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Sexual maturation is fundamental to the reproduction and production performance,
heterosis of which has been widely used in animal crossbreeding. However, the
underlying mechanism have long remained elusive, despite its profound biological and
agricultural significance. In the current study, the reciprocal crossing between White
Leghorns and Beijing You chickens were performed to measure the sexual maturation
heterosis, and the ovary lncRNAs and mRNAs of purebreds and crossbreeds were
profiled to illustrate molecular mechanism of heterosis. Heterosis larger than 20% was
found for pubic space and oviduct length, whereas age at first egg showed negative
heterosis in both crossbreeds. We identified 1170 known lncRNAs and 1994 putative
lncRNAs in chicken ovary using a stringent pipeline. Gene expression pattern showed that
nonadditivity was predominant, and the proportion of nonadditive lncRNAs and genes
was similar between two crossbreeds, ranging from 44.24% to 49.15%. A total of 200
lncRNAs and 682 genes were shared by two crossbreeds, respectively. GO and KEGG
analysis showed that the common genes were significantly enriched in the cell cycle,
animal organ development, gonad development, ECM-receptor interaction, calcium
signaling pathway and GnRH signaling pathway. Weighted gene co-expression
network analysis (WGCNA) identified that 7 out of 20 co-expressed lncRNA-mRNA
modules significantly correlated with oviduct length and pubic space. Interestingly,
genes harbored in seven modules were also enriched in the similar biological process
and pathways, in which nonadditive lncRNAs, such as MSTRG.17017.1 and
MSTRG.6475.20, were strongly associated with nonadditive genes, such as CACNA1C
and TGFB1 to affect gonad development and GnRH signaling pathway, respectively.
Moreover, the results of real-time quantitative PCR (RT-qPCR) correlated well with the
transcriptome data. Integrated with positive heterosis of serum GnRH and melatonin
content detected in crossbreeds, we speculated that nonadditive genes involved in the
GnRH signaling pathway elevated the gonad development, leading to the sexual
maturation heterosis. We characterized a systematic landscape of ovary lncRNAs and
mRNAs related to sexual maturation heterosis in chicken. The quantitative exploration of
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hybrid transcriptome changes lays foundation for genetic improvement of sexual
maturation traits and provides insights into endocrine control of sexual maturation.
Keywords: Heterosis, chicken, sexual maturation, ovary, lncRNA, WGCNA
INTRODUCTION

Sexual maturation is a pivotal development stage and
indispensable for achieving successful reproduction (1). The
initiation of sexual maturation is complicated, which is
contingent upon integrat ing different st imuli into
neuroendocrine and endocrine signals along the hypothalamic-
pituitary-gonadal (HPG) axis. HPG axis is shown to be under a
dual control system with a stimulatory and an inhibitory branch
(2), in which hypothalamic gonadotropin-releasing hormone
(GnRH) played a central and positive role in activation of
reproductive function (3, 4), whereas gonadotropin-inhibitory
hormone (GnIH) have inhibitory effect on GnRH release and
then delayed onset of sexual maturation. The release and secretion
of GnIH are primarily under the influence of melatonin (MT).
Heterosis refers to the superior performance of hybrid compared
with their parent in production, fertility and adaptability (5, 6). It
has been comprehensively exploited to improve yield and quality
in plant and animal. The underlying mechanism has been studied
for over century, but still remains elusive (7). As an importantly
economic trait in chicken, sex maturation is controlled by HPG
signals. Attaining sexual maturation at an early age was shown to
increase total egg production (8, 9), which has been extensively
utilized in crossbreeding in poultry industry. Therefore, it is of
great value to unravel the molecular mechanism that regulates the
heterosis of sexual maturation.

The superiority phenotype depends on the alteration of gene
expression. In recent decades, genome-wide gene expression
changes of hybrids relative to their parents have been illustrated
in different species, such as microorganisms, plants and animals.
The transcriptional changes in hybrids generally associated with
processes involved in the energy production, metabolic rates, stress
response and hormone signaling (10). In chickens, multiple studies
illustrated the heterosis mechanism of important traits at different
stages through genome-wide expression analysis of brain, liver and
muscle (11–13). Long non-coding RNAs (lncRNAs) are pivotal
epigenomic factors, a class of endogenous more than 200 bases in
length, and could affect gene expression by acting as cis- or trans-
regulators (14). It was reported that lncRNA could involve in sexual
maturation through regulating oogenesis and folliculogenesis (15).
Recent study in C. elegans found the lncRNAs let 7 could schedule
sexual maturation through regulating their target genes (16).
Moreover, Shu et al. (17) profiled lncRNA expression of pepper
leaves and concluded that lncRNAs participated in seedling and
flowering heterosis. Taken together, the integrated analysis of
lncRNA and mRNA may provide novel clues for exploring the
mechanism of sexual maturation heterosis.

Chicken meat and egg are great protein sources for human.
Heterosis utilization is routine for economic traits improvement
in poultry breeding (18). It was documented that negative
n.org 2
heterosis for age at first egg (AFE) was observed in hybrids of
different chicken breeds (19, 20). Moreover, the expression of ER
and FSHR was reported to be correlated with AFE heterosis in
chicken (21). Nevertheless, previous study mostly concentrated
on exploring heterosis mechanism through characterizing
several candidate genes. The genome-wide gene expression of
sexual maturation heterosis was rarely reported and investigated.
In this study, White Leghorn and Beijing You chicken were
employed as parents to generate purebreds and reciprocal
crossbreeds, respectively. The White Leghorn is a dominant
commercial layer breed around the world. The Beijing You
chicken is a traditional Chinese indigenous breed with head
crest, beard and fuzzy shank, which produced much less egg
mass compared to the White Leghorn. These two breeds have
previously been reported genetically distant (22), and this would
contribute the heterosis of traits. The transcriptome analysis of
the ovary in purebreds and crossbreeds was implemented to
reveal the key lncRNAs and genes regulating the formation of
sexual maturation heterosis. Our study would provide new
insights into the molecular basis of sexual maturation heterosis
in chicken, and lay theoretical foundation for effectively
utilization of heterosis.
MATERIALS AND METHODS

Ethics Consideration
All experimental procedures involving the use of animals were
conducted according to the Guidelines for Experiment established
by the Science Research Department of the Institute of Animal
Sciences, Chinese Academy of Agriculture Sciences (IAS-CAAS),
and ethical approval was received from the Animal Ethics
Committee of the IAS-CAAS (no. IAS 2022-35).

Experimental Populations
In the present study, White Leghorn and Beijing You chicken
were employed as parents to generate purebreds (WW and YY)
and reciprocal crossbreeds (WY and YW). Briefly, 30 males and
150 unrelated females from White Leghorn, and 30 males and
150 unrelated females from Beijing You chicken were selected for
mating to generate WW and YY and for reciprocal mating to
generate WY and YW based on laying consistency, semen quality
and body weight. Chickens from a single hatch were raised under
the same environment with free access to feed and water in the
experimental farm of IAS-CAAS.

Phenotype Measurement and Sample
Collection
Egg was collected for each individual daily from the age at first
egg (AFE). When the egg laying ratio of population reached 5%,
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thirty chickens from each group were randomly selected to
measure pubic space. Meanwhile, six individuals from WW,
YY, WY and YW were selected based on the average of pubic
space of each group, respectively. Subsequently, all visible
follicles were carefully excluded when ovary tissue was
collected as previously reported (23). Then, the ovary was
frozen immediately in liquid nitrogen for RNA sequencing. In
addition, the oviduct was captured for length measurement by
image J (24). Heterosis of phenotype was calculated according to
the following equation:

H% =
F1 − (PM + PF)=2

(PM + PF)=2
� 100%

Where F1, PM and PF are the mean phenotype of reciprocal
crossbreeds, maternal and purebreds, respectively. In addition,
Student’s t-value was estimated to evaluate the significance of H
% based on the formula of Wu and Zhang (25):

t =
H%

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o F1i − F1

� �2
N−1

r
= PM + PF
� �� ffiffiffiffi

N
p� �

where F1i is the phenotype of individual i in crossbreeds; N is the
number of chickens in WY or YW. P value was obtained
according to the student’s t-test and degrees of freedom. H%
was considered statistically significant if P < 0.05.

RNA Extraction, Library Construction and
Sequencing
Total RNA was extracted using TRIzol® Reagent (Invitrogen,
USA) following the manufacturer’s instructions. The RNA
integrity and quality were determined by agarose gel
electrophoresis and NanoPhotometer® spectrophotometer
(IMPL EN, CA, USA). Three micrograms of total RNA were
used for the construction of lncRNA library, and then the
ribosomal RNA was removed from total RNA with TruSeq
Stranded Total RNA Library Prep Gold Kits (Illumina, United
States). Finally, 24 RNA sequencing libraries were constructed
for paired-end sequencing according to the instructions of NEB
Next® Ultra Directional RNA Library Prep Kit for Illumina®

(NEB, Ipswich, MA, USA). RNA-Seq were performed using
Novaseq6000 (Illumina, San Diego, United States) to generate
150bp paired-end reads.

Data Quality Control and Assembly
The reads, including adapter contamination, low-quality reads
(Phred Quality Score < 5%), reads with poly-N > 5% and reads
matched rRNA were filtered out using in-house perl scripts to
generate clean reads, which were aligned to the chicken reference
genome (http://ftp.ensembl.org/pub/release-106/fasta/gallus_
gallus/) using HiSAT2 (v2.1.0) (26) with default parameters,
and then the mapped reads was assembled by StringTie (v2.1.5)
(26) with gene transfer format (GTF) file of Ensembl gene
annotation (http://ftp.ensembl.org/pub/release-106/gtf/gallus_
gallus/). According to the chicken gene annotation, the
number and proportion of three lncRNA functional elements
Frontiers in Endocrinology | www.frontiersin.org 3
(exon, intron and intergenic) were calculated based on the
unique mapping sequences.

LncRNA Identification
The potential lncRNAs were winnowed with the following
criteria. Firstly, the transcripts less than 200 bp and without
strand information were removed. Secondly, transcripts with
class code “i”, “u” and “x” were retained. Subsequently, the
sequence of known lncRNAs were download from two
lncRNA databases, Domestic-Animal LncRNA Database
(ALDB) (12) and NONCODE (27). We then used BLAST to
align the unannotated transcripts to known lncRNAs. The
transcripts perfectly aligned with sequences in either ALDB or
NONCODE were regarded as known lncRNAs. Then, the
protein coding potential of the remaining transcripts was
predicted using CNCI (28), CPC (29), PLEK (30) and Pfam
(31) software. Only transcripts with CNCI score < 0, CPC score <
0, PLEK score < 0 and Pfam E-value < 1e-5 were established as
putative lncRNAs. Finally, the cis- and trans- acting relationship
between lncRNAs and potential protein-coding genes was
predicted according to their distances and expression
correlations (32).

Differential Inheritance Patterns
of lncRNAs and Genes
Differentially expressed lncRNAs (DELs) and differentially
expressed genes (DEGs) between two different groups were
analyzed based on gene counts by DESeq2 (v1.16.1) (33) in R
project. Meanwhile, |Log2(fold change) | >1 and adjusted P value <
0.05 were taken as criteria to identify the DELs and DEGs in the
corresponding comparison. These genes were further classified
into three inheritance patterns: additivity, dominance and
overdominance, based on the gene expression level of purebreds
and crossbreeds as previously reported (34). Briefly, additivity (IV
and X) occurred when gene expression was significantly different
between two purebreds, and gene expression of crossbreeds was
higher than one purebred but lower than the another. Gene
expression within crossbreeds that was not significantly different
from one purebred but significantly higher (or lower) than the
another was regarded as dominance (II, IV, IX, and XI). Gene
expression within crossbreeds that was significantly higher (or
lower) than both purebreds was considered as overdominance (V,
VI, VIII, III, VII, and X).

LncRNA and mRNA Co-Expression
Network Analysis
The weighted gene co-expression network analysis (WGCNA)
was performed to identify co-expressed modules of highly
correlated genes and summarized such modules based on the
correlation between module eigengene and phenotypes (35).
Briefly, an expression matrix of all lncRNAs and mRNAs was
constructed. The top 40% most variant genes were used for
subsequent analysis. After the weighted adjacency matrix
established, an unsigned weighted correlation network was
constructed by creating a matrix of Pearson correlation
coefficients of each pair genes. Then, each topological matrix
July 2022 | Volume 13 | Article 951534
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was used as input for linkage hierarchical clustering analysis, and
primary gene modules was detected using a dynamic tree cutting
a l go r i thm (deepSp l i t = 2 , minModu l eS i z e = 50 ,
mergeCutHeight = 0.25). Subsequently, module eigengenes
were correlated with different traits and searched against the
most significant correlations. Finally, the lncRNAs-mRNAs
networks were visualized with Cytoscape (v.3.8.0), which was
run with layout “attribute circle layout”.

Functional Annotation and Pathway
Enrichment Analysis
To investigate biological function of nonadditive genes, we
performed functional enrichment analysis, including Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways via KOBAS 3.0 platform (36). The
GO terms and KEGG pathways with P value < 0.05 were
considered significantly enriched.

GnRH and MT Content Assay
GnRH and MT content was detected using the GnRH and MT
assay kit (Beijing Laibotairui Technology Co. Ltd, Beijing, China)
following the manufacture guidelines, respectively. Briefly, serum
(40 mL) from each chicken was added to each well of 96-well
plate. Then, the 96-well plate was incubated for one hour at 37°C.
Following washed five times with washing liquid, color liquid A
and B was added successively. After incubating for 10 min at 37°
C, 50 mL of termination solution was added. Finally, the OD
value was detected at 450 nm by Thermo Multiskan Ascent.

RT-qPCR Validation
One microgram total RNA of each sample was reverse transcribed
into cDNA using the PrimeScript RT Reagent Kit (TaKaRa, Shiga,
Japan). The specific primer sequences were designed using Primer
Premier5.0. The RT-qPCR reaction mixture (10 µL) consisted of
cDNA 1.5 µL, forward primer 0.5 µL (10µM), reverse primer 0.5
µL (10µM), SYBR Green Master (Mix) 5 µL and ddH2O 2.3 µL.
The amplification condition was as follows: 95°C for 3 min,
followed by 40 cycles at 95°C for 3 s, 60 °C for 32s, finally, a
single melt cycle was 95°C for 15 s and 65°C for 1 min. Triplicate
was performed for each sample using PrimeScript One Step RT-
PCR Kit (TaKaRa, Shiga, Japan). The results were normalized to
GAPDH expression.

Statistical Analysis
Fold changes in gene expression were calculated using the 2−DDCt

method. All data are presented as the mean ± standard deviation
(SD). The correlation between results of RT-qPCR and RNA-seq
was calculated using Pearson’s correlation method in R (v.4.0.2).
RESULTS

Heterosis of Pubic Space, Oviduct Length
and Age at First Egg
As shown in Figure 1A, the pubic space of crossbreeds was larger
than the average value of purebreds, and significant positive
Frontiers in Endocrinology | www.frontiersin.org 4
heterosis (25.79%, 32.45%) was observed in both WY and YW
(P < 0.05). Similarly, the larger oviduct length was observed in
WY and YW compared with the average length of purebreds
(Figure 1B), and heterosis of oviduct length was 30.55% in WY
and 20.15% in YW, respectively. Moreover, AFE in crossbreeds
was earlier than the average age of purebreds exhibiting negative
heterosis (Figure 1C).

Identification and Characterization of
lncRNAs
In the present study, an average of 36,579,837 raw reads was
generated from each library, with average Q30 bases higher than
94.56% (Supplementary Table S1). The percentage of uniquely
mapped reads and multi-mapped reads was 82.13% and 2.73%,
respectively. In total, we characterized 3164 lncRNAs in chicken
ovary (details in Supplementary Table S1). Among these
lncRNAs, 1170 known lncRNA were identified through
aligning lncRNAs sequence to the NONCODE or ALDB
database. Besides known lncRNAs, a total of 1994 transcripts
were identified as putative lncRNAs by CNCI, CPC, PLEK and
Pfam software (Figure 2A). The majority of putative lncRNA
were intergenic (50.82%), and 25.76% were intron, and 23.42%
were antisense lncRNAs (Figure 2B). Furthermore, the length of
the putative lncRNAs was mainly ranging from 2,800 to 3,000bp,
similar to that of the known lncRNAs in ovary tissue
(Figure 2C). The distributions of putative and known
lncRNAs on the chromosomes were varied (Supplementary
Figure S1). Moreover, the number of lncRNAs located on
chromosome 1 was the largest, which accounted for 8.93% in
putative lncRNAs and 13.08% in known lncRNAs. The most
putative and known lncRNAs possessed two exons. The exon
numbers of putative lncRNAs were greater than known
lncRNAs (Figure 2D).

Inheritance of lncRNAs and mRNAs
A principal component analysis (PCA) was performed to
visualize the group differences of gene expression. The
purebreds and crossbreeds were obviously separated from
each other (Supplementary Figure S2), indicating significant
differences of gene expression between two purebreds and
between purebreds and crossbreeds. With the criteria of |log2
(fold change) | > 1 and adjusted P value < 0.05, we identified 686
DELs between two purebreds and between purebreds and
crossbreeds (Figure 3A), including 630 in YY vs. WW, 225 in
WY vs. WW, 83 in WY vs. YY, 246 in YW vs. WW and 68 YW
vs. YY (Supplementary Table S2). These DELs were clustered
into 12 types (I, II, III, IV, V, VI, VII, VIII, IX, X, XI and XII,
details in Supplementary Table S3) according to their
expression in purebreds and crossbreeds. The 12 types were
further clustered into three main inheritance patterns:
additivity (IV, X), dominance (III , V, IX, XI) and
overdominance (I, II, VI, VII, VIII, XII). The number of
dominant lncRNAs was 288 in WY and 294 in YW,
respectively. The number of overdominant lncRNAs was 2
and 2 in WY and YW, respectively. The nonadditive
lncRNAs accounted for 44.24% in WY and 45.16% in YW,
July 2022 | Volume 13 | Article 951534
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respectively (Figures 3B, C). Additionally, a total of 200
nonadditive lncRNAs were shared by WY and YW
(Supplementary Figure S3A). The number of unique
nonadd i t i v e ln cRNAs was 90 in WY and 96 in
YW, respectively.

There were 2023 DEGs between two purebreds and between
crossbreeds and purebreds identified (Figure 3D), including
1918 in YY vs. WW, 899 in WY vs. WW, 131 in WY vs. YY,
781 in YW vs. WW and 220 YW vs. YY (Supplementary Table
S2). These DEGs were clustered into 12 types, and the gene
number of different patterns in reciprocal crossbreeds was shown
in Figure 3E. The dominant genes were 956 in WY and 868 in
YW, respectively. The number of overdominant genes was 3 and
1 in WY and YW, respectively. The nonadditive genes,
accounted for 49.30% in WY and 45.42% in YW (Figure 3F).
Among the nonadditive genes, a total of 682 genes were shared
by WY and YW, and the number of unique genes was 274 in WY
and 186 in YW (Supplementary Figure S3B), respectively. As
shown in Figure 4A, gene ontology (GO) analysis showed that
the nonadditive genes were mainly enriched in three categories,
including growth and development related GO terms, such as
animal organ development, gland morphogenesis, female gonad
development and female sex differentiation, ion transport related
Frontiers in Endocrinology | www.frontiersin.org 5
GO terms, such as calcium ion transport, calcium ion
homeostasis and metal ion transport, and other GO terms,
such as response to hormone, steroid binding, response to
endogenous stimulus and sterol transport (details in
Supplementary Table S4). Interestingly, the majority of GO
terms were also enriched by shared nonadditive genes. Given
that the nonadditive genes of WY and YWwere also significantly
enriched in the biological process of female gonad development,
we further characterized the common nonadditive genes
harbored in the GO terms shared by WY and YW. The four
common nonadditive genes, including transforming growth
factor beta 1 (TGFB1), collagen type VI alpha 1 chain
(COL6A1), CCAAT/enhancer binding protein beta (CEBPB)
and receptor tyrosine kinase (KIT) genes, were involved in the
growth and development of ovarian cells (Supplementary
Table S4).

KEGG pathway analysis showed that nonadditive genes were
significantly enriched in the focal adhesion, ECM-receptor
interaction, vascular smooth muscle contraction, GnRH
signaling pathway, calcium signaling pathway and folate
biosynthesis (Figure 4B). These pathways were also enriched
by shared nonadditive genes. Regarding the GnRH signaling
pathway, we found eight common nonadditive genes including G
A

B

C

FIGURE 1 | Heterosis of traits related to sexual maturation. (A) Heterosis of pubic space. (B) Heterosis of oviduct length. (C) Heterosis of AFE. The dashed line
represents mid parent value. ** indicate that heterosis was highly significant (P < 0.01), respectively.
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protein subunit alpha q (GNAQ), calcium voltage-gated channel
subunit alpha1 C (CACNA1C), ENSGALG00000005884,
adenylate cyclase 6 (ADCY6), calcium voltage-gated channel
subunit alpha1 D (CACNA1D), ENSGALG00000008727, early
growth response 1 (EGR1) and matrix metallopeptidase 2
(MMP2) were enriched in the pathway (Supplementary
Table S4).

Analysis of Co-Expressed Gene Networks
and Candidate Genes
We constructed a co-expression network of lncRNAs and
mRNAs to infer the underlying regulatory function and
potential co-expressed genes and lncRNAs. Correlated
lncRNAs and mRNAs were clustered into 20 modules by
WGCNA, and each module contained at least 50 genes
(Figure 5A). Based on the correlation between the clusters and
phenotypes, seven modules were significantly correlated with
pubic space or oviduct length (P < 0.05) (Figure 5B). Among
these modules (ME), the midnightblue ME (r = -0.57, p = 0.01)
and greenyellow ME (r = -0.56, p = 0.01) were negatively
correlated with pubic space. The purple ME was negatively
correlated with pubic space (r = -0.61, p = 0.005) and oviduct
length (r = -0.57, p = 0.01). The green ME was positively
correlated with the oviduct length (r = 0.53, p = 0.02). The
turquoise ME (r = -0.59, p = 0.008), the brown ME (r = -0.54, p =
0.02) and the red ME (r = -0.64, p = 0.003) was negatively
correlated with oviduct length. Additionally, for all lncRNAs and
protein coding genes harbored in the co-expression network, the
Frontiers in Endocrinology | www.frontiersin.org 6
top 1% of highly correlated gene pairs were chosen to visualize
the correlation of modules (Figure 5C). Function enrichment
results of each cluster suggested that the highly correlated
lncRNAs and genes were main ly enr iched in the
developmental related process. Notably, the annotated genes in
cluster green ME, were significantly enriched in oocyte meiosis,
ECM-receptor interaction, calcium ion binding and GnRH
signaling pathway, suggesting that lncRNAs in this cluster is
essential for those biological processes. In addition, genes in
turquoise ME were found closely correlated with fatty acid
biosynthetic process, cell cycle and peptide biosynthetic
process (Figure 5D).

We found 43 nonadditive genes were interactive and harbored
in the seven associated modules, and these genes were regulated by
40 nonadditive lncRNAs in cis or trans (Figure 6A). Interestingly,
function of these nonadditive genes were associated with
reproductive structure development, gonad development, female
gonad development, calcium signaling pathway and GnRH
signaling pathway. The number of common nonadditive genes
enriched in female gonad development and GnRH signaling
pathway was four and eight in crossbreeds (Figure 6B),
respectively. Moreover, CNCAN1C and TGFB1, which were
regulated by MSTRG.17017.1 and MSTRG.6475.20 in trans, were
enriched in GnRH signaling pathway and female gonad
development, respectively. Accordingly, we found the expression
of FSHR and ESR2 in crossbreeds was both higher than that of
purebreds. But these two genes were not nonadditive genes
(Supplementary Figure S4).
A B

DC

FIGURE 2 | The identification of long non-coding RNAs (lncRNAs) in chicken ovary. (A) Venn diagram analysis showing the number of common and unique novel
lncRNAs identified by CNCI, CPC, PLEK and Pfam database. (B) Classification of the uniquely mapped read locations including exon, intron and intergenic regions.
ilncRNA, intergenic lncRNA; lincRNA, intron lncRNA; lncNAT, antisense lncRNA. (C) Length of known and novel lncRNAs. (D) The percentage of exon number for
known and novel lncRNAs.
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GnRH and MT content
The nonadditive genes were related to GnRH signaling pathway
and female gonad development, implying that hormone
secretion plays a vital role in positive heterosis of sexual
maturation. Then, the serum GnRH and MT concentration
were detected. GnRH content in crossbreeds was significantly
higher than the average value of purebreds, and showed positive
heterosis (P < 0.05) (Figure 7A). MT content was lower in
Frontiers in Endocrinology | www.frontiersin.org 7
reciprocal crossbreeds compared with the average value of
purebreds exhibiting negative heterosis (Figure 7B).

RT-qPCR
To validate the RNA sequencing results, the expression of 13
DEGs and 6 DELs was detected using RT-qPCR. The specific
primers for genes and lncRNAs were listed in Table 1. The
expression of DEGs and DELs between any two groups showed
A

B

D

E

F

C

FIGURE 3 | Analysis of lncRNAs and genes inheritance patterns. (A) The number of differentially expressed LncRNAs (DELs) among purebreds and crossbreeds.
(B) Inheritance patterns of DELs between crossbreeds. DELs were divided into 12 types, e.g., class I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, and further classified into
three inheritance patterns: additivity (class IV and X), dominance (class III, V, IX and XI) and overdominance (class I, II, VI, VII, VIII, XII), based on the level of gene
expression exhibited by purebreds and crossbreeds. Additivity, dominance and overdominance are presented in orange, blue and green, respectively. (C) The
proportion of DELs in additivity, dominance and overdominance pattern. (D) The number of DEGs among purebreds and crossbreeds. (E) Inheritance patterns of
DEGs of crossbreeds. DEGs were divided into 12 types, e.g,. class I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, and further classified into three inheritance patterns:
additivity (class IV and X), dominance (class III, V, IX and XI) and overdominance (class I, II, VI, VII, VIII, XII), based on the level of gene expression exhibited by
crossbreeds and purebreds. Additivity, dominance and overdominance are presented in orange, blue and green, respectively. (F) The proportion of DEGs in
additivity, dominance and overdominance pattern.
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consistent trend with the results of RNA-seq. A high correlation
coefficient of gene expression level was detected (R2 = 0.91),
indicating that RNA-seq data were reliable (Figures 7C, D).
DISCUSSION

The utilization of sexual maturation heterosis has contributed to
egg production improvement in chicken for decades. However,
our understanding of its molecular basis is still rudimentary,
constraining its flexible and accurate application. In the current
study, we found negative heterosis of AFE in both crossbreeds.
Similar results were also reported in hybrids of other chicken
breeds (37, 38). Female sexual maturation is a complicated
biological process accompanying with the growth and
development of gonad and internal reproductive organs. Pubic
space and oviduct length are important indicators of gonad
development in chickens (39). Significantly positive heterosis for
both traits were observed in crossbreeds, implying the superiority
Frontiers in Endocrinology | www.frontiersin.org 8
of sexual maturation in hybrids. Accumulating transcriptome
analysis focused on heterosis of different traits were conducted,
which facilitated the understanding of the molecular mechanism
of hybrid vigor in different tissues of various species (10). Hence,
the comprehensive gene expression patterns in purebreds and
crossbreeds were profiled to reveal the potential mechanisms of
sexual maturation heterosis. To our knowledge, the genome-wide
expression of lncRNAs and mRNAs related to sexual maturation
heterosis in chicken was firstly characterized in our study.

LncRNAs, an important epigenetic factor, could function in
the reproductive process through cis and trans regulating gene
activity. In the current study, a total of 3164 lncRNAs were
identified. Fewer lncRNAs were identified than that in chicken
brain (40), adipose tissue and liver (41), indicating tissue specific
expression patterns and characteristics of lncRNAs. Additionally,
the identified lncRNAs exhibited fewer exons, shorter
transcripts, which is consistent with studies in other species
(42). Consistent with previous research, intergenic lncRNAs was
the most abundant class of lncRNAs in the genome (43, 44).
A

B

FIGURE 4 | Function enrichment analysis of nonadditive genes. (A) Significant GO terms of nonadditive genes in crossbreeds. From outer to inner, the outermost
circle represents the IDs of enriched GO terms. The names of GO ID in orange, blue and green represent biological process, molecular function and cell composition
respectively. The second circle indicates shared genes enriched in GO terms. In the third circle, the piece in dark purple and light purple represents unique genes of
WY and YW, respectively. In the innermost circle, each bar represents one GO term, and the size represents the rich factor. (B) KEGG pathway analysis for
nonadditive genes. Each bar represents one pathway and the size represents the number of shared genes. The yellow and green circle represents the unique genes
in WY and YW of each pathway, respectively.
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The number of DEGs and DELs between two parental lines
was greater than that between crossbreeds and their purebreds,
indicating the genetic difference between two purebreds was
larger than any other groups. Similar results were also revealed
by the previous study (45). Genome heterozygosity arising from
genomics sequence variation between two purebreds is one
fundamental driving force for the phenotype heterosis. As in
the case of dominant or recessive allele pairs in classical genetics,
the dominance expression of genes resulted in a nonlinear
phenotypic effect of alleles at one locus (46). Therefore,
nonadditive expression pattern is important for the formation
of heterosis. Wu et al. (47) reported that dominant genes
involved in carbohydrate metabolism were associated with
heterosis for body weight in Drosophila melanogaster. It was
also found the nonadditive genes may drive the formation of heat
stress heterosis in cattle (48). In chicken, the nonadditive genes
were illustrated to involved in oxidative phosphorylation,
contributing to breast muscle mass heterosis (12). In the
present study, most DEGs and DELs possessed nonadditivity
pattern in hybrids, indicating nonadditivity was the critical gene
expression pattern affecting traits heterosis. Functional
enrichment analysis showed that nonadditive genes were
associated with animal organ development, female gonad
development, ECM-receptor interaction and GnRH signaling
pathway, such as laminin subunit alpha 4 (VTN), CD36 molecule
(CD36) and fibronectin 1 (FN1), which were revealed to function
Frontiers in Endocrinology | www.frontiersin.org 9
in ovary cell growth and proliferation (49–51) and specifically
expressed in crossbreeds’ ovary. In addition, the nonadditive
gene purinergic receptor P2X 1 (P2RX1) was identified, which
was enriched in calcium signaling pathway. P2RX1 was
demonstrated as potential candidate genes for egg production
of ducks (52). Hence, we hypothesized these biological process
and pathways might involve in the formation of sexual
maturation heterosis through modulating gene expression.

The underlying mechanism of sexual maturation heterosis is
complicated. WGCNA may be an effective method for mining
valuable expression data to analyze the intricate genetic networks
(35). By focusing on the association between co-expression
modules and traits of interest, we identified seven modules
were significantly correlated with pubic space and oviduct
length. Genes harbored in 7 modules were enriched in GnRH
signaling pathway, ECM-receptor interaction, calcium ion
binding and tissue development, which were similar to the
enrichment results of nonadditive genes. The overlapped
biological processes may play more crucial role in the
formation of sexual maturation heterosis.

The gonad development is part of prenatal development of
the reproductive system and ultimately forms the ovary in the
female (53). In this study, female gonad development was
significantly enriched by nonadditive genes including CEBPB,
COL6A1, TGFB1 and KIT. Previous studies demonstrated that
CEBPB, COL6A1 and KIT may be essential for female
A B

DC

FIGURE 5 | WGCNA analysis of lncRNAs and mRNAs. (A) Hierarchical cluster of 20 modules co-expressed mRNAs and lncRNAs. (B) Module-trait relationships.
Each row represents a module eigengene, and each column present a trait. Each module includes the corresponding correlation and P value. (C) The networks of
top 1% lncRNAs and mRNAs in nine selected modules. The orange and blue dots represent the hub lncRNAs and mRNAs, respectively. (D) The enriched function
of each module.
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reproduction through regulating the cell development, ovulation
and luteinization of ovarian follicle (54–56). TGFB1 is implicated
as a key regulator of the development and cyclic re-modelling
characteristic of reproductive tissues (57). Altered plasma TGFB1
has been found closely associated with reproductive process in
female (58). The up-regulated TGFB1 contributed follicles
development and ovulation in sheep (44). In our study, the
expression of TGFB1 was the lowest in YY, and significantly
associated with oviduct length, suggesting TGFB1 may act an
indicator to estimate the heterosis of sexual maturation.
Additionally, previous studies found several ovarian lncRNAs
could involve in follicular development by regulating target genes
related to TGF-b in small-tailed sheep (59, 60). In the current
Frontiers in Endocrinology | www.frontiersin.org 10
study, TGFB1 were found significantly correlated with oviduct
length, and regulated byMSTRG.17017.1 andMSTRG.6475.20 in
trans. MSTRG.17017.1 and MSTRG.6475.20 were both novel
lncRNAs in chicken. These indicated the two pairs of mRNAs
and lncRNAs could be critical candidates for regulating the
formation of sexual maturation heterosis. The putative
function of candidate genes performed in the development and
sexual maturation, supporting direct cue for nonadditive genes
involved in sexual maturation heterosis.

GnRH signaling is regarded as the gonadotrope and
endocrine control of fertility in mice (61) and goose (62). In
chicken, GnRH signaling pathway could involve in ovarian
function (49, 63). Here, the nonadditive genes, such as MMP2,
A

B

FIGURE 6 | Co-expression network analysis of the paired lncRNA-mRNA involved in sexual maturation. (A) Network of lncRNAs, mRNAs and function. The green
triangle, yellow circles and blue diamond represent lncRNAs, mRNAs and function, respectively. (B) The expression of nonadditive mRNAs and their lncRNAs
enriched in GnRH signaling pathway and female gonad development.
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ADCY6, EGR1, CACNA1C and GNAQ, were identified
significantly enriched in GnRH signaling pathway.
Importantly, GNAQ regulates estrus in sheep by controlling
GnRH secretion and release through calcium signaling
pathway (64). In ovary, GNAQ can also increase the size of
ovarian follicles (65). Similarly, CACNA1C, associated with
calcium channel function and crucial for onset of the
reproductive maturation process (66). These two genes were
involved in GnRH signaling pathway, implying they may act
upstream factors to affect the downstream genes involved in
Frontiers in Endocrinology | www.frontiersin.org 11
gonad development. These results supported GnRH signaling
pathway could involve the sexual maturation heterosis.
Moreover, several lncRNAs were also evidenced involving in
spermatogenesis and the time of puberty through regulating their
target genes in bull (67). Herein, the expression differences of
GNAQ and CACNA1C were regulated by MSTRG.19756.2 in
trans. MSTRG.19756.2 was novel lncRNA. Our findings imply
ovary MSTRG.19756.2 may be associated with reproductive
impairment by controlling their target genes (GNAQ,
CACNA1C) related with the GnRH signaling pathway.
A

B

D

C

FIGURE 7 | Validation of hormone concentration and gene expression. (A) The content of GnRH. (B) The content of MT. ** indicated adjusted P value less than
0.01. (C) The expression of candidate lncRNAs and mRNAs. (D) Correlation of gene expression level of 13 differentially expressed genes (DEGs) and six differentially
expressed lncRNAs (DELs) using RNA-Seq and RT- qPCR. The x- and y- axis represents the log2 (fpkm) measured by RNA-Seq and RT-qPCR, respectively.
GAPDH was used as reference gene. The blue and red dots represent the DEGs and DELs, respectively.
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Admittedly, sexual maturation is initiated by the release of
GnRH (68). The GnRH and MT content were further detected,
and confirmed the results of gene expression. Upon light
stimulation, decreasing levels of MT results in a decrease in
GnIH synthesis (69), thus alleviating the inhibition on the HPG
axis and allowing for the release of GnRH and subsequent
activation of gonad development (70). Consistent with the
previous study (71), we found that chickens with earlier AFE
and larger pubic space had higher GnRH content but lower MT
content, suggesting that chickens with higher GnRH could give
impetus to development of reproductive tissue, contributing to
the sexual maturation in crossbreeds. Interestingly, the
crossbreeds shared same photoperiod stimulus with purebreds,
but exhibited significant heterosis for sexual maturation. Hence,
we speculated the disparity of light perception and the differences
between crossbreeds and purebreds may drive the formation of
sexual maturation heterosis (72). This may provide novel
insights into understanding the neuroendocrine neurons
controlling the onset of puberty and fertility in mammals
including humans.
Frontiers in Endocrinology | www.frontiersin.org 12
CONCLUSIONS

Our study focused on revealing the phenomenon of heterosis in
chickens, and positive heterosis of sexual maturation was observed.
Genome-wide gene expression pattern analysis showed that
nonadditivity was the critical mode of mRNAs and lncRNAs
action for sexual maturation heterosis. The nonadditive lncRNAs
MSTRG.6475.20 and MSTRG.17017.1 and their target nonadditive
genes (GNAQ, CACNA1C and TGFB1), which involved in GnRH
signaling pathway and female gonad development, played a critical
role in driving the formation of sexual maturation heterosis. Our
findings would provide novel insight into the molecular basis of
positive heterosis for sexual maturation in chicken and theoretical
basis for improving egg production.
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TABLE 1 | Primers for differentially expressed mRNAs and lncRNAs used in RT-qPCR.

Gene ID Gene Symbol Direction> Sequence

ENSGALG00000014442 GAPDH Forward ATCACAGCCACACAGAAGACG
Reverse TGACTTTCCCCACAGCCTTA

ENSGALG00000000402 LOXL2 Forward ACGGAGGGTTACGTGGA
Reverse AATGCTGCTTCCTTCTGCT

ENSGALG00000012200 GCH1 Forward CCAGGAACGCCTTACCA
Reverse ATTTTCTGTACCCCACGCA

ENSGALG00000001573 P2RX1 Forward AGCATCACCTTCCCCAA
Reverse GCTCAAACATAGGGCACAA

ENSGALG00000006190 FHL1 Forward ATGCTGAGGGAGAACAACA
Reverse CAGTCCTTATGCCAGACCA

ENSGALG00000042458 ACTN1 Forward GCTTCTACCACGCCTTCTC
Reverse TCCACTCCAGCAGATCACT

ENSGALG00000000318 CSRP1 Forward AACCCGAACGCATCCAGAAT
Reverse ACTTGTGCCAGGACTTTCCA

ENSGALG00000042836 KCNH2 Forward CTACTTCATCTCGCGTGGCT
Reverse AATGTCGTTCTTCCCCAGGA

ENSGALG00000003521 TPM1 Forward GAAGAGAAAGTGGCGCAT
Reverse CGGCAAGCAGGTGTAAA

ENSGALG00000039742 CYP21A1 Forward ATGAGTTCCTGCCCGAGCG
Reverse AATCGCTGTAGGATGTGCCC

ENSGALG00000040655 FAM20A Forward GACTGCAGCCAGATTGTGAAG
Reverse TTGTGCCGCTGGAAGTCTAC

ENSGALG00000013022 CACNA1C Forward GGAAGCAAGCGGAACTC
Reverse GGCAGGGTAACAAACCAG

ENSGALG00000031325 TGFB1 Forward ACCCGATGAGTATTGGGCCAAAGA
Reverse GCGGGACACGTTGAACACGAA

MSTRG.4638.10 Forward GCGGGGAAAACGCTCTTACTT
Reverse GATGCCTGACGGTGTGGAGG

MSTRG.6475.20 Forward AAATGTCCTCACCCAGGCAG
Reverse CGGCAATTCACAGTTTGGTTCT

MSTRG.8761.10 Forward CGAGGTTTTTCTGCGCTTGA
Reverse GATTTCCCCTCTCGGTTCCC

MSTRG.9096.12 Forward CAATGTGCTTATGTTTCTCAGCA
Reverse AGCTGCCGTACACAAATCAA

MSTRG.17017.10 Forward GTGCCAGCCAAAACAGGACA
Reverse TCCCAGAGCCTAACTCTTCCA

MSTRG.12075.10 Forward CGCCCATGAAACCCTGATTG
Reverse CCATTCCCCATCTCTACGCC
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