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Abstract: Thin structures are often required for several engineering applications. Although thick
sections are relatively easy to produce, the cutting of thin sections poses greater challenges, par-
ticularly in the case of thermal machining processes. The level of difficulty is increased if the thin
sections are of larger lengths and heights. In this study, high-aspect-ratio thin structures of mi-
crometer thickness (117–500 µm) were fabricated from D2 steel through wire electrical discharge
machining. Machining conditions were kept constant, whereas the structure (fins) sizes were varied
in terms of fin thickness (FT), fin height (FH), and fin length (FL). The effects of variation in FT, FH,
and FL were assessed over the machining errors (FT and FL errors) and structure formation and its
quality. Experiments were conducted in a phased manner (four phases) to determine the minimum
possible FT and maximum possible FL that could be achieved without compromising the shape of the
structure (straight and uniform cross-section). Thin structures of smaller lengths (1–2 mm long) can
be fabricated easily, but, as the length exceeds 2 mm, the structure formation loses its shape integrity
and the structure becomes broken, deflected, or deflected and merged at the apex point of the fins.

Keywords: wire electric discharge machining; machining; thin structures; deflection; D2 steel;
fin thickness; fin length; fin height

1. Introduction

Thin-walled structures are fundamental to a range of microfeatures required in various
work materials [1]. The growing need for thin-walled structures is due to their capability
for high heat dissipation and their light weight ratios [2]. Such structures are used widely
in several engineering applications in the automotive, aerospace, biomedical, submarine,
and other industries [3]. The high aspect ratio of thin structures is an additional requirement
in such applications [4]. Thin microfeatures are fabricated by several manufacturing
methods, including forming [5], additive manufacturing [6], welding [7], extrusion [8],
investment casting [9] and machining, such as milling [10].

Various researchers employ micromilling to produce deep features within thin walls.
However, the formation of burrs is a common limitation of micromilling. Burr formation
occurs even in low aspect ratio structures (3:1), necessitating a secondary operation for
burr removal. This increases the processing time and the production cost. Tool preparation
is another limitation of the micromilling of thin features; if a tool wears out or a rupture
occurs, further tool preparation becomes necessary [11]. To reduce the chances of tool
failure, Xia et al. [4] employed laser-assisted micromilling to produce microgrooves in
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titanium alloy with an aspect ratio of 5.4. They reported a wall thickness of 500 µm using
the laser-assisted milling.

Miranda et al. [12] used selective laser melting to fabricate thin plates of 0.3 mm width
and 5 mm height (aspect ratio of ~17) from titanium alloy. Sudarsan et al. [13] used a
stamping operation to create microchannels in ultra-thin steel sheets. They reported that
they could produce microchannels of 1.5 mm width and 0.46 mm depth without any signs
of deflection, buckling, and wrinkling. Electrochemical machining is another method that
has been reported to produce microfins in copper. The geometry and accuracy of the fins
remained under control for a low aspect ratio. The fabrication of long fins or channels
has been reported as being challenging because of the difficulties of tool penetration and
consequent accumulation of melt debris inside the machined features [14]. Laser machin-
ing is another commonly used process for producing thin walled structures; however,
creating features with a high aspect is challenging. Oh et al. [15] used laser machining to
produce microgrooves with an aspect ratio of 10 in stainless steel. However, Zhou et al. [16]
stated that the fins or channels produced using laser beam machining are of low depth
because of the difficulty in propelling of melt debris. Spatter dispersion during laser ma-
chining also affects the quality of machined features, in addition to that of the neighboring
areas [17]. Abrasive water jet machining can be employed to produce structures with a
high aspect ratio; however, the length and depth of such structures is limited because the
features are damaged by high mechanical forces [18].

Wire electric discharge machining (WEDM) is a process that offers a huge cush-
ion for fabricating complex features with good geometrical accuracy [19]. For example,
Cheng et al. [20] used WEDM to manufacture a micromilling tool with a corner radius
error of ±2 µm. The wires commonly used in the WEDM process are made of brass and
molybdenum [21,22]. However, the use of molybdenum wire is more common in the
cutting industry as compared to brass wire it offers a low wear rate and can be used
repeatedly [23,24].

Different process responses and feature behavior has been reported for both thick and
thin sections cut using WEDM [25]. The teeth of miniaturized gears can be considered to
be thin structures in which it is important to retain a uniform and straight tooth geom-
etry [26]. Liao et al. [27] reported that it is easier to fabricate single microfeatures using
WEDM; however, if the structures are to be produced repeatedly in the form of structure
arrays, the process becomes complicated and maintaining feature geometry is difficult.
Hourmand et al. [28] used EDM to fabricate a microtool of 4.7 mm length that was used
to produce a hole through die-sinking EDM. Zahiruddin et al. [29] reported that thermal
deformation occurs in the thin structures produced through WEDM. The deformation
curvature was found to be nonlinear due to the nonlinear distribution of thermal stresses.
Zhange et al. [30] used WEDM to cut microbeams with an aspect ratio of 10 in tool steel.
A high amount of deformation and deflection from the neutral axis has also been reported.

The literature also addresses the optimization of process parameters to achieve a defi-
nite length or depth of the machined feature [31]. Ahmed et al. [32] proposed an optimized
set of WEDM parameters to produce large surface area microchannels in a copper substrate.
They reported that straight fins of 939 µm length without deflection can be produced using
the optimized parameters. In the case of using WEDM with tungsten carbide, the highest
aspect ratio of 45 has been reported by [33] who prepared a microtool for die-sinking EDM.
Azarsa et al. [34] proposed an optimized combination of abrasive water jet machining to
produce thin structures in aluminum alloy. They produced free-standing fin structures,
similar to the structures proposed in our present study. They machined the fins in two
different plates of thicknesses 6 mm and 12 mm, which suggests that the fin heights (FHs)
were 6 mm and 12 mm.

The literature reveals that the formation or machining of thin structures is of great
importance in the manufacturing industry. Machining processes are used to produce thin
structures, and optimized parameters are recommended to produce structures of good
quality. Achieving a high aspect ratio is the common concern of machinists. We were
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unable to find any studies discussing the effect of variation in feature length, thickness,
and height, particularly for thin structures with a high aspect ratio produced using WEDM.
In this study, we produced free-standing thin structures (microthickness fins) from D2 steel
using WEDM. We first identified the optimized parameters for cutting D2 steel and then
produced the thin structures under the constant machining conditions of molybdenum
wire EDM. The novelty of this study is that we have investigated the effect of varying
sizes of free standing fins over the fin quality and machining errors while keeping the
machining parameters at constant levels. To achieve values of minimum thickness and
maximum length and height the fins are produced with a thickness variation of 1–0.3 mm,
a height variation of 10–30 mm, and a length variation of 1–40 mm. Thin structures with a
straight and uniform profile and no deflections can be produced with an aspect ratio of 40
(20 mm length and 500 µm thickness) for FHs of 10–30 mm. However, regardless of FH,
structures with an aspect ratio of 80 (40 mm length and 500 µm thickness) exhibit a slight
deflection at their free ends.

2. Materials and Methods

We chose D2 steel as the work material for cutting thin structures through WEDM.
As EDM is a process that not only depends on the machining parameters but also is one
in which the performance is a function of thermoelectric properties of the material to
be cut, the elemental composition and the important properties of D2 steel are shown
in Tables 1 and 2, respectively. Thin structures, known as “fins,” of various sizes were
produced. A fin has three conventional dimensions: fin thickness (FT), fin length (FL),
and FH. We have taken these dimensions to be the research variables. We varied each of
these three fin dimensions to study the fin quality. FT was varied from 1 mm to 0.3 mm
in equal increments of 0.1 mm from the preceding value. This produced seven levels of
FT. Similarly, we produced seven levels of FL, with each new FL being larger than the
preceding FL. For example, we produced five FLs of 2, 4, 6, 8, and 10 mm at increments of
2 mm. For longer fins, we then doubled the length, e.g., 20 mm and 40 mm. We took FH at
three levels: 10 mm, 20 mm, and 30 mm. We used three workpieces of different thicknesses.
Therefore, as shown schematically in Figure 1, FHs of 10, 20, and 30 mm were the workpiece
thicknesses. We evaluated machining performance in terms of three response measures:
the FT error (FT_e), the FL error (FL_e), and the fin quality. Table 3 shows all of these
variables and responses, in addition to the machining parameters. The FT_e is the difference
between the designed values and actual machined values of FT. Similarly, the FL_e is the
difference between the designed and actual machined lengths. Fin quality varies as the
fin dimensions are varied. Our aim was to obtain fin structures with minimum possible
thickness and maximum possible length without any damage in respect of the straightness
and cross-section of the structures. We observed damage in terms of deflection, ruptures at
the top end, and fins that were straight at the base but were deflected and merged at the
top. For ease of analysis, we classified and coded the fin quality characteristics numerically.
The classification and the corresponding codes are shown in the last column of Table 3.

Table 1. Elemental composition of D2 steel [35].

Elements C Si Mn Mo Cr Ni V Co Fe

Contents % 1.5 0.3 0.3 1 12 0.3 0.8 1 Balance
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Table 2. Physical, mechanical, and thermal properties of D2-grade tool steel [36].

Physical Properties Mechanical Properties Thermal Properties

Properties Value (Units) Properties Value (Units) Properties Value (Units)

Density 7.7 × 1000
kg/m3

Hardness,
Rockwell C 62

Thermal
expansion

(20 ◦C)

10.5 × 10−6

◦C−1

Melting
point 1421 ◦C Hardness,

Vickers 748
Thermal

conductiv-
ity

20 W/mK

Poisson’s
ratio 0.27–0.30

Elastic
modulus 190–210 GPa
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Table 3. Constant machining conditions, variables, and responses set to cut thin structures in D2 steel.

Constant Machining Conditions

Parameter Value

Machine EDM E-7735

Wire Molybdenum

Wire diameter (mm) 0.2

Discharge current; I (A) 2

Spark voltage (V) 160

Wire feed 37

Pulse on time (µs) 40

Pulse off time (µs) 40

Variables

Variable name Levels

Fin thickness; FT (mm) 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3

Fin height; FH (mm) 10 20 30

Fin length; FL (mm) 1 2 4 6 8 10 20 40

Responses

Response name

Fin thickness error; FT_e (µm)

Fin length error; FL_e (µm)

Fin quality

Classification Code

Straight 1

Straight with slight deflection 0

Deflected −1

Deflected and merged at the top end −2

Straight but broken at the top end −3

Broken −4
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As our aim was to evaluate the effect of fin dimensions over the quality of fin structures,
we produced all the structures under constant machining conditions, as shown in Table 3.
Before we fabricated the fins, we conducted several trial experiments on D2 steel to make
simple cuts. We sought to identify parameters that would result in high cutting speed
and minimum wire rupture. We kept these machining parameters constant throughout
the experimentation. In this way, the effects of WEDM parameters on the fin quality
were minimized and unified. The experimentation was conducted in a phased manner.
Figure 2 shows the research methodology, and Figure 3 presents the schematic of the
phased experimentation. In the first phase of experimentation, fins were produced from a
work plate of 10 mm (FH 10 mm). During this phase, an FL of 1 mm was kept constant.
The only variable was FT, which started at 1 mm. After each cut, we reduced the FT
gradually, in 0.1 mm increments, until it was no longer possible to achieve a thickness
value. It can be said that the first phase of experimentation is the screening of FT that can
possibly be fabricated in D2 steel. We took the FT value that we obtained after the first
phase was taken as the input of the second phase. In the second phase, FT was kept at
constant level and FL was varied, as shown in Table 3. From the 10 mm–thick work plate,
we produced seven fins of 2, 4, 6, 8, 10, 20, and 40 mm in length. We repeated production
of the same set of fins in the second and third plates of 20 mm thickness (FH 20 mm) and
30 mm thickness (FH 30 mm), respectively. The observations from the second phase led to
the third phase of experimentation, in which FL and FH were kept at constant levels and
FT was varied again. This enabled further fine turning of the FT was carried out based on
the fin quality characteristics. A designed FT (FT_d) of 0.8 mm was considered to be the
input of the fourth phase of experimentation. The fourth phase of experimentation follows
the same pattern as in the case of 2nd phase. The only difference is the FT. The flowchart
in Figure 2 and the detailed schematic of the phase-wise experimentation in Figure 3 may
help in understanding the experimental scheme.
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Structure Variables

1st Phase
FL 1 mm
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Minimum FT with
straight fin

Fin Thickness Error
(FT_e)

Fin Length Error
(FL_e)

Fin Quality

Structure Responses

1. Broken
2. Straight and broken
3. Straight
4. Straight with slight deflection
5. Deflected
6. Deflected and merged

2nd Phase
FL 2, 4, 6, 8, 10, 20, 40 mm

FH 10, 20, 30 mm
FT 0.4 mm

Fin Quality

3rd Phase
FL 10 mm
FH 10 mm

FT 0.5, 0.6, 0.7, 0.8 mm
Fin Quality

4th Phase
FL 2, 4, 6, 8, 10, 20, 40 mm

FH 10. 20, 30 mm
FT 0.8 mm

Fin Quality

Deflected and merged fins

Minimum FT is 0.4 mm

Straight fins with FT 0.8 mm

Quality
Thin Structures

Straight fins of length 2=20 mm and varying height

Figure 2. Research methodology to fabricate high aspect ratio thin structures in D2 steel through wire electric discharge
machining (WEDM).



Micromachines 2021, 12, 1 7 of 21

Micromachines 2020, 11, x 6 of 20 

 

 
Figure 3. Layout of high aspect ratio thin structures with respect to phased experimentation 
(dimensions are not to scale). 

We measured the machined fins using a coordinate measuring machine) with a measurement 
resolution of 1 µm. FT was measured at three points on each fin, and the average values were 
recorded. The difference between the designed and the machined thickness results in FT_e. Similarly, 
we measured the FLs, and the difference between the designed and machined lengths is FL_e. It must 
be noted that two fins were produced in each experimental run to ensure repeatability of the 
machining and measurement. 

3. Results and Discussion 

Following the experimentation under constant machining conditions we conducted 
measurement and analysis. Table 4 shows the experimental results pertaining to each of the four 
phases of experimentation. They consist of FH, FT_d, designed FL (FL_d), machined FT (FT_m), 
machined FL (FL_m), FT_e, FL_e, fin quality (classification), and fin quality codes. Figure 4 shows 
thin structures (fins) produced in different work samples of D2 steel using WEDM, with front and 
top views provided. The produced fins can be seen to be either straight, deflected, or straight with 
deflection at the free end. However, some of the fins were broken at the free end. We performed 
microscopic analysis of each of the fin structures. Moreover, we have graphically presented the effect 
of varying feature sizes over the machining error and fin quality. The subsequent sections 
categorically discussed the detailed analysis of each of the experimental phases. 

Table 4. Experimental results of thin structures produced in D2 steel. 

Exp. 
No 

FH 
(mm) 

FT_d 
(mm) 

FL_d 
(mm) 

FT_m 
(mm) 

FL_m 
(mm) 

FT_e 
(µm) 

FL_e 
(µm) 

Classification and Code 

First Phase 
1 

10 

1 

1 

0.733 0.992 267 8 Straight 1 
2 0.9 0.635 0.993 265 7 Straight 1 
3 0.8 0.537 0.984 263 16 Straight 1 
4 0.7 0.436 0.988 264 12 Straight 1 
5 0.6 0.338 0.984 262 16 Straight 1 
6 0.5 0.203 0.984 297 16 Straight 1 
7 0.4 0.117 0.98 283 20 Straight 1 

8 0.3     
Straight and 

broken 
−3 

        

9 0.39     Broken −4 

10 0.38     Broken −4 

Figure 3. Layout of high aspect ratio thin structures with respect to phased experimentation (dimensions are not to scale).

We measured the machined fins using a coordinate measuring machine) with a mea-
surement resolution of 1 µm. FT was measured at three points on each fin, and the average
values were recorded. The difference between the designed and the machined thickness
results in FT_e. Similarly, we measured the FLs, and the difference between the designed
and machined lengths is FL_e. It must be noted that two fins were produced in each
experimental run to ensure repeatability of the machining and measurement.

3. Results and Discussion

Following the experimentation under constant machining conditions we conducted
measurement and analysis. Table 4 shows the experimental results pertaining to each
of the four phases of experimentation. They consist of FH, FT_d, designed FL (FL_d),
machined FT (FT_m), machined FL (FL_m), FT_e, FL_e, fin quality (classification), and fin
quality codes. Figure 4 shows thin structures (fins) produced in different work samples of
D2 steel using WEDM, with front and top views provided. The produced fins can be seen
to be either straight, deflected, or straight with deflection at the free end. However, some
of the fins were broken at the free end. We performed microscopic analysis of each of the
fin structures. Moreover, we have graphically presented the effect of varying feature sizes
over the machining error and fin quality. The subsequent sections categorically discussed
the detailed analysis of each of the experimental phases.
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Table 4. Experimental results of thin structures produced in D2 steel.

Exp.
No

FH
(mm)

FT_d
(mm)

FL_d
(mm)

FT_m
(mm)

FL_m
(mm)

FT_e
(µm)

FL_e
(µm) Classification and Code

First Phase

1

10

1

1

0.733 0.992 267 8 Straight 1

2 0.9 0.635 0.993 265 7 Straight 1

3 0.8 0.537 0.984 263 16 Straight 1

4 0.7 0.436 0.988 264 12 Straight 1

5 0.6 0.338 0.984 262 16 Straight 1

6 0.5 0.203 0.984 297 16 Straight 1

7 0.4 0.117 0.98 283 20 Straight 1

8 0.3 Straight and broken −3

9 0.39 Broken −4

10 0.38 Broken −4

Second Phase (FH 10 mm)

1

10 0.4

2 0.118 1.522 282 478 Straight and broken −3

2 4 0.12 3.579 280 421 Deflected −1

3 6 0.119 5.524 281 476 Deflected and merged −2

4 8 0.107 7.42 293 580 Deflected and merged −2

5 10 0.115 9.424 285 576 Deflected and merged −2

6 20 0.113 19.358 287 642 Deflected and merged −2

7 40 0.086 39.188 314 812 Deflected and merged −2

Second Phase (FH 20 mm)

1

20 0.4

2 0.123 1.529 277 471 Straight and broken −3

2 4 0.188 3.58 212 420 Deflected −1

3 6 0.141 5.476 259 524 Deflected and merged −2

4 8 0.109 7.503 291 497 Deflected and merged −2
5 10 0.137 9.505 263 495 Deflected and merged −2

6 20 0.116 19.398 284 602 Deflected and merged −2

7 40 0.117 39.199 283 801 Deflected and merged −2

Second Phase (FH 30 mm)

1

30 0.4

2 0.145 1.407 255 593 Straight and broken −3

2 4 0.135 3.467 265 533 Deflected −1

3 6 0.135 5.304 265 696 Deflected and merged −2

4 8 0.133 7.266 267 734 Deflected and merged −2

5 10 0.141 9.154 259 846 Deflected and merged −2

6 20 0.131 19.145 269 855 Deflected and merged −2

7 40 0.123 38.996 277 1004 Deflected and merged −2
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Table 4. Cont.

Exp.
No

FH
(mm)

FT_d
(mm)

FL_d
(mm)

FT_m
(mm)

FL_m
(mm)

FT_e
(µm)

FL_e
(µm) Classification and Code

Third Phase

1

10

0.5

10

0.197 9.755 303 245 Deflected and merged −2

2 0.6 0.328 9.858 272 142 Deflected −1

3 0.7 0.424 9.988 276 12 Slight Deflection 0

4 0.8 0.517 9.991 283 9 Straight 1

Fourth phase (FH 10 mm)

1

10 0.8

2 0.537 1.994 263 6 Straight 1

2 4 0.522 3.992 278 8 Straight 1

3 6 0.516 5.994 284 6 Straight 1

4 8 0.502 7.996 298 4 Straight 1

5 10 0.502 9.993 298 7 Straight 1

6 20 0.506 19.996 294 4 Straight (Slight
Deflection) 0

7 40 0.486 39.884 314 116 Deflected −1

Fourth phase (FH 20 mm)

1

20 0.8

2 0.514 1.995 286 5 Straight 1

2 4 0.512 3.996 288 4 Straight 1

3 6 0.491 5.992 309 8 Straight 1

4 8 0.472 7.991 328 9 Straight 1

5 10 0.466 9.994 334 6 Straight 1

6 20 0.454 19.989 346 11 Straight (Slight
Deflection) 0

7 40 0.447 39.895 353 105 Deflected −1

Fourth phase (FH 30 mm)

1

30 0.8

2 0.502 2 298 0 Straight 1

2 4 0.485 3.998 315 2 Straight 1

3 6 0.484 5.994 316 6 Straight 1

4 8 0.482 7.992 318 8 Straight 1

5 10 0.488 9.996 312 4 Straight 1

6 20 0.494 19.994 306 6 Straight (Slight
Deflection) 0

7 40 0.469 39.896 331 104 Deflected −1



Micromachines 2021, 12, 1 10 of 21

Micromachines 2020, 11, x 8 of 20 

 

1 

20 0.8 

2 0.514 1.995 286 5 Straight 1 
2 4 0.512 3.996 288 4 Straight 1 
3 6 0.491 5.992 309 8 Straight 1 
4 8 0.472 7.991 328 9 Straight 1 
5 10 0.466 9.994 334 6 Straight 1 

6 20 0.454 19.989 346 11 
Straight (Slight 

Deflection) 
0 

7 40 0.447 39.895 353 105 Deflected −1 

Fourth phase (FH 30 mm) 
1 

30 0.8 

2 0.502 2 298 0 Straight 1 
2 4 0.485 3.998 315 2 Straight 1 
3 6 0.484 5.994 316 6 Straight 1 
4 8 0.482 7.992 318 8 Straight 1 
5 10 0.488 9.996 312 4 Straight 1 

6 20 0.494 19.994 306 6 
Straight (Slight 

Deflection) 
0 

7 40 0.469 39.896 331 104 Deflected −1 

 
Figure 4. Actual fin structures fabricated on different plates of D2 steel through WEDM. Structures 
from (a) first phase, (b) second phase, (c) third phase, and (d) fourth phase of experimentation. 

  

Figure 4. Actual fin structures fabricated on different plates of D2 steel through WEDM. Struc-
tures from (a) first phase, (b) second phase, (c) third phase, and (d) fourth phase of experimentation.

3.1. Analysis of First Phase

As the first phase of experimentation was to screen for the minimum possible FT
of fins to be produced, our main criterion was to produce straight fins with minimum
possible thickness. During the first phase, FL was kept constant, at a very small value of
1 mm. However, we stepped the FT down from 1 mm to 0.3 mm at step intervals of 0.1 mm.
We kept the FH at a constant value of 10 mm (work plate thickness). Figure 5 presents our
graphical analysis of FT_e, FL_e, and fin classification. The primary vertical axis represents
machining errors whereas the secondary axis represents the fin classification, coded as
per Table 3. One can that the fins remain straight (straight fins are coded as “1”) as the
thickness is reduced from 1 mm to 0.4 mm. However, as can be seen from microscopic
images in Figure 6, at a designed thickness of 0.3 mm, fins that were broken at the top end
were produced. A broken fin is coded as “−3” (for coding, refer to Table 3). We extended
the screening further to create fins of 0.39 mm and 0.38 mm thickness; however, as shown
in Figure 6b, the fabricated fins were broken. Thus, we can infer that 0.4 mm is the suitable
designed fin thickness (FT_d) to achieve straight fins without rupture or deflection.
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With reference to machining error in fin thickness (FT_e), one of the main reasons is
the inappropriate selection of the offset during WEDM. In this study, zero offset is taken
for all the experiments and thus the error caused by inappropriateness of offset can stay at
the constant level. Another reason is the fin thickness to be produced. The larger the fin
thickness is, the more available material to absorb and distribute thermal energy. In this
way the energy density is low and a controlled amount of material removal is achieved.
On the other hand, for small fin thicknesses the energy density is high due to the availability
of less amount of work material under electric discharges. Therefore, excessive material is
removed and consequently more error is resulted as compared to thick fins. As it can be
seen from Figure 5, the error remains uniform at ~250 µm when FT is set from 1 mm to
0.6 mm. The error slightly jumps at ~300 µm when the FT value passes 0.6 mm and reaches
0.4 mm. This FT_e is the undercut caused by the kerf width due to offsetting associated
with the WEDM process. As the machining conditions were kept constant, zero offset
was taken throughout the experimentation to maintain the uniformity of the machining
results. Conversely, FL_e was found to be very small compared to FT_e. The reason behind
this is the extremely high values of fin length (multiple millimeters) as compared to fin
thickness (1 or less than 1 mm). The difference or error in material removal is insignificant
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with respect to length whereas the difference or error is noticeable in case of thickness.
However, as the FT is reduced the FL_e tends to increase slightly. This increase in FL_e is
the result of either the deflection that occurs during fin formation or the fin breakage at the
tip (overall length reduction). Thus, we have found that thin structures of 0.4 mm designed
thickness (and ~150 µm actual thickness) can be successfully produced if the FL is selected
as 1 mm.

3.2. Analysis of Second Phase

After the first phase of experimentation, we identified 0.4 mm as the suitable FT_d to
machine 1 mm long fins with a height of 10 mm. What about the fin quality if the FL and FH
are increased? To answer this question, we designed the second phase of experimentation,
in which the designed value of FT was kept constant at 0.4 mm whereas the FHs and FLs
were varied. This variation in two aspects (length and height) was taken one at a time.
For example, in the first step of the second phase, we kept FT and FH constant at 0.4 mm
and 10 mm, respectively, and only varied FL in the sequence of 2, 4, 6, 8, 10, 20, and 40 mm
(as shown in Figure 3). Similarly, in the second step, we took an FT of 0.4 mm and an FH of
20 mm as constant and varied FL. We repeated this pattern in the third step, with an FT of
0.4 mm and an FH of 30 mm.

Figure 7 graphically illustrates the effect of varying fin sizes over the machining errors
and fin classification. Figure 7a displays the effect of variation in FL over the machining
responses when the FT and FH are 0.4 mm and 10 mm, respectively. One can see that the
FT_e remains almost the same for the entire range of FL. As shown in Table 4, the FT_e
fluctuates within 280–290 µm until the FL reaches 20 mm. However, the FT_e exceeds
310 µm when a 40 mm long fin is produced. On the other end, we found the machining
FL_e to be 480 µm against an FL of 2 mm. At 2 mm FL, we found the fin classification to be
coded as “−3”, indicating that the fin is broken at the top end resulting in length reduction
and high machining error. As the FL reaches 4 mm the structure of the fin is not broken,
but the fin is deflected at the top end. That is why the value of FL_e is reduced and the
classification code reaches “−1” (deflection code). Beyond an FL of 6–40 mm (long fins)
the FL_e increases continuously (Figure 7a), and all these FLs acquire a classification code
of “−2”, indicating that the fins are both deflected and merged at the free ends. As shown
in Figure 7b,c, similar behavior was noticed when the FLs were varied in the cases of
20 mm FH and 30 mm FH. Hence, the machining responses are prone to FL, and there is
no considerable effect of FH over the machining responses.

We conducted microscopic analysis to elucidate the reason for the said behavior.
Figures 8–10 show the selected microscopic images of the machined structures produced
with different FHs and FLs. Figure 8 depicts 10 mm FH. Figure 8a shows that the machined
structures with 2 mm designed length were straight, though the actual length was less
than the designed length. Fins were broken at the top. The FT_d was kept constant at
0.4 mm, whereas the thickness of the actual machined fins was approximately 120 µm
(~280 µm is the machining FT_e). When the wire completes its travel on the left-hand
side of the fin, the structure is thick (solid block at the right-hand side) and the discharge
energy dissipates toward the thick side of the cut. As the wire begins its travel to the
right-hand side of the previous cut, the structure tends to become thin and fin formation
is initiated. At this point, the discharge energy produced under the electric discharges
must be dissipated toward the moving wire and the thin portion of the formed structure
(~120 µm thin). Under the high temperature of discharge energy, the thin portion at the
top end begins to melt during cutting. In this way, a needle-like tip is produced at the top
end, as shown in Figure 8a. This phenomenon at the apex of the fins is unchanged when
FL is further increased, as shown in Figure 8b, where the FL is 4 mm. The fins are also
melted and broken at the tip.
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During the process of electric erosion, a plasma plume or a plasma channel with high
pressure and temperature (>10,000 ◦C) is produced inside the localized sparking area.
Thus, the workpiece being machined experiences high plasma pressure [37], which pro-
duces micro/nanoforces (non-macroforces) [30]. The plasma pressure and forces are shared
by the wire electrode and the machined feature. The effects of such pressure and forces
may be negligible when machining a thick feature. However, this effect is significant if the
feature to be machined is a thin feature of micrometer thickness, and it produces geomet-
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rical inaccuracies and structural bending due to thermal deformation [38]. The bending
phenomenon becomes more prominent as the length of the structure is increased further.
When the FL is increased from 2 to 4 mm, an individual fin acts like a hanging and free-
end structure (like a cantilever beam). Thus, under the action of microforces and plasma
plume pressure the extended structure is deflected at the upper end. As the machined
structure also experiences localized heating and softens, there is a slight deflection at the
thin, soft, and extended region of the fin. Miller et al. [39] cut thin cross-sections in pure
titanium using WEDM and reported that the cut sections bent noticeably at the upper end.
Similar results were observed when the FLs were increased further from 4 mm to 40 mm
(Figure 8c–f). As the length increased, the deflection became more prominent. Each of the
fabricated thin structures of 6, 8, 10, 20, and 40 mm in length were deflected at the upper
part and merged at the apex. We have termed this classification of structures as “deflected
and merged” and coded it as “−2”. Each of these fins remained straight at the bottom end
but tended to deflect and merge at the point where fin formation started. We observed
similar behavior when cutting these structures with FHs of 20 mm and 30 mm. The selected
microscopic images associated with FH 20 mm and FH 30 mm are shown in Figures 9 and
10, respectively. The results suggest that the formation of thin structures is not seriously
dependent on the FH but, rather, depends on the FT and the FL. The results of the second
phase of experimentation, suggest that 0.4 mm FT_d is not a perfect choice if the aim is to
produce high aspect ratio thin structures of more than 1 mm in length.

3.3. Analysis of the Third Phase

As we found the fins with a designed thickness of 0.4 mm to be broken at the top end
and observed deflection, an FT_d of 0.4 mm is not suitable, particularly for high aspect ratio
and long fin structures (FL more than 2 mm). Therefore, we carried out the third phase of
experimentation to further screen out and tune the most suitable FT_d. As the problem
with the structures is more serious in long fins, in this phase of the experimentation,
we conducted the screening of FT for fins of 10 mm in length. The FT_d was varied
from 0.5 mm until we could obtain straight fins without any deflection. Figure 11 present
the experimental results graphically, and Figure 12 shows the microscopic images of the
fabricated fins. As can be seen from Figure 11, when the FT_d is set at 0.5 mm, the error in
FT is 300 µm and the error in FL is 240 µm. This indicates that the fins were again broken
at the top and are also merged at the tip (as also shown in Figure 12a). For this reason,
both errors were found to be high. The corresponding classification code is “−2” which is
equivalent to “deflected and merged fins.” As the fin thickness was increased to 0.6 mm,
there was a noticeable reduction in the values of both FT_e and FL_e. However, the fins
were again bent at the top, as shown in Figure 12b. The corresponding classification code
is “–1” which is equivalent to “deflected fins.” With 0.7 mm-thick fins, there was an abrupt
reduction in FL_e. An error of just 12 µm was obtained in FL. However, the value of
FT_e remained almost unchanged (~270 µm), due to the undercut and the nonprovision of
offsetting. As shown in Figure 12c, we obtained straight fins with only slight deflection
(classification code “0”). This phenomenon of slight deflection vanished completely when
we selected the FT_d of 0.8 mm. In this case, the value of FL_e was also further reduced.
As shown in Figure 12d, we obtained straight fins without any deflection (classification
code “1”).
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It must be noted that the machined fin thickness (FT_m) was 0.51 mm (~510 µm)
against the FT_d of 0.8 mm. Hence, we can state that an FT_d of 0.8 mm is the most suitable
thickness for obtaining straight thin structures (~510 µm thickness) without any evidence
of rupture, deflection, and merging at the entry point of the fin. So far, the above statement
holds true for 10 mm long fins with an aspect ratio of 20. Thus, in the fourth phase of
experimentation, we tested the suitability of the identified FT of 0.8 mm for fins longer
than 10 mm and with an aspect ratio of greater than 20.

3.4. Analysis of the Fourth Phase

In the third phase, we found an FT_d of 0.8 mm to be the most suitable value for
fabricating thin and long fins from 10 mm thick plate (FH 10 mm) without any rupture and
deflection. To validate the response of the said fin thickness (FT_d 0.8 mm), the fourth phase
involved for several structure lengths, ranging from 2 mm to 40 mm. We performed seven
experiments on 10 mm thick plate (FH 10 mm) and repeated the same set of experiments
with 20 mm and 40 mm thick plates (FH 20 mm and 30 mm). Figure 13 graphically
presents the machining results. As can be seen, with the increase in FL, there was a
slight increase in FT_e, though the error in FT remained between 260 µm and 310 µm.
As discussed in previous sections, the source of this machining error has been identified as
the undercut caused by zero offset setting. However, as the FH was increased from 10 mm
to 20 mm the values of FT_e approached 350 µm (Figure 13b). As the FH is increased,
the contact area of the work surface and wire increases. Larger interacting contact areas
allow discharges to occur and spread over a greater area, causing high erosion. In this way,
the thickness of the machined structures decreases as compared to the designed thickness.
Ultimately, this generates relatively more machining errors. Thus, against the FT_d of



Micromachines 2021, 12, 1 17 of 21

0.8 mm, the machined FT was observed to be 0.5 mm (500 µm), on average. With respect
to the FL_e, the difference between the FL_d and the FL_m was found to be very small,
amounting to approximately 10 µm, as shown in Figure 13. For the lengths of 2–20 mm,
the value of FL_e fluctuated around 10 µm; however, in fins of 40 mm length a noticeable
length reduction, approaching 100 µm, was attained. This difference in actual FL_m was
caused by the deflection observed in fins of 40 mm Length. That is the reason why the
trend line of the fin classification sinks from a constant horizontal line (straight fin with
code “1”) and ends at “−1”, representing the deflected fin. The trends in FT_e, FL_e and
fin classification follow a similar pattern for each of the three FHs (10, 20, and 30 mm).Micromachines 2020, 11, x 16 of 20 
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We conducted microscopic analysis of the machined structures for each of the seven
fins produced in each of the three plates. The results were similar irrespective of FH.
Therefore, Figure 14 shows only the microscopic images of 10 mm thick plate. As can
be seen from Figure 14a–c, fin structures of lengths 2–10 mm were perfectly straight and
showed no sign of rupture, deflection, and merged deflection, as was the case when the
same-sized structures were produced with an FT_d of 0.4 mm. We also found the cross
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section of each of the fins to be uniform throughout the length. When the FL reached
20 mm, we observed a minor deflection at the tip of the fin, as can be seen in Figure 14d.
However, for exceptionally long fins of 40 mm length, the fins remained straight from the
bottom to above midlength, although they tended to deflect in the upper half. Figure 14e
shows the upper halves of 40 mm long fins, and Figure 14f shows the lower halves.
This deflection was entirely different from the deflection observed in previous cases of
0.4 mm thin structures, wherein the long fins were deflected and merged at the top end.
However, at 0.8 mm FT_d the deflection did not merge in any case, not even for 40 mm
long fins (aspect ratio of 80). Moreover, such a small deflection can be rectified by combing,
if required. One can also note that we found the actual thickness of the machined structures
to be almost 0.5 mm lower than the designed thickness of 0.8 mm. Thus, we can infer
that the long thin structure of 500 µm thickness with the highest aspect ratio of 80 can be
obtained successfully without structure breakage, conjunction, bending, and deflection.
In this case, the cross sections of the free standing ends also maintained a uniform square
shape without the formation of any needlelike ends as were observed the second phase of
the experimentation. Ali and Muhammad [40] reported similar results, albeit for low aspect
ratio structures (aspect ratio 3). They developed a copper microtool and gear comprising
a repeated number of fin blades. They reported low-height blades of 1.5 mm height and
500 µm thickness cut by WEDM.Micromachines 2020, 11, x 17 of 20 
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4. Conclusions

Thin structures (long fins) of micrometer thickness with a high aspect ratio have
been produced in D2 steel through wire electrical discharge machining under constant
machining conditions. Fin thickness (FT) varied from 1 mm to 0.3 mm, fin height (FH)
varied from 10 mm to 30 mm, and fin length (FL) varied from a smaller value of 1 mm
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to an exceptionally larger value of 40 mm. The structures have been evaluated in terms
of FT error (FT_e), FL error (FL_e) and fin quality (straight fins with minimum deflection
and machining errors). Based on the results, discussion, and graphical and microscopic
analyses, we have drawn the following important inferences:

i. Fabrication of thin structures through WEDM is possible, but the structure formation
largely depends on its thickness and length provided that the WEDM conditions re-
mained constant. Thin structures are relatively more difficult to fabricate as compared
to thick structures (FT > 600 µm). It is even more difficult to fabricate thin structures
if the structure length is increased i.e., to have high aspect ratio structures.

ii. On the whole, the formation of thin structures takes four forms. The structures
are either: (1) broken at the tip point with needle-like spikes, (2) largely deflected,
(3) deflected and merged at the upper ends, (4) slightly deflected, and (5) perfectly
straight with square ends.

iii. With zero offset, constant machining conditions (as used in this study), and 1 mm
structure length (FL 1 mm), the minimum designed thickness of the structure to
ensure that it is straight without deflection is 0.4 mm, and the corresponding actual
machined fins are 117 µm thick (aspect ratio of 8.5).

iv. For structures longer than 1 mm under the designed fin thickness (FT_d) of 0.4
mm, the fins are broken at the apex and a sound thermal deflection is experienced.
The deflection is proportional to the FLs. Fins longer than 4 mm not only deflect but
also merge at their free standing ends.

v. Under the FT_d of 0.8 mm with zero offset and constant machining conditions (as used
in this study), approximately 500 µm thin structures can be produced successfully
from D2 steel (aspect ratio of 80). Under this designed fin thickness, the structures are:

a. Straight and uniform throughout the length, if the FL ≤ 10 mm;
b. Slightly deflected at the top end, if the FL is 10 mm < FL ≤ 20 mm;
c. Straight at the lower half and deflected at the upper half, if the FL ≥ 40 mm.

vi The microscopic evidence for each of the three FHs (10, 20, and 30 mm) are similar,
irrespective of whether the fins are broken, deflected, or straight. Thus, the formation
of thin structures (cross-section) is independent of their heights (FH) during the
WEDM of D2 steel plates of 10–30 mm thickness.

vii In general, fins longer than 20 mm experience relatively more machining errors (FT_e
and FL_e) as compared to errors associated with fins of less than 20 mm in length.
However, more specifically:

a. The error in fin thickness (FT_e) increases with the increase in fin length (FL)
and fin height (FH).

b. The error in fin length (FL_e) only increases with the increase in fin length (FL).
The fin height (FH) does not show a considerable effect on the fin length error
(FL_e).
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