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Once the impulse response h
0
(t) is known, one can predict the 

output rate r(t) for any arbitrary, but sufficiently small, stimulus 
perturbation ∆x(t) by a convolution,4

r t x h t r x h t( ) ( )( ) ( )( ).= = +∗ ∗0 0 0∆  (1)

The output rate r
0
 in response to a constant input x

0
 is typi-

cally described by a nonlinear activation function r
0 

=
 
g(x

0
) (“f-I 

curve”). Note, that in several studies the activation function is 
called “transfer function” (e.g., Destexhe and Sejnowski, 2009). 
Following the terminology of linear-systems theory, we use the 
term “transfer function” exclusively for the Fourier transform of 
the impulse response.

The dynamical response properties of neuron populations, i.e., 
the properties of the transfer function H

0
(f ), have been exten-

sively studied both theoretically (e.g., Knight, 1972a; Gerstner, 2000; 
Brunel et al., 2001; Lindner and Schimansky-Geier, 2001; Fourcaud 
and Brunel, 2002; Mattia and Del Giudice, 2002; Fourcaud-Trocmé 

1 IntroductIon
Instantaneous firing rates are commonly used to describe either the 
compound spiking activity of neuron ensembles (population rate) 
or the trial-averaged response of individual neurons to multiple 
repetitions of the same stimulus. The dynamics of firing rates is 
often studied by means of population or firing-rate models. The 
main purpose of such models is to reduce the dimensionality and 
complexity of the microscopic dynamics of neural networks in 
order to obtain tools which allow mathematical treatment, efficient 
simulation, and intuitive understanding. Since the seminal studies 
of Wilson and Cowan (1972) and Knight (1972a), a zoo of popula-
tion models has emerged in the literature. Often, they have to be 
considered purely phenomenological descriptions. Under simpli-
fying assumptions, they can be mathematically derived from the 
single-neuron dynamics. In many cases, however, the mathematics 
of these “reduced” models is still very complex.

A standard solution to this problem is to study the dynamics in 
a restricted region of the state space. By means of linear-response 
analysis, for example, one can describe the time-dependent output 
firing rate r(t) of a population of neurons (or an ensemble of trials) 
in response to some input signal x(t) in the vicinity of a stationary 
working point (x

0
, r

0
) for small perturbations ∆x(t) = x(t) –x

0
. The 

outcome of this analysis is the system’s impulse response1 h
0
(t), or, in 

the frequency domain, the transfer function H
0
(f) =  [h

0
(t)](f )2,3. 
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1Also called “linear response function” or “susceptibility.”
2H f h t) f t h t e ift( ) ( ( ) d ( ) 2= [ ] = ∫−∞

∞ − π
 denotes the Fourier transform of the function 

h(t).
3The subscript “0” indicates that the impulse response and the transfer function in 
general depend on the choice of the working point x0 .
4The “*” operator denotes the convolution integral: ( )( ) d ( ) ( ).x h t s x s h t st∗ = ∫ −−∞
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et al., 2003; Naundorf et al., 2005; Richardson, 2007; Pressley and 
Troyer, 2009) and experimentally (Knight, 1972b; Silberberg et al., 
2004; Köndgen et al., 2008; Blomquist et al., 2009; Boucsein et al., 
2009). One of the major insights has been that populations of neu-
rons can track time-varying input signals much faster than single 
cells. Theoretical studies have shown that the shape of the transfer 
function H

0
(f ) depends crucially on the properties of the single-

neuron dynamics (Knight, 1972a; Fourcaud-Trocmé et al., 2003; 
Naundorf et al., 2005; Richardson, 2007) and on the filter properties 
of the synapses (Brunel et al., 2001).

Most previous studies have investigated the population rate in 
response to a time-varying noisy input current injected into the 
soma of the cells. At each instance in time t, the current amplitudes 
for the ensemble of neurons (trials) were assumed to be uncor-
related and to follow a normal distribution with mean μ(t) and 
variance σ2(t). Strictly speaking, this corresponds to a scenario 
where spikes from presynaptic sources arrive at the target cells 
independently with infinite rate, and where the impact of each spike 
on the postsynaptic neuron, i.e., the synaptic weight, is infinitesimal 
(“diffusion approximation”; Johannesma, 1968). For many neural 
systems, these assumptions are violated: In the mammalian neocor-
tex, for example, a considerable fraction of excitatory synapses gives 
rise to postsynaptic potentials (PSPs) which cannot be considered 
small (PSP amplitudes larger than 1 mV; see, e.g., Fetz et al., 1991; 
Song et al., 2005; Bannister and Thomson, 2007; Lefort et al., 2009). 
The same holds for hippocampal neurons (Fetz et al., 1991). In 
the early visual pathway, synapses between retinal ganglion cells 
and cells in the lateral geniculate nucleus (LGN) are so strong that 
single retinal spikes can initiate action potentials in the thalamic 
targets (Cleland et al., 1971; Sirovich, 2008). Moreover, the assump-
tion that the rate of incoming events is large is often questionable. 
Intracellular recordings in behaving rats, for example, have recently 
shown that cortical neurons may typically fire at much smaller rates 
(1 s–1) than previously thought (Lee et al., 2006). Even though 
such neurons receive inputs from several thousands of sources, 
the compound arrival rate of presynaptic events may therefore be 
relatively small. Finally, inputs to different neurons can be highly 
correlated, e.g., due to overlapping presynaptic populations (Bruno 
and Sakmann, 2006; DeWeese and Zador, 2006). Finite synaptic 
weights, low firing rates and correlated firing cause non-Gaussian 
input distributions (DeWeese and Zador, 2006). Under these con-
ditions, the results obtained under the diffusion approximation 
have to be questioned.

In (1), the precise meaning of the “input” x(t) has so far been 
left open. In previous studies, x(t) has been interpreted either as the 
mean μ(t) or the variance σ2(t) of the input distribution. Depending 
on this choice, the meaning and properties of the transfer function 
H

0
(f ) can be very different. It has been shown, for example, that a 

modulation in the variance of a noisy synaptic input current (multi-
plicative noise) can be tracked much faster than a modulation in the 
mean input current (additive noise; Lindner and Schimansky-Geier, 
2001; Silberberg et al., 2004; Richardson, 2007; Boucsein et al., 2009; 
Pressley and Troyer, 2009). In general, a modulation in the firing 
rate of a presynaptic neuron population affects both the mean and 
the variance of the ensemble of input currents. If presynaptic spike 
trains can be treated as realizations of independent Poisson point 
processes, the input variance is proportional to the input mean. For 
the perfect integrate-and-fire neuron model, Pressley and Troyer 

(2009) recently showed that the resulting combination of addi-
tive and multiplicative modulation of the input current enables 
the cell population to perfectly replicate the input signal, i.e., the 
time-varying input rate. So far it is unclear to what extent this can 
be generalized to other neuron models or to real neurons.

In the present study, we investigate the stationary and transient 
response properties, i.e., g(x

0
) and H

0
(f ), of the leaky integrate-

and-fire (LIF) neuron in a regime beyond the diffusion limit. Here, 
neurons receives input spikes at relatively low rates through strong 
excitatory synapses. In contrast to former studies, the input signal is 
represented by the time-varying firing rate of a hypothetical presy-
naptic neuron or neuron population. Thus, we do not impose any 
assumption on the distribution of input currents. Moreover, with this 
setup we do not artificially separate the effects resulting from a time-
varying input mean and a time-varying input variance. Instead, both 
parameters are modulated simultaneously. The transfer function is 
measured by injecting spike trains generated by an inhomogeneous 
Poisson process with sinusoidal rate profile for a broad range of 
modulation frequencies and modulation depths. By studying the 
frequency spectrum of the rate response, we investigate in which 
regime the cell (or trial) ensemble can be treated as a linear system. To 
account for nonlinearities, we combine the transfer function with the 
activation function measured for stationary input. We demonstrate 
that the resulting linear–nonlinear model can accurately predict the 
population-averaged spike response of an ensemble of independent 
LIF neurons for a variety of non-sinusoidal stimuli.

2 MaterIals and Methods
2.1 Model descrIptIon
We investigate the firing-rate response properties of the LIF neuron 
(Lapicque, 1907; Tuckwell, 1988) with membrane capacitance C

m
, 

membrane time constant τ
m

, spike threshold V
th

, refractory period 
τ

ref
, and reset potential V

reset
 (see Table 1). The neuron receives 

inputs through a linear synapse modeled by an alpha-function 
kernel (postsynaptic current, PSC)

h t
wt

e
e tt

s s

s

else

( )
/

+ =
>






−

d τ
τ 0

0
 

(2)

with synaptic weight w (PSC amplitude), time constant τ
s
 (time to 

peak), and delay δ. Thus, the synapse acts as a second-order low-
pass filter with transfer function

H f h t f
we

if f
e if

s s
s

s

( ) ( ) ( )
( / )

,= [ ] =
+

−
2

1 2

2τ p d

 

(3)

characterized by its corner frequency f
s
 = 1/(2πτ

s
). For f = f

s
, the 

amplitude of the PSC transfer function has dropped by a factor 
1/2, i.e., H

s
(f

s
) = H

s
(0)/2. For comparison between the second-

 order synaptic and the 1st-order firing-rate transfer function (see 
below), it is convenient to define the synaptic cutoff frequency as 
f f fs : . .= − ≈2 1 0 64s s  At this frequency, the amplitude of (3) has 

decayed by a factor 1 2/ . The voltage response (PSP) of the neuron 
to a single presynaptic spike arriving at time t = −δ is given by

psp( )
s m m s m s

s st w
e

C
te e et t= −







−








 − +

−
− − −

τ τ τ τ τ
τ τ1 1 1 1

2

/ / tt /τm







  
 

(4)
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i.e., by first drawing spike times s
i
 from a homogeneous Poisson 

process with unit rate and then, in a second step, applying the 

inverse t
i
 = Λ–1(s

i
) of the cumulative rate function Λ( ) ( )t a st= ∫0 ds  

to each event time s
i
 of the realization (see e.g., Devroye, 1986; 

Nawrot et al., 2008; Cardanobile and Rotter, 2010).
A detailed description of the neuron, synapse and input model 

can be found in Table 1 (Nordlie et al., 2009). Simulations were 
performed using the exact-integration method presented in (Rotter 
and Diesmann, 1999) and implemented in NEST (Gewaltig and 
Diesmann, 2007) with a time resolution of dt = 0.1 ms. The simula-
tion time was set to T = 220 dt ≈ 105 s. The parameters V

th
, V

reset
, τ

ref
, 

C
m,

 and δ were kept constant throughout the whole study. Unless 
stated otherwise (Sections 3.4 and 3.5), default values τ

s
 = 2 and 

τ
m

 =10 ms were used for the synaptic and membrane time con-
stants, respectively. Response spike trains were recorded for a wide 
range of synaptic weights w and stimulus parameters a

0
, a

1
, f

stim
. The 

parameter settings are summarized in Table 3.

2.2 characterIzatIon of response propertIes
For each parameter set, we constructed a discretized version of the 
instantaneous firing rate r(t) (spike density; t ∈{k dt|k = 0,1,2,…,T/
dt}) by counting the number of response spikes in each time interval 
[t,t + dt) and normalized it by dt = 0.1 ms. As dt < τ

ref
, the spike count 

in each bin was either 0 or 1. For each stimulus frequency f
stim

, we 
obtained the time averaged firing rate r

0
 = T−1R(0) and the response 

amplitudes r
k
(f

stim
) = 2T−1|R(k f

stim
)| (k ∈ {1,2}) from the (finite-

time) Fourier transform R f r t f t r t iftT( ) = ( )[ ]( ) = ∫ ( ) −( ) 0 2d exp p  
of r(t). For the principal harmonics (k = 1), we also measured the 
phase φ of R(f) at frequency f

stim
. The discrete Fourier transform 

was computed using the Fast Fourier Transform (FFT; Press et al., 
1992) implemented in Python/Numpy5. To improve the efficiency 
of the FFT, the simulation time T was chosen such that the number 
of time steps T/dt = 220 is an integer power of 2. Further, to ensure 
that the stimulus frequencies f

stim
 were represented in the discrete 

Fourier transforms, they were chosen such that T always contained 
an integer number of stimulus periods, i.e., T f

stim
 ∈.

Assuming Poissonian spike-train statistics, the variance 
∆2r = 4r

0
/T of the amplitude r

1
 is determined by the expected 

firing rate r
0
 and the observation time T (Papoulis and Pillai, 

2002). This holds for both homogeneous and inhomogene-
ous Poisson processes and for all frequencies f. To evaluate 
whether a measured modulation amplitude r

1
 significantly dif-

fers from zero (homogeneous case), we computed the z-score 

z r r r T r= =1 1 02/ /( )∆  for each amplitude r
1
. For a homogene-

ous Poisson process, the probability of observing an amplitude 
r

1
 with z > 2 is less than 5% (values above the horizontal dashed 

lines in Figures 4A,C,E).
The stationary response to constant input (f

stim
 = 0, a

1
 = 0) 

is described by the activation function r
0
 = g(a

0
), measured on 

a grid a
0
 ∈ {0,2,…,100} s−1 (see Figure 3). For the prediction of 

population-averaged responses (see Section 3.5), a continuous 
representation of the activation function was obtained by linear 
interpolation. To characterize the response to nonstationary input 
(f

stim
 > 0, a

1
 > 0), we computed the complex transfer function

(Rotter and Diesmann, 1999). For a given synaptic weight w, the 
PSP maximum psp

max
(w) can be calculated numerically. We refer to 

the minimal weight w
crit

 which causes the PSP to reach the thresh-
old, i.e., for which psp

max
(w

crit
) = V

th
, as the critical weight. The 

dependence of w
crit

 on the synaptic and membrane time constants 
τ

s
 and τ

m
, respectively, is shown in Figure 2. In this work, all synaptic 

weights are considered relative to w
crit

, i.e., w
r
 = w/w

crit
. The present 

study is restricted to purely excitatory synapses with w > 0.
The input spike train to the cell is modeled as a realization 

of an inhomogeneous Poisson point process with sinusoidal 
rate a(t) with oscillation frequency f

stim
∈[1,1000] Hz, mean rate 

a
0 
∈[0,100] s−1 and modulation depth a

1 
∈[0,100] s−1 (see Figure 1). 

For data analysis, only data for a
1
 < a

0
 were taken into account 

(non-rectified input). To test the predictive power of the rate model 
we also applied other, non-sinusoidal, stimuli, e.g., firing-rate steps 
(see Section 3.5). Realizations of inhomogeneous Poisson proc-
esses with rate function a(t) were generated by applying the time-
rescaling  theorem (see Brown et al., 2001, and references therein), 

Model overvIew

Table 1 | Overview of the model.

A MOdel suMMAry

Neuron model Leaky integrate-and-fire (LIF)

Synapse model α-function shaped synaptic currents

Input model Spike trains realized by inhomogeneous Poisson 

 point process

B NeurON MOdel

Type Leaky integrate-and-fire (LIF) neuron

Description Dynamics of membrane potential V(t):

 – Spike emission at times tk ∈ {n dt | n ∈ } with V(tk) ≥ Vth

 – Subthreshold dynamics:  

   τ τm m refifV V R I t k t t tk k= − + ∀ ∉ +( ]( ) : ,

 – Reset + refractoriness: 

   V(t) = Vreset  if ∀k : t  ∈ (tk, tk + τref](∀k)

 Exact integration (Rotter and Diesmann, 1999) with 

 temporal resolution dt

Parameters Membrane time constant τm, membrane resistance Rm,  

 spike threshold Vth, reset potential Vreset, refractory 

 period τref, time resolution dt

C syNApse MOdel

Type Current synapse with α-function shaped postsyn.  

 currents (PSCs)

Description Synaptic input current: I(t) = ∑l hs(t − tl − δ)

 
PSC kernel

else
functions: ( )

exp( / )
(h t

e t t ts s=
− >






−w τ τ
α

1 0
0

- ))

 Critical weight wcrit = min. weight w required for 

 threshold crossing

Parameters Relative synaptic weight wr = w/wcrit, synaptic time 

 constant τs, synaptic delay δ

d INpuT MOdel

Type Spike train generated by an inhomogeneous Poisson 

 point process

Details Instantaneous rate: a(t) = a0 + a1 cos (2π fstim t)

Parameters Simulation time T, stimulus frequency fstim with 

 fstim T ∈, time averaged input rate a0, input amplitude a1

5http://numpy.scipy.org
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between the data and the model in the complex plane for all stimu-
lus frequencies f

i
 (least-square fit; Levenberg–Marquardt algorithm; 

see Figure 4). In the time domain, (6) corresponds to a delayed 
exponential kernel

h t d
t

e tt0 1

0 0

0
( ) /+ =

<
≥





− −γτ τ

 

(8)

with a time constant τ = 1/(2π f
c
). As a measure of the robustness 

of the fit, we computed the standard deviation of fit parameters f
c
, 

γ, and d (error bars in Figure 5) obtained from an ensemble (100 
trials) of surrogate data, generated by drawing random numbers 

from a complex Gaussian distribution with mean H f0( )stim  and 

standard deviation σ( ) ( ) ( )f H f H fstim stim stim= −0 0
  for each stimu-

lus frequency f
stim

. For further analysis, only parameter sets {w
r
, 

a
0
, a

1
, τ

s
,τ

m
} with z-scores z(f

stim
) ≥ 2 for all f

stim
 ≤ 2f

c
 were taken 

into account.
Across wide parameter regions, we found that (6) provides a 

reasonable fit of the measured amplitudes and phases. We do not 
imply, however, that the first-order low-pass filter is the  optimal 
description. We mainly use it as a tool to extract  transfer features 
like the cutoff frequency and the low-frequency gain, which in turn 
can be used to construct a firing-rate model (see Section 2.3). In 
Section 3.5, we demonstrate that such a model can be used to reli-
ably predict population responses to non-sinusoidal stimuli.

A summary of the data analysis can be found in Table 2.

2.3 lInear–nonlInear Model
The linear description (1) is frequently extended by combining a 
state-independent linear kernel h(t) with a nonlinear activation func-
tion g(·), resulting in a linear–nonlinear integral-equation model

r t g a h t( ) ( )( ) .= ( )∗  (9)

An alternative approach based on Wiener kernels is presented, 
for example, in (Sakai, 1992). Firing-rate models are often expressed 
in terms of differential equations (e.g., Wilson and Cowan, 1972). 
Indeed, for an exponential kernel h(t) (which corresponds to 
the first-order low-pass filter (6)) and with u(t) = (a*h)(t) and 
u t u t t( ) ( )/= d d , Eq. (9) is equivalent to

H f
r f

a
ei f

0
1

1

( )
( ) ( )

stim
stim stim= φ

 
(5)

from the measured response amplitude r
1
(f

stim
) and phase φ(f

stim
) (see 

Figure 4). To obtain a more compact description of the response 
characteristics, we fitted the transfer function

H f
if f

e ifd
0

2

1
( )

/
=

+( )
−γ π

c

 

(6)

of a first-order low-pass filter with cutoff frequency f
c
, low-fre-

quency gain γ and constant (frequency independent) delay d to 
the measured transfer function H

0
( f ) by minimizing the Euclidean 

distance

err = Re

Im Im

0

2

H f H f

H f H f

i o i
i

i i

( )( ) − ( )( ) 

+ ( )( ) − ( )( )
∑ Re 



0 0
 

2

 
(7)

FIgure 1 | sketch of the setup. A leaky integrate-and-fire (LIF) neuron receives spike trains generated by a Poisson point process with sinusoidal rate of mean a0 
and modulation amplitude a1. The synapse is modeled as a current kernel (PSC) with amplitude w. The response firing rate is characterized by its mean r0, amplitude r1 
and phase φ.

FIgure 2 | Critical synaptic weight. Dependence of the critical synaptic 
weight wcrit (gray scale) on the synaptic and membrane time constants τs and 
τm, respectively. Symbols mark values of τs and τm used in the simulations.
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suMMary of the data analysIs

Table 2 | summary of the data analysis.

 dATA ANAlysIs

Measure details

Response spike train s(t) = ∑l δ(t – tl ), spike times tl

Spike density r(t) = number of spikes per bin [t, t + dt) 

(instantaneous normalized by bin size dt.  

firing rate) (Finite-time) Fourier transform  

 R f r t f t r t eT ift( ) [ ( )] ( ) ( )= = ∫ −  d0
2π

Average response rate r0 = T−1 R(0)

Activation function r0 = g(a0) (linear interpolation)

Response amplitude rk(fstim) = 2T−1R(k fstim), k ∈{1, 2}  

 (first and second harmonics r1, r2)

SD of response  ∆ = ∀ >r r T k f2 00 / ( [ , ]SD of  stim stimrk ( )f   

amplitude of a [homogeneous and inhomogeneous] 

 Poisson process) 

z-score z (fstim) = r1 (fstim)/∆r

Response phase φ(fstim) = ∠R(fstim)

Transfer function H0(fstim) = r1(fstim)/a1· exp(iφ(fstim))

Transfer function Low-frequency gain γ, cutoff frequency  

characteristics fc, delay d, obtained by fitting 1st-order  

 low-pass filter with fixed delay  

 H f if f ifd H fc0
1

01 2( ) ( / ) exp( ) ( )= + −−γ π to

Significance criterion ∀ ≤ ≥f f z fcstim stim2 2: ( )

Transfer kernel h t H f t t d t d0
1

0
1( ) ( ) ( ) exp( [ ] / ) ( )=   = − − −− −F  γτ τ Θ   

 with Heaviside function Θ(·) and time 

 constant τ = 1/(2πfc)

State-independent h t h t g a
a a

( ) ( ) / ’( ) ,
,

= 0 0
0 1

 average over all 
transfer kernel a0 and a1 < a0

Linear–nonlinear model r (t) = g ((a * h) (t))

Model and sIMulatIon paraMeters

Table 3 | Curly brackets {…} represent ranges of values used in the 

simulations.

pArAMeTers

Name description Value

NeurON pArAMeTers

Vth Spike threshold 15 mV

Vreset Reset potential 0 mV

τref Refractory period 2 ms

Cm Membrane capacitance 250 pF

τm Membrane time constant {10, 20} ms

syNApse pArAMeTers

τs Synaptic time constant {0.5, 1, 2, 5} ms

w Synaptic weight wcrit · {0.2, 0.25,…,1.5}

δ Synaptic delay 1 ms

INpuT pArAMeTers

A0 Input rate {0.2,…,100} s−1

A1 Input amplitude {0.2,…,100} s−1

fstim Input frequency ∼10{0.0,0.1,…,2.9} Hz

sIMulATION pArAMeTers

dt Time resolution 0.1 ms

T Simulation time 220 dt ≈ 105 s

Default values are set in bold font.

τ u t u t a t r t g u t( ) ( ) ( ), ( ) ( ( ))= − + =  (10)

(see Nordbø et al., 2007, and references therein)6. Note, that from this 
point of view the dynamical variable u(t) corresponds to the linear 
response of the firing rate. It describes neither the average synaptic 
input nor the membrane potential. A priori, the kernel h(t) can there-
fore not be interpreted as the synaptic or membrane filter. For the 
mathematical and numerical analysis, the differential form (10) of the 
rate model is often more convenient. The integral form (9) represents 
a more general description for arbitrary linear kernels h(t).

For small perturbations ∆a(t) of a stationary working point 
a

0
, (9) should be to leading order identical to (1) (for x(t) = a(t)). 

As a consequence, the dependence of the transfer kernel h
0
(t) 

on the choice of the working point a
0
 is determined by the slope 

g′(a
0
) = dg(a

0
)/da

0
 of the activation function at this point, i.e.,

h t g a h t0 0( ) ( ) ( ).= ′  (11)

As we will show in Section 3.2, for a wide range of parameters 
the dependence of the filter kernel h

0
(t) on the working point a

0
 is 

indeed given by the slope g′(a
0
) of the activation function alone, 

i.e., the extracted kernel h(t) = h
0
(t)/g′(a

0
) is independent of the 

applied stimulus. We therefore pool our results in this region of 
the parameter space by averaging h(t) over all a

0
 and all a

1
 < a

0
. 

Based on the kernel h(t) obtained this way and the measured activa-
tion function g(a

0
), we set up a linear–nonlinear model (9) which 

allows us to compute the responses r(t) to arbitrary stimuli a(t) 
(see Section 3.5).

The model (9) was extracted from the Fourier transform of the 
spike response of a single neuron. This corresponds to an analysis of 
the period-averaged signal. Provided the responses in consecutive 
stimulus periods are independent, period averaging is equivalent 
to averaging across independent trials or across a population of 
independent neurons. In Section 3.5, we test to what extent the 
rate model extracted from a single neuron by period averaging can 
predict the population-averaged spike response of an ensemble 
of LIF neurons receiving input spike trains with non-sinusoidal 
firing rate.

3 results
3.1 statIonary response
In the present study, the synaptic input is purely excitatory. For 
stationary inputs, the output rate r

0
 therefore increases monoto-

nously with the input rate a
0
 (Figure 3A). For subcritical synaptic 

weights w
r
 < 1, the postsynaptic neuron has to integrate a number 

of presynaptic events to reach the threshold (cf. Usrey et al., 1998, in 
the context of the retina-LGN system). In consequence, the output 
rate r

0
 is smaller than the input rate a

0
. As with increasing input 

6In fact, Eq. (9) can be transformed to a set of differential equations for the whole 
family of exponential kernels
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A B

FIgure 3 | Weight dependence of the stationary response (a1 = 0). (A) Dependence of the response firing rate r0 on the constant input rate a0 (activation 
function) for relative synaptic weights wr ∈ {0.2, 0.3,…1.5} (cf. numbers on the right margin). (B) Dependence of the transfer ratio r0/a0 (gray scale) on the input rate a0 
and the synaptic weight wr.

rate a
0
 more and more charge is accumulated, the transfer ratio  

r
0
/a

0
 increases with a

0
 (Figure 3B). The activation function r

0
 = g(a

0
) 

is therefore concave in this regime. At the critical weight w
r
 = 1, an 

isolated input spike causes a depolarization of the postsynaptic 
cell which just reaches the threshold V

th
. For w

r
 ≥ 1, one could 

therefore expect that each input spike is transferred, such that  
r

0
/a

0
 = 1. Due to refractoriness, however, a fraction of input spikes 

is lost. This fraction increases with the input rate a
0
 because the 

number of short inter-spike intervals increases. In consequence, the 
activation function becomes convex for larger a

0
, i.e., the transfer 

ratio r
0
/a

0
 decreases with a

0
. For strong weights w

r
 > 1, fewer input 

spikes are lost because the postsynaptic currents are extended in 
time (alpha-PSCs). Even if an input spike arrives within the refrac-
tory period, the resulting PSC can still be suprathreshold after the 
neuron has recovered. For the same reason, the transfer ratio can 
even become larger than one for larger synaptic time constants t

s
 

(see for example Figures 8L,O).
As shown in Figure 3B, the transfer ratio r

0
/a

0
 is non- continuous 

at the critical weight w
r
 = 1. This is most apparent for small 

and moderate input rates a
0
. Even if the synaptic weight is only 

slightly smaller than the critical weight, the transfer ratio is con-
siderably smaller than 1. At the critical weight, it jumps to values 
close to 1.

3.2 nonstatIonary response
As illustrated in Figure 4, the response to a time-varying input 
rate can be well described by a linear first-order low-pass filter 
(6) with cutoff frequency f

c
, low-frequency gain γ and fixed delay 

d. Both the cutoff frequencies f
c
 and the low-frequency gain γ are 

larger for supercritical synaptic weights w > w
crit

 as compared to 
subcritical ones. Note that the cutoff frequency for an intermedi-
ate weight w

r
 = 0.4 (A) is almost identical to the cutoff frequency 

for a weight w
r
 = 0.95 which is close to the critical weight (C). At 

the critical weight, the cutoff frequency jumps to higher values 
(E, w

r
 = 1.05). The dependence of f

c
 and γ on the synaptic weight 

is explicitly shown in Figures 5A,B (for a
0
 = 40 and a

1
 = 30 s−1). 

For subcritical weights w < w
crit

, the rate-transfer cutoff frequency 
f

c
 is smaller than or close to the cutoff frequency f s ≈ 50 Hz of 

the synaptic filter (alpha-kernel with time constant τ
s
 = 2 ms; see 

Section 2.1). At the critical weight w
r
 = 1, f

c
 jumps to high values 

above 100 Hz. In contrast to this sharp transition in the cutoff 
frequency, the low-frequency gain γ increases continuously with 
w

r
. For large weights, it approaches values close to one. Here, 

the response modulation at small frequencies is almost as large 
as the modulation in the input rate. In agreement with (11), 
the low-frequency gain γ is well explained by the slope g′(a

0
) of 

the activation function at the working point a
0
 (thin solid line 

in Figure 5B).
Figures 5C–F depict the dependence of the filter characteristics 

f
c
 and γ on the mean a

0
 and modulation depth a

1
 of the input 

signal. For subcritical weights w
r
 < 1, the cutoff frequency f

c
 is 

approximately independent of both a
0
 and a

1
 (Figures 5C,E). 

Only for small synaptic time constants τ
s
, the cutoff frequency 

f
c
 slightly increases with a

0
 (data not shown). For supercritical 

weights w
r
 > 1, we observe a decrease in f

c
 with a

0
 (light gray 

curve in Figure 5C). The low-frequency gain γ (Figures 5D,F) 
is in good approximation determined by the slope g′(a

0
) of the 

activation function evaluated at the input rate a
0
 (thin solid curves 

in Figures 5D,F).
For a linear–nonlinear model (9), the kernel h(t) is given by 

h
0
(t)/g′(a

0
) (see Section 2.3). For subcritical weights, we observe that 

h(t) is approximately independent of both a
0
 and a

1
. An important 

prerequisite for a model which does not depend on the input a(t) 
is thereby fulfilled. For the construction of the firing-rate model 
(9), we therefore pooled the data by averaging h(t) over all a

0
 and 

all a
1
 < a

0
. Although the cutoff frequency depends on the choice of 
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3.3 lInearIty of the response
Strictly speaking, measuring the linear response H

0
(f) of a non-

linear system at a working point a
0
 requires infinitesimally small 

the working point a
0
 for supercritical weights, we also attempt the 

same strategy here. In Section 3.5, we will test the performance of 
this model for non-sinusoidal stimuli.

A B

C D

E F

FIgure 4 | low-pass characteristics of the nonstationary response (a1 > 0). 
Frequency dependence of the transfer-function amplitude r1 (fstim)/a1 (A,C,e), and 
transfer function H0(f ) in the complex plane (B,d,F: radius = amplitude; 
angle = phase) for wr = 0.4 (A,B), 0.95 (C,d), 1.05 (e,F). Symbols represent 
measured responses. Thick gray curves show fitted 1st-order low-pass filters (see 

Eq. (6)). Vertical dotted lines in A, C, and e mark fitted cutoff frequencies fc. Dashed 
horizontal lines in A,C,e represent 2SD of the amplitude of a homogeneous 
Poisson process with rate r0. Dash-dotted curves mark mean ± 2 SD of the 
amplitude of a sinusoidal Poisson process with expected amplitude r1(fstim) given by 
the first-order low-pass model (thick gray curve). (A–F) a0 = 42 s-1, a1 = 30 s−1.
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frequency f
stim

 will give rise to a single peak in the response ampli-
tude spectrum at the same frequency f

stim
. Leaving the linear regime 

is in general accompanied by the occurrence of higher harmonics. 
To map the linear regime, we therefore compared the amplitudes 

 perturbations. In practice, it is a priori unclear which perturbation 
amplitudes can be considered sufficiently small. In the framework 
used here, we can quantify this by analyzing the frequency contents 
of the response r(t). In the linear regime, a sinusoidal stimulus of 

A B

C D

E F

FIgure 5 | Weight and input dependence of the rate transfer function. 
Dependence of the cutoff frequency fc (left column) and the low-frequency gain 
γ (right column) on the relative synaptic weight wr (A,B), the mean input rate a0 
(C,d) and the input amplitude a1 (e,F). Solid curves in the right column show the 

slope g´ (a0) of the activation function at the working point a0. Dotted vertical 
lines in (A,B) mark w = wcrit. In (C–F), data for wr = 0.4 (black), 0.95 (dark gray) 
and 1.05 (light gray) are shown. Error bars represent mean ± standard deviation. 
(A,B: a0 = 40 s−1, a1 = 30 s−1. C,d: a1 = 30 s−1. e,F: a0 = 40 s−1.)
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indeed bounded from above by the synaptic cutoff frequency f s. 
For supercritical weights w

r
 > 1, f

c
 depends on f s in a nonlinear (but 

still monotonous) fashion. For small τ
s
, the cutoff frequency of the 

rate transfer can considerably exceed the synaptic cutoff frequency. 
In other words, the time constant τ = 1/(2πf

c
) can be much smaller 

than the synaptic time constant τ
s
.

As shown in Figure 7B, the low-frequency gain γ is, as a good 
approximation, given by the slope g′(a

0
) of the activation function, 

independently of the choice of the time constants τ
s
 and τ

m
, and 

the synaptic weight w
r
.

3.5 test of the lInear–nonlInear Model
By systematically varying the parameters f

stim
, a

0
 and a

1
 of the sinusoi-

dal input rate, we obtained an activation function g(·) (Figure 3) and 
a linear state-independent transfer kernel h(t) (Figures 4, 5, and 7) 
for each parameter set {w,τ

s
,τ

m
}. With these ingredients we set up 

firing-rate models of the form (9). The model extraction is based on 
the period-averaged responses of a single neuron to sinusoidal inputs, 
a procedure which is often applied in experimental neuroscience. 
Provided the spike responses in consecutive stimulus periods are 
independent the resulting firing-rate model should also yield accu-
rate predictions for the instantaneous population-averaged response 
of an ensemble of independent (unconnected) neurons. Figure 8 
illustrates that this is in fact the case for subcritical synaptic weights 
w

r
 < 1 (Figures 8A–I): here, the population-averaged step response 

of an ensemble of 50000 independent LIF neurons (black curves) is 
well described by the linear–nonlinear model (gray curves). Both the 
time constants τ = 1/(2πf

c
) of the rate dynamics (9) and the station-

ary response rates are correctly predicted. Similarly good agreement 
between the rate-model predictions and the results of direct simula-
tion was obtained for a variety of other test stimuli.

In a few cases, we observe some subtle differences between model 
predictions and simulation results: For small τ

s
 and subcritical weights, 

the time constants of the model are slightly underestimated (see e.g., 

of the  principal and second harmonics r
1
 and r

2
, respectively, for all 

neuron and stimulus parameters. Figure 6 shows the results for a 
mean input rate a

0
 = 40 s−1 and a modulation frequency f

stim
 = 10 Hz 

(similar results were obtained for other stimulus frequencies and 
input rates). In Figure 6A, the amplitudes of the first two harmon-
ics are shown for three different synaptic weights. For sufficiently 
small input amplitudes a

1
, the amplitude r

2
 of the second harmon-

ics does not exceed the noise level. Note, that r
2
 is never exactly zero 

because of a finite observation time T (see Section 2.2). The ratio 
r

1
/(r

1
 + r

2
) shown in Figure 6B is thus never exactly 1. For weights 

w
r
 > 0.6 and intermediate input amplitudes a

1
, the rate transfer is 

approximately linear. For synaptic weights w
r
 < 0.6, we observe an 

increase in r
2
 for larger modulation depths (Figure 6B) which is 

due to a rectification of the response modulation (r
1
 ≥ r

0
; see dotted 

curves in Figure 6B).

3.4 dependence on synaptIc and MeMbrane tIMe constants
At first sight, one might expect that the tracking speed of a popu-
lation of neurons is limited by the low-pass filter properties of 
the neuronal membrane, i.e., the membrane time constant τ

m
. 

Previous studies (e.g., Gerstner, 2000) have however shown, that 
the cutoff frequency of the rate transfer is rather determined by 
the synaptic time constant τ

s
. Here, we test this for a number of 

time constants τ
s
 ∈ {0,5,1,2,5} and τ

m
 ∈ {10,20} ms. In Figure 7A, 

the cutoff frequency f
c
 of the rate transfer normalized by the cutoff 

frequency of the synaptic kernel f s is plotted as a function of the 
relative synaptic weight w

r
 for different synaptic and membrane 

time constants τ
s
 and τ

m
, respectively. For the whole range of tested 

synaptic weights, the cutoff frequencies do not significantly dif-
fer for the two considered membrane time constants τ

m
 = 10 ms 

(solid curves) and 20 ms (dashed curves). In the subcritical regime 
w

r
 < 1, the firing-rate cutoff frequency f

c
 is close to or slightly smaller 

than the synaptic cutoff f s. The ratio f fc s/   is approximately inde-
pendent of τ

s
. Thus, the cutoff frequency f

c
 of the rate transfer is 

A B

FIgure 6 | linearity of rate transfer. (A) Dependence of the amplitude rk of 
the first two Fourier components (k = 1, 2, cf. legend) on the stimulus 
amplitude a1 for wr = 0.4 (light gray), 0.6 (dark gray), and 0.95 (black). Dotted 
line represents diagonal rk = a1. (B) Relative amplitude   r r r1 1 2/( )+  of the 
principal response mode (after offset subtraction and rectification, i.e., 

r a r a rk k k( ) [ ( ) ( )]1 1 0= − +) as function of the synaptic weight wr and the stimulus 
amplitude a1. Dashed horizontal lines mark synaptic weights shown in (A). 
(A,B) a0 = 40 s−1, fstim = 10 Hz. White dotted curves mark regions where 
r0 ≤ r1 (iso-contour lines of r0/r1 at values 1,0.9,0.8,0.7,0.6 [from left  
to right]).
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A B

FIgure 7 | dependence of the rate transfer function on the synaptic and 
membrane time constants. Weight dependence of the relative cutoff 
frequency 〈 〉f fsc /   (A) and the normalized low-frequency gain 〈γ /g′(a0)〉 (B) for 
different synaptic time constants τs ∈ {0.5,1.0,2.0,5.0} ms (from black to light 

gray; see legend), i.e., fs Hz= ∈{ , , , }205 102 5121 , and membrane time constants 
τm = 10 ms (solid) and 20 ms (dashed). Dotted horizontal line in (A) marks f fc s= . 
Dotted vertical lines in (A) and (B) mark w = wcrit. Data represent averages (〈·〉) 
over all a0 and a1 < a0.

Figure 8A). For supercritical weights w
r
 > 1, the population-averaged 

step response sometimes exhibits an overshoot immediately after the 
jump in the input rate which is not captured by the model (Figures 
8J,M). Further, the model overestimates the rate transmission delay 
d in some cases (Figures 8K,L,N). It is likely that these deviations for 
small synaptic time constants or supercritical weights are a result of 
the dependence of the cutoff frequency on the choice of the work-
ing point a

0
 (see Figure 5C). The averaging strategy leading to the 

state-independent kernel h(t) ignores this dependence.

4 dIscussIon
In the present study, we investigated how LIF neurons transmit presy-
naptic time-varying firing rates to the output rate in a period- or 
population-averaged sense. In contrast to earlier studies, we focused 
on a regime where the synapses have moderate or large synaptic 
weights and where the average input rates are relatively low. The 
response properties were characterized by measuring the activation 
function g(a

0
), i.e., the response r

0
 to constant input rates a

0
, and the 

transfer function H
0
( f ) describing the transmission of time-varying 

rate perturbations in the vicinity of a working point a
0
. Both concepts, 

the activation function and the transfer function, were used to set up 
a firing-rate model which was evaluated by comparing its predictions 
with simulation results for non-sinusoidal test stimuli.

In agreement with previous work (Sirovich, 2008), we found 
that even for strong synapses only a fraction of the input spikes is 
transmitted. Only for (presumably) unrealistically large synaptic 
weights above a critical value w

crit
, the transfer ratio r

0
/a

0
 approaches 

or even exceeds one. We have observed this behavior for both sta-
tionary and nonstationary inputs.

In the diffusive regime, i.e., for weak synapses, different transfer 
scenarios have been described in the literature for different neuron 
and stimulus models. All previous studies predict some sort of 
 low-pass behavior (at least if one takes into account that incoming 
spikes are low-pass filtered by the synapses). We observe similar 
behavior for large synaptic weights. If the synapses are so strong 
that a single  isolated input spike can reliably cause a response spike 

in the postsynaptic neuron, i.e., for w > w
crit

, one would expect that 
any signal carried by the presynaptic spikes can be transmitted – 
no matter what its frequency contents is and independently of the 
synaptic filter properties. Both weights larger than w

crit
 and infini-

tesimally small weights are unrealistic for most biological neural 
systems. It is tempting to interpolate between these two extreme 
cases and assume that the ability of a neuron population to track 
fast stimuli gradually increases with the synaptic strength w. In 
fact, Helias et al. (2010) have recently shown that for finite synaptic 
weights the population response of an ensemble of integrate-and-
fire neurons exhibits an instantaneous component which gradu-
ally increases with the synaptic weight. The analysis presented in 
(Helias et al., 2010) is however still restricted to small synaptic 
weights. For strong but subcritical weights w < w

crit
, we found that 

the cutoff frequency f
c
 of the rate transfer is bounded from above 

by the synaptic cutoff frequency f s . Only for supercritical weights 
w > w

crit
, the tracking speed of the population can be significantly 

increased. In agreement with earlier work (e.g., Gerstner, 2000), our 
data suggest that the cutoff frequency f

c
 of the rate transfer does not 

depend on the choice of the membrane time constant.
In most previous studies, the stimulus is treated as a modula-

tion of the distribution of postsynaptic somatic currents. In our 
study, in contrast, the stimulus is represented by a modulation in 
the presynaptic firing rate. Here, the effective transfer function is a 
combination of the neuronal (the current-to-rate transfer) and the 
synaptic filtering (rate-to-current transfer). For correlated noise, 
it has been shown that ensembles of LIF neurons can faithfully 
transmit fast modulations in the mean or the variance of the input 
current (see e.g., Brunel et al., 2001; Lindner and Schimansky-Geier, 
2001): the response amplitudes remain finite even at high frequen-
cies. In this case, the net filtering at high frequencies is governed 
by the synaptic kernel h

s
(t) alone. For alpha-function shaped syn-

aptic currents (as used in this study), one would therefore expect 
second-order low-pass characteristics with response amplitudes 
decaying as 1/f 2 at high frequencies (see (3)). Note, however, that 
this result refers to the diffusion limit, i.e., infinitesimal synaptic 
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A B C

E F

H I
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N O

D
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J

M

FIgure 8 | population-averaged step response. Firing rate r(t) in response 
to an instantaneous increase in the input firing rate a(t) at time t = 100 ms 
from 15 to 65 s−1 for different synaptic weights wr = 0.4 (A–C), 0.6 (d–F),  
0.95 (g–I), 1.05 (J–l), and 1.2 (M–O) and time constants τs = 0.5 (left  
column), 2 (middle column) and 5 ms (right column). Comparison  

between direct simulation results (black curves; population-averaged 
response of 50000 neurons, bin size dt = 0.1 ms) and prediction  
of the linear–nonlinear model (9) (gray curves) with measured  
activation function g(a0) and transfer kernel h(t) (averaged over all a0  
and a1< a0).

weights. For non-diffusive regimes, the shape of the neuronal trans-
fer function is unknown. Here, we for simplicity describe the data 
by a first-order low-pass filter. For most parameters, this results 

in reasonable fits (see, for example, Figure 4). In practice, how-
ever, the high-frequency response can easily be affected by noise: 
due to the stochastic nature of the input spike trains and finite 
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 observation times, small amplitudes are in general overestimated. 
This may lead to a flattening of the transfer function. Here, we do 
not address the exact shape of the transfer function at high frequen-
cies. Instead, we restrict this study to a description of the cutoff 
frequency and the low-frequency gain in order to design a simple 
firing-rate model. We tested that these characteristics are rather 
robust against the choice of the transfer function7. Since the work 
of Wilson and Cowan (1972), firing-rate models with exponential 
kernels (i.e., first-order low-pass filters) have become a standard 
tool in neuroscience8. In the present study, we show that the pres-
ence of strong synapses does not necessarily disqualify such models. 
For an ensemble of unconnected LIF neurons, we demonstrated 
that a simple 1st-order model yields accurate predictions of the 
population-averaged response for a wide range of stimulus, neuron, 
and synapse parameters. For recurrent systems, however, the exact 
shape of the rate transfer function at high frequencies can be crucial: 
Nordbø et al. (2007), for example, have shown that the shape of 
the rate-transfer kernel determines the stability of persistent states 
in neural-field models. Solutions which are stable for exponential 
kernels can become unstable for alpha-function kernels. In future 
studies, the performance of the rate model extracted here therefore 
needs to be tested under recurrent conditions.

The approach presented in this study can in principle be applied 
to any nonlinear system. In general, this leads to transfer func-
tions which depend on the choice of the working point (a

0
, r

0
) 

in a non-trivial way. For large but subcritical synaptic weights 
and not too small synaptic time constants, we observed that the 
normalized rate-to-rate transfer function H(f ) = H

0
(f )/g′(a

0
) is 

approximately independent of the working point and mainly 
determined by the synaptic filter. Here, a simple linear–nonlinear 
model r(t) = g((a*h (t)) with a state-independent kernel h(t) 
yields accurate predictions of the population-averaged firing rate. 
In accordance with previous studies (e.g., Knight, 1972a; Brunel 
et al., 2001; Lindner and Schimansky-Geier, 2001; Mattia and Del 
Giudice, 2002), we found that for small synaptic time constants τ

s
 

the cutoff frequencies f
c
 increase with the firing rate. If the synaptic 

cutoff frequency f s is small compared to the firing rate r
0
 (i.e., for 

larger synaptic time constants), the synaptic filter seems to domi-
nate. If f s is large, a precise prediction of the response rate would 
require a model which takes the state-dependence of the transfer 

7Fitting of a second-order filter to the data led to similar result as the first-order 
model (data not shown).
8For exponential kernels h(t), the linear–nonlinear model (9) can be transformed 
into a one-dimensional differential Eq. (10). The mathematical and numerical 
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