 2, and that a small number of biomass yield values
lower than 1.0 g of cell dry weight per mole of acetate
consumed were not included in the histogram plot
because they constituted only about 1% of the total
number. As indicated in Fig. 2, the same growth yield was

Fig. 1. Predictions from genome-scale model
of growth rates at different uptake rates of
acetate and Fe(III) and for different acetate
and Fe(III) concentrations when acetate or
Fe(III) availability is the factor limiting growth.
A. Acetate uptake (qAc) as a function of
growth rate when acetate is the limiting
nutrient.
B. Acetate concentration as a function of
growth rate when acetate is the limiting
nutrient.
C. Fe(III) consumption rate [qFe(III)] as a
function of growth rate when Fe(III) is the
limiting nutrient.
D. Fe(III) concentration as a function of
growth rate when Fe(III) is the limiting
nutrient.

Fig. 2. Frequencies of biomass yield levels
within the 1000-element look-up table
generated by the in silico model of G.
sulfurreducens for various environmental
conditions. In the legend, ‘N2 fix’ denotes
nitrogen fixation, and ‘Fe lim’ and ‘Ac lim’
denote iron-limited and acetate-limited
conditions respectively.
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possible for different types of nutrient limitation, depend-
ing upon the concentration of all three nutrients. These
results indicate that, based upon nutrient availability,
growth yield can vary substantially and that different
physiological states can have similar biomass yields.

Coupling the constraint-based model with reactive
transport model

In order to determine how Geobacter will respond in sub-
surface environments undergoing bioremediation it is
useful to couple the constraint-based Geobacter model
with a reactive transport model that can define the spatial
and temporal variability in geochemical environments
experienced by the microorganisms. For the reactive
transport model, we used the code HYDROGEOCHEM
(Yeh et al., 2004).

HYDROGEOCHEM is a comprehensive simulator of
coupled fluid flow, hydrologic transport, heat transfer and
biogeochemical reactions under variably saturated condi-
tions in two or three dimensions. It uses a finite element
method on unstructured grids, iteratively solving fluid flow,
heat transfer and reactive chemical transport equations.
A general reaction-based approach to biogeochemical
processes was implemented in the code so that it can
be applied to a wide range of problems (Fang et al.,
2003; Fang et al., 2006). Programmed reaction types
include aqueous complexation, adsorption-desorption,
ion-exchange, oxidation-reduction, precipitation-
dissolution and microbially mediated reactions.

Coupling the reactive transport model with the hybrid
constraint-based model is illustrated conceptually in
Fig. 3. The right side of the figure represents the HYDRO-
GEOCHEM reactive transport model, which simulates
hydrologic and geochemical processes within the aquifer
discretized on a numerical grid as described in the Ex-
perimental procedures section. At each time step the
constraint-based metabolic model is referenced to specify
metabolic reaction rates for the simulated geochemical

conditions in each grid element at that time. The metabolic
model provides fluxes for all microbially mediated reac-
tions. These fluxes then feed back to the reactive trans-
port model as reaction rates for the current time step, and
the reactive transport model is stepped forward one time
interval, after which the process is repeated. The step of
referencing of the metabolic model from the reactive
transport model can take one of two forms: (i) concurrent
execution of the metabolic model through a direct subrou-
tine call from the reactive transport model or (ii) selection
of metabolic fluxes at each time step of the reactive trans-
port simulation from a large set of pre-calculated meta-
bolic model solutions covering the expected range of
environmental conditions.

While direct coupling through a subroutine call is con-
ceptually straightforward, it would require construction
and solution of a linear programming problem (the
constraint-based model) for each grid cell of the reactive
transport model at each time step. For a field-scale reac-
tive transport model with explicit representation of geo-
logic heterogeneity on a fine grid, the number of grid cells
could be very large [e.g. millions (White et al., 2008)].
Therefore, computational demands of the direct coupling
approach may be prohibitive. Furthermore, some linear
systems could fail to converge to an optimal solution,
which could cause a large simulation to halt frequently
unless proper error-handling rules were implemented.

Although there are some potential solutions to these
problems, and we continue to pursue direct coupling of
the constraint-based and reactive transport codes, as a
first demonstration we followed the second approach
above that does not require repeated solution of the
constraint-based model during execution of the reactive
transport model. This approach utilizes pre-calculated
predictions of the hybrid constraint-based model for the
1000 possible combinations of environmentally relevant
concentrations of acetate, Fe(III) and ammonium de-
scribed above as a look-up table. During execution of
the reactive transport model, reaction fluxes are obtained

Fig. 3. Schematic representation of the coupling between an in silico model of microbial metabolism (left) and a subsurface reactive transport
model (right). The coupling can be in the form of either direct calls to the in silico model during execution of the reactive transport model or
prior simulation of a large number of scenarios using the in silico model to generate a look-up table that is then referenced during execution of
the reactive transport model. In either case, flux constraints from the reactive transport model dictate the output from the in silico model, which
is in turn fed back to the reactive transport model in terms of reaction fluxes (including biomass yields).
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by interpolating within the look-up table. At each time step
and for each grid cell a subroutine is called that interro-
gates the look-up table and linearly interpolates between
the concentrations nearest those occurring in the given
grid cell to define reaction fluxes and biomass yields.

Column simulation

The coupled reactive transport/metabolic model de-
scribed above was executed for a hypothetical column
experiment. The hypothetical (simulated) column was
15 cm long and 2.5 cm in diameter, with a porosity of 0.38
and a water flux rate of 0.35 ml min-1. The initial sediment
concentration of Fe(III) was 7.8 mM (58.6 mg per kg dry
sediment) and the initial biomass was 1 mM [approxi-
mately 5 ¥ 106 cells ml-1 assuming a dry cell weight of
2.1 ¥ 10-11 mg/cell based on previously reported mea-
surements for Geobacter species (Tang et al., 2007); see
Experimental procedures for conversion between molar
units and cells ml-1]. A constant feed of 3 mM acetate
solution was injected into the upstream end of the simu-
lated column. For comparison, the system was also simu-
lated using an equivalent conventional Monod kinetic
reaction model. Details of both models are provided in the
Experimental procedures section below.

Comparison of the coupled reactive transport/metabolic
model with conventional Monod modelling demonstrated
that there were some similarities in the predictions of both
models. For example, for both models the acetate con-
centration at or near the injection level of the column
remained near 3.0 mM at all times, with the exception of a
small drop around 30 h in the Monod model and a nearly
imperceptible drop near 100 h in the coupled model
(Fig. 4A). Both models predicted that dissolved Fe(II)

increases (Fig. 4B) as Fe(III) reduction takes place
(Fig. 4D), and then drops off when the solid-phase Fe(III)
becomes depleted.

However, there were two important differences be-
tween the predictions of the two models. The conven-
tional Monod model predicted much more cell growth than
the metabolic model (Fig. 4C). This difference is due to
the lower yield coefficients computed by the metabolic
model relative to the thermodynamically based constant
value used in the conventional model. This result is con-
sistent with other recent experimental and theoretical
studies that have shown that Geobacter species have
lower energy transfer efficiencies during growth coupled
to Fe(III) reduction than the yields that are predicted with
thermodynamics-based approaches (Tang et al., 2007;
Sayyar et al., 2008). In such approaches it is typically
assumed that the fraction of electron donor that is con-
verted to biomass is 0.6 (Rittmann and McCarty, 2001).
However, a 50% lower energy transfer efficiency for
biomass yield is needed to represent the observed physi-
ology of G. sulfurreducens (Sayyar et al., 2008). Because
of the imposed conditions of excess acetate and ammo-
nium throughout the simulation, and abundant iron
through most of the feasible growth stage, the large
majority (over 99%) of the biomass yield values drawn
from the look-up table were at the high end of the distri-
bution, although a small number of lower yields were used
during the portion of the simulation that was iron-limited
prior to infeasibility. Therefore, in this simulation, the rela-
tively low yield predicted by the genome-scale model is
more important than variability in yield. However, under
more highly variable conditions as would be expected in a
heterogeneous field system, spatial and temporal variabil-
ity in biomass yield could play a more significant role.

Fig. 4. Comparison of simulations of
reduction of Fe(III) by G. sulfurreducens in a
hypothetical column experiment with acetate
as the electron donor. Solid line: coupled
genome-scale metabolic model and
geochemical simulation. Dashed lines:
simulation with the conventional empirical
Monod model. All figures except (b) show
simulated concentrations at the column outlet,
15 cm from the inlet of the column. Because
of the fast flow and high acetate concentration
relative to reaction rates, differences in
concentrations along the column axis are
negligible in most cases. However, Fe(II)
concentrations accumulate along the length of
the column as Fe(III) reduction is occurring at
similar rates everywhere in the column.
Therefore, (b) shows Fe(II) concentrations at
two locations: c2 = midpoint of the column
(7.5 cm from the inlet); c3 = column outlet
(15 cm from the inlet).
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These hypothetical column simulations are being used to
guide design of planned laboratory experiments that will
exercise the coupled model through a broad range of
environmental conditions and provide a rigorous test of
the coupled model.

Another important distinction between the predictions of
the two modelling approaches was that the Monod model
predicted continued activity of Geobacter until Fe(III) was
completely depleted (Fig. 4D). In contrast, the metabolic
model predicted that Geobacter activity will stop at Fe(III)
concentrations of 0.1 mM because, as noted above, at
this level not enough energy to meet maintenance
requirements is conserved. This prediction of a minimum
threshold of Fe(III) necessary to support the activity of
Geobacter is qualitatively consistent with field results and
laboratory incubations of sediments that have consistently
indicated that the activity of Geobacter species in subsur-
face sediments stops before all of the readily reducible
Fe(III) is depleted (Finneran et al., 2002; Anderson et al.,
2003).

Simulation of in situ uranium bioremediation

Next, the ability of the coupled hybrid constraint-based
and reactive transport models to predict the fate of
uranium in an in situ uranium bioremediation field experi-
ment was evaluated. In 2002 a field experiment was con-
ducted at the uranium bioremediation study site in Rifle,
CO (Anderson et al., 2003). Acetate was introduced into
the groundwater through a series of injection wells and
downgradient geochemical changes were monitored in a
series of monitoring wells (Fig. 5). As detailed in the
Experimental procedures section a pre-existing reactive
transport model (Yabusaki et al., 2007; Y. Fang, S.B.
Yabusaki, S.J. Morrison, J.P. Amonette and P.E. Long, in
preparation) was coupled with the hybrid constraint-based
model using the look-up table approach. The time frame
of the simulation was limited to the period when Fe(III)
reduction was the predominant terminal electron-
accepting process and U(VI) was being actively removed
from the groundwater; at longer time intervals accessible
Fe(III) became depleted, sulfate reduction became the
predominant terminal electron accepting process, and
U(VI) was no longer effectively reduced (Anderson et al.,
2003). Modelling the sulfate reduction phase with a
genome-based model is not yet feasible because of the
lack of genome sequence for an appropriate acetate-
oxidizing sulfate reducer.

For the original field-scale model, rate parameters for
microbial Fe(III) and U(VI) reduction coupled to acetate
oxidation were determined by calibration of the model
outputs to observed concentration trends and the poten-
tial energy yield (Rittmann and McCarty, 2001) was held
constant (Yabusaki et al., 2007). In contrast, the only vari-

able for the constraint-based model approach was the
initial cell biomass, which was set at 5 ¥ 105 cells ml-1,
consistent with enumeration of Fe(III) reducers in this
environment (Holmes et al., 2007). Because U(VI) reduc-
tion pathways have not yet been specifically identified in
the genome-scale model, we used the fitted rate formu-
lations and parameters from Yabusaki and colleagues
(2007) to simulate U(VI) reduction in the coupled model.
Under that formulation the U(VI) reduction rate depends
on the acetate and U(VI) concentrations and is biomass-
independent. Therefore, any differences in predicted rates
of U(VI) reduction between the two modelling approaches
are the result of differences in predictions of acetate uti-
lization rates.

In the field experiment, acetate concentrations were, as
expected, initially highest in the wells closest to the injec-
tion gallery and U(VI) was reduced first within this zone
(Fig. 6). As acetate migrated downgradient there was a
corresponding initiation of U(VI) reduction in successive
sets of downgradient zones. Differences between model
predictions and specific observation points primarily
reflect the fact that the field experiment had substantial
variability in delivery of acetate throughout the test plot
due to non-uniform injection rates and flow heterogene-
ities (Anderson et al., 2003; Vrionis et al., 2005; Yabusaki
et al., 2007).

The predictions of the coupled and original models are
very similar overall (Fig. 6). Although both modelling
approaches can simulate the observations equally well in
a post-experimental sense, the coupled model did not

Fig. 5. Diagram showing the well layout at the Rifle, CO
bioremediation research site. Well numbers are referenced in
Fig. 6. Black closed circles represent wells in the injection gallery;
labelled wells are monitoring locations. Modified from fig. 1 of
Yabusaki and colleagues (2007).
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require parameter calibration to the experiment data.
Thus, the coupled modelling approach offers the possibil-
ity of not only describing, but actually predicting field-scale
behaviour.

In general, the coupled model appears to slightly under-
predict acetate utilization rates, leading to higher acetate
concentrations. In particular, at the farthest wells from the
injection gallery simulated acetate concentrations for the
coupled model are too high at the later time points.
However, this result is sensitive to the assumed initial
biomass and the acetate uptake rate assumed for the
metabolic model runs. Therefore, it would be possible to
optimize the initial biomass and acetate uptake rate as
calibration parameters to provide the best fit to the obser-
vations, although this was not attempted here as the
refinement of calibration parameters was not a goal of this
study. It would probably be better to attempt to experimen-
tally constrain these parameters as inputs to the model
and use the coupled model in a predictive manner without
calibration parameters.

Conclusions

The results suggest that genome-scale metabolic models
can be combined with the appropriate reactive transport

models to effectively describe bioremediation processes.
The constraint-based metabolic modelling approach
offers several potential advantages over more conven-
tional Monod modelling of bioremediation. Most impor-
tantly, the growth and activity of the microorganisms
influencing bioremediation are predicted from detailed
information on the physiology of these microorganisms.
This makes it feasible to generate predictive models that
derive from first principles rather than the empirical
parameter fitting typical of previously described microbial
models. For this reason the appropriate genome-scale
models are likely to be applicable to a wider range of
environmental conditions and locations than more em-
pirically calibrated models. For example, the results
demonstrate that constraint-based modelling can predict
important changes in the flux of substrates that result from
changes in environmental conditions and the associated
differences in cell yield that impact on the extent of cell
growth in the subsurface. This contrasts with the much
less realistic assumption of fixed yields in conventional
Monod modelling. Another key output from the constraint-
based modelling approach is the prediction of minimum
thresholds of substrates that are necessary in order to
maintain metabolism. The concept of minimum metabolic
thresholds limiting the activity and interaction of micro-

Fig. 6. Acetate utilization and U(VI) reduction at the Rifle, CO bioremediation research site. Results are shown for three groups of monitoring
wells at three different distances from the acetate injection gallery: top = 3.7 m, middle = 7.3 m, bottom = 14.6 m. Coloured symbols represent
field observations from the 2002 experiment (Anderson et al., 2003; Yabusaki et al., 2007), with each colour denoting a single well in the
group over time. Dashed lines represent numerical simulation results using the coupled in silico and reactive transport model, and solid lines
are the simulation results from the original model (Yabusaki et al., 2007).
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organisms has existed for some time (Lovley et al., 1982;
Lovley, 1985), but until now, metabolic-based strategies
for estimating environmentally relevant minimum thresh-
olds have not been available.

Admittedly, the constraint-based model summarized
here is still relatively simplistic compared with the com-
plexity of subsurface environments. It does not contain
important factors such as death rates of microorganisms
and focuses on only a few of the nutrients that might
potentially impact on metabolism and growth yields. Fur-
thermore, although it is likely that in situ uranium biore-
mediation can reasonably be modelled by considering
just the growth and activity of Geobacter species, the
communities involved in most bioremediation processes
are much more complex, which will require expanding
the modelling approach to incorporate multiple genome-
scale models. Finally, the local geochemical environment
experienced by microorganisms varies at length scales
much smaller than that typically used to discretize
reactive transport model domains. The assumption of
full mixing at the sub-grid scale therefore introduces
significant scale issues into simulations, which will best
be addressed by implementing coupled geochemical/
metabolic simulations at the pore scale and develop-
ing methods for rigorously upscaling to model grid
scales. Attempts to increase the complexity of the
modelling to incorporate these considerations are
underway.

Experimental procedures

Genome-scale metabolic model simulations

A previously published genome-scale metabolic model
was used to simulate the metabolic flux distributions for
acetate-limiting and Fe(III)-limiting conditions (Mahadevan
et al., 2006). In both cases, the acetate uptake was fixed
to 10 mmol gdw-1 h-1 based on experimentally observed
acetate uptake rates (Esteve-Nunez et al., 2005). In the case
of Fe(III) limitation, Fe(III) consumption rate was constrained
to be lower than 50 mmol gdw-1 h-1 so as to simulate Fe(III)
limitation.

As simulations of the genome-scale metabolic model
require the uptake of the limiting nutrient as an input, we
specified the uptakes rates of the key nutrients [acetate,
Fe(III) and NH4] using Michaelis–Menten kinetics. The Vmax

parameters in the Michaelis–Menten uptake kinetics were set
to be 10 mmol gdw-1 h-1 for acetate, 100 mmol gdw-1 h-1 for
Fe(III), 0.5 mmol gdw-1 h-1 for NH4, while the KS parameters
were fixed to 0.01 mM for acetate, 1 mM [represented as the
amount of Fe(III) per litre of aqueous volume] for Fe(III) and
0.1 mM for NH4. These parameters were chosen so that
the growth rates were consistent with the known microbial
physiology (Esteve-Nunez et al., 2004; Esteve-Nunez et al.,
2005).

In order to identify the infeasibility threshold during acetate-
limiting conditions, a range of acetate concentrations were
specified so that the acetate uptake was varied from 0 to

10 mmol gdw-1 h-1, while allowing unlimited Fe(III) consump-
tion. For identifying the infeasibility threshold during Fe(III)-
limiting conditions, we specified the Fe(III) concentration
range so that the Fe(III) consumption rate varied from 0 to
100 mmol gdw-1 h-1, while acetate uptake was unlimited
(excess acetate).

In order to generate the look-up table, we choose 10 dif-
ferent concentrations of acetate, Fe(III) and NH4, over their
allowed ranges, resulting in 1000 combinations. For each of
these 1000 cases, we calculated the uptake/consumption
rates and imposed these constraints to restrict the uptake/
consumption rates and maximized the growth rate to obtain
the metabolic flux distribution.

Column simulations

The HYDROGEOCHEM model was used to perform the
original and coupled simulations of porous media flow, advec-
tion and dispersion of soluble species [acetate, NH4, Fe(II)],
iron reduction coupled to acetate oxidation and biomass
growth in a hypothetical homogeneous one-dimensional
(1-D) flow system. The simulated column was 15 cm long and
2.5 cm in diameter, with a porosity of 0.38 and a water flux
rate of 0.35 ml min-1 (which corresponds to about 1.33 h per
pore volume). A grid spacing of 0.5 cm was used. The initial
sediment concentration of Fe(III)s was 7.8 mM, given in terms
of moles of solid-phase iron in a volume of aquifer containing
1 l of water; this value is equivalent to 58.6 mg of Fe(III) per
kilogram of dry sediment. Conversion between molar units
and weight per dry sediment assumes a porosity of 0.27 and
sediment particle density of 2.75 kg l-1.
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The initial biomass was 1 mM. Representation of biomass in
molar units uses the following conversion, assuming a dry
cell weight of 2.1 ¥ 10-11 mg/cell and a molecular formula of
C5H7O2N with molecular weight of 113 g mol-1:
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A constant feed of 3 mM acetate solution was injected into
the upstream end of the simulated column. Two different
approaches were used to model the rate of iron reduction and
biomass growth.

In the empirical Monod modelling approach the Fe(III)
reduction reaction rate was calculated using a Monod formu-
lation structured such that the reaction was controlled by
whichever substrate is limiting [acetate or Fe(III)]:
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where Vmax,Ac and Vmax,Fe(III) are the maximum uptake rate for
acetate and Fe(III) and KS,Ac and KS,Fe(III) are half saturation
constants for acetate and Fe(III). YFe(III) is the stoichiometry
coefficient of Fe(III) in the following reduction reaction.

CH COO FeOOH s H NH
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3 4

5 7 2
2
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− + +

+
+ ( ) + +

= + +
. . .

. . .884 0 922 3H O HCO+ −.

The stoichiometry in this irreversible reaction is energetics-
based (Rittmann and McCarty, 2001) under the assumption
of a biomass molecular formula of C5H7O2N and a constant
energy-transfer efficiency value of 0.6. The Vmax parameters
were set the same as for the genome-scale simulations
(see description above). Fe2+, Ca2+, K+, Mg2+, Na+, HCO3

- and
their aqueous complexes were considered in the reaction
network; initial concentrations of these components were set
to 7 ¥ 10-5, 4.3 ¥ 10-3, 2.7 ¥ 10-3, 4.7 ¥ 10-5, 6.5 ¥ 10-3 and
7 ¥ 10-5 M respectively. The initial pH was set to 7.0.

The genome-scale approach utilizes the look-up table gen-
erated with the genome-scale model (as described above) to
prescribe the consumption rates of acetate, NH4 and Fe(III),
the production rate of Fe(II), and the microbial yield at differ-
ent points in space and time, rather than using the Monod
rate formulation and constant reaction stoichiometry and
yield coefficient.

Field-scale simulations

The HYDROGEOCHEM model was used to perform the
Monod and genome-scale simulations of porous media flow,
advection and dispersion of soluble species [acetate, NH4,
Fe(II)], iron reduction coupled to acetate oxidation and
biomass growth at an uranium bioremediation experimental
research site. The Old Rifle UMTRA site is on a flood plain of
the Colorado River, and the shallow unconfined aquifer at the
site is in an alluvium layer approximately 7 m thick with the
average water table at ~4 m depth. The aquifer is contami-
nated by residual uranium leached from the removed mill
tailings (Anderson et al., 2003; Chang et al., 2005; Vrionis
et al., 2005), transported by groundwater as hexavalent U(VI)
with maximum concentrations c. 300 mg l-1. The aquifer is
typically characterized by low dissolved oxygen (< 0.2 p.p.m.)
and nitrate (< 0.25 p.p.m.). Additional description of the site
hydrogeology and geochemical characterization can be
found in Anderson and colleagues (2003).

For both the empirical Monod and genome-scale models,
we used the steady 1-D flow and transport modelling speci-
fication of Yabusaki and colleagues (2007), in which a Darcy
flux of 0.075 m day-1 and a dispersivity of 0.95 m were cali-
brated with the bromide tracer data for the 2002 experiment.
A uniform porosity of 0.27 was assumed based on previous
characterization (DOE, 1999). The 1-D model represents the
gallery of 20 fully penetrating injection wells as an upgradient
boundary at which the injected acetate solution was assumed
to be completely mixed with inflowing groundwater over the
full saturated thickness and injection gallery width. Repre-
senting a 3-D system as 1-D also assumes that groundwater
flow and reactive transport behaviour is uniform vertically and

laterally within the experimental domain, which implies that
physical and chemical heterogeneities in the directions
orthogonal to the 1-D domain are neglected. Such variability
exhibits itself in variations between observed tracer and reac-
tive solute concentrations at different wells the same distance
from the injection point (Fig. 6), thus implying that this model
attempts to simulate observed concentrations at each of
three sets of monitoring wells (as indicated in Fig. 5) only in
an average sense. The 1-D domain downgradient of the
injection gallery is discretized with 120 uniform 0.3-m-long
grid cells (a total simulation distance of 36 m). The three sets
of monitoring wells are located 3.7, 7.3 and 14.6 m downgra-
dient of the injection gallery. The initial aqueous concentra-
tions (and inflow concentrations at the upgradient model
boundary) were set at 70 mM for Fe(II) and 1.0 mM for U(VI),
based on measured concentrations at background wells
(upgradient of the injection gallery). In the empirical Monod
model, NH4 is considered to be non-limiting.

The reaction systems for the two models differ primarily in
terms of how the rate of Fe(III) reduction (coupled to acetate
utilization) is defined, whether biomass is explicitly modelled
and how the microbial yield coefficient is specified. The origi-
nal, empirical Monod model (Yabusaki et al., 2007) does not
directly simulate changes in biomass (in other words, reac-
tion rates are not biomass-dependent), but does use an
assumption of constant biomass yield in specifying the sto-
ichiometry of microbially mediated reactions. That stoichiom-
etry is energetics-based (Rittmann and McCarty, 2001) under
the assumption of a biomass molecular formula of C5H7O2N
and an energy-transfer efficiency value of 0.6. In contrast,
the coupled model explicitly calculates biomass yield under
varying conditions (as represented in Fig. 2) and tracks
changes in biomass over time, and the rates of microbially
mediated reactions are specified per unit of biomass. Accord-
ingly, in the coupled model it is necessary to specify the initial
biomass concentration, which was assumed to be 5 ¥ 105

cells ml-1. As no direct experimental observations are avail-
able, this value was treated as a calibration parameter.
However, the value selected is consistent with Geobacter
concentrations observed in carbon-poor surficial aquifers
(Holmes et al., 2007). Also, because of heterogeneity and
local diffusion gradients at the pore scale, solutes are not fully
mixed at the field scale as they are in the chemostat experi-
ments on which microbial uptake rates were based. There-
fore, we reduced the uptake rates for acetate, iron and
ammonium by one order of magnitude to generate the
look-up table used for the field-scale simulation.

The reaction for Fe(III) reduction in the original Yabusaki
and colleagues (2007) model is

0 125 0 6 1 115 0 02
0 02 0 6

3 4. . . .
. .
CH COO FeOOH s H NH

BM_iron F

− + ++ ( ) + +
= + ee H O HCO2

2 30 96 0 15+ −+ +. .

The reaction for U(VI) reduction is given by

0 125 0 775 0 3538 0 0113
0 0113
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+

−
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The rate of acetate utilization in the original model is
given by the sum over multiple double Monod terms, each
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representing a particular terminal electron acceptor as
follows (Yabusaki et al., 2007):
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where NeA = number of terminal electron acceptors,
Cc = acetate concentration, CeA = terminal electron acceptor
concentration, mm,eA = acetate oxidation rate coefficient for the
terminal electron acceptor, Ks,C = half-saturation coefficient
for acetate, Ks,eA = half-saturation coefficient for the terminal
electron acceptor.

ceA is the indicator coefficient for using the terminal electron
acceptor, which is not related to thermodynamics and is
determined by the concentration of the precedent terminal
electron acceptor, which is more energetically favourable.
Several parameters in this system were estimated using a
stepwise calibration approach as described by Yabusaki and
colleagues (2007), and Y. Fang, S.B. Yabusaki, S.J. Morrison,
J.P. Amonette and P.E. Long (in preparation). In the original
model (Yabusaki et al., 2007), three terminal electron accep-
tors were considered [Fe(III), U(VI) and sulfate], but here we
consider only the early portion of the simulation dominated by
Fe(III) and U(VI) reduction, prior to onset of sulfate reduction.
The rate of consumption/generation of other species [e.g.
NH4, Fe(II)] is then computed from the acetate utilization rate
using the reaction stoichiometry and assumed constant
energy-transfer efficiency.

In the coupled genome scale/reactive transport model, the
rate formulation above is replaced by the rate of acetate
utilization coupled to Fe(III) reduction extracted from the pre-
computed look-up table based on the genome-scale meta-
bolic model. The same approach described above was used
to create the look-up table based on the genome-scale meta-
bolic model simulations, except that the ranges considered
for the three substrates [acetate, Fe(III) and NH4] were
changed to reflect the range of concentrations at the field site.
In the case of NH4, no field observations were available, so a
background concentration of 1.0 mM was assumed. Concen-
trations of aqueous uranium [U(VI)aq] are very small relative
to the abundance of other electron acceptors [in this case,
Fe(III)]. Therefore, it is typically assumed that uranium reduc-
tion does not contribute significantly to the metabolism of
metal-reducing microbial populations. Accordingly, the exist-
ing genome-scale metabolic model of G. sulfurreducens does
not explicitly consider pathways for U(VI) reduction. There-
fore, the U(VI) reduction rate for the coupled model was
calculated based on the acetate and U(VI) concentrations
using the same double-Monod rate model as the original
model. Differences between the original and coupled model
in terms of simulated uranium concentrations result indirectly
from differences in acetate utilization rates coupled to iron
reduction between the Monod kinetic and genome-based
models.
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