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Abstract

Surveillance of antimicrobial resistance (AMR) is an important component of public health.
Antimicrobial drug use generates selective pressure that may lead to resistance against to
the administered drug, and may also select for collateral resistances to other drugs. Analy-
sis of AMR surveillance data has focused on resistance to individual drugs but joint distribu-
tions of resistance in bacterial populations are infrequently analyzed and reported. New
methods are needed to characterize and communicate joint resistance distributions. Mar-
kov networks are a class of graphical models that define connections, or edges, between
pairs of variables with non-zero partial correlations and are used here to describe AMR
resistance relationships. The graphical least absolute shrinkage and selection operator is
used to estimate sparse Markov networks from AMR surveillance data. The method is dem-
onstrated using a subset of Escherichia coliisolates collected by the National Antimicrobial
Resistance Monitoring System between 2004 and 2012 which included AMR results for 16
drugs from 14418 isolates. Of the 119 possible unique edges, 33 unique edges were identi-
fied at least once during the study period and graphical density ranged from 16.2% to
24.8%. Two frequent dense subgraphs were noted, one containing the five 3-lactam drugs
and the other containing both sulfonamides, three aminoglycosides, and tetracycline. Den-
sity did not appear to change over time (p = 0.71). Unweighted modularity did not appear to
change over time (p = 0.18), but a significant decreasing trend was noted in the modularity
of the weighted networks (p < 0.005) indicating relationships between drugs of different
classes tended to increase in strength and frequency over time compared to relationships
between drugs of the same class. The current method provides a novel method to study the
joint resistance distribution, but additional work is required to unite the underlying biological
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and genetic characteristics of the isolates with the current results derived from phenotypic
data.

Author Summary

Surveillance of antimicrobial resistance patterns is an important responsibility in modern
public health. Due to the genetic configuration of bacterial pathogens, the use of a single
antimicrobial drug may select for bacteria that are resistant to multiple other antimicrobial
drugs via set of mechanisms collectively known as “collateral resistance”. We have devel-
oped a new analytic method to study and describe possible collateral resistance pathways
using existing antimicrobial resistance surveillance data. The method, named “R-nets”, use
network models to visualize the patterns of collateral resistance which allows large
amounts of information to be clearly communicated to public health officials and
researchers. Applying the R-nets to publicly available data from E. coli collected by the
FDA and USDA between 2004 and 20012 we found that the number of collateral resis-
tance links was relatively constant, but there may be an increase in collateral resistances
between drugs of different structures. The method described will hopefully be useful for
predicting and managing the proliferation of highly resistant bacterial pathogens

Introduction

The evolution of acquired antimicrobial resistance (AMR) in pathogenic microorganisms is
one of the foremost challenges in public health today. Antimicrobial drug use in medicine and
agriculture generates selective pressure that selects for AMR in bacterial populations and facili-
tates emergence of multiple drug resistant (MDR) phenotypes [1]. Bacterial pathogens with an
MDR phenotype pose a substantial clinical challenge since the antimicrobial drugs typically
prescribed may not effectively clear a patient’s infection and delay the patient’s recovery. The
most recent and dramatic example is the emergence of plasmid-mediated resistance to colistin
in Escherichia coli isolated from animals and humans [2]. Colistin is the last resort to treat
some infections caused by Gram-negative bacteria such as carbapenem resistant Actinobacter
baumannii and at least one pan-resistant strain of E. coli has been isolated from a clinically ill
human patient [3, 4].

Multiple mechanisms of bacterial evolution, including mutation, recombination, and clonal
expansion, give rise to highly resistant strains of bacteria and encourage persistence of these
strains following their emergence [5]. Genetic capitalism describes the phenomenon by which
the progeny of a microbe with one fitness trait, a drug-resistant phenotype for example, tend to
survive serial selection events, in turn increasing the likelihood that the progeny will acquire
additional fitness traits via recombination [6]. The initial fitness trait may be acquired by muta-
tion, horizontal gene transfer (HGT), or novel recombination event with other bacteria in the
environment. An example of genetic capitalism was the rapid emergence and expansion of a
fluoroquinolone-resistant strain of methicillin-resistant Staphylococcus aureus (MRSA) at the
Atlanta Veterans Affairs Medical Center, where the proportion of fluoroquinolone-resistant
MRSA isolates increased from 0 to nearly 80% within 1 year of the introduction of ciprofloxa-
cin to the hospital's formulary [7]. Collateral selection, another mechanism capable of generat-
ing MDR strains, describes the phenomenon where selection pressure from one antimicrobial
drug may additionally select for or against phenotypic resistances to other drugs via several
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mechanisms [8]. Cross-resistance describes resistance to several related drugs by a single mech-
anism, e.g., point mutations to the DNA gyrase subunit A gene (gyrA) that increase resistance
to quinolone antibiotics [9], co-resistance describes a set of resistances conferred by a set of fre-
quently concurrent genes, e.g., polymixin and colistin resistance genes carried on the recently-
described MCR-1 plasmid in Escherichia coli [2], and pleiotropic resistance describes individ-
ual mutations that simultaneously affect resistances for multiple unrelated drugs such as marR
gene alterations in E. coli that increase resistance to tetracycline, chloramphenicol, and fluro-
quinolones drugs [10, 11].

Monitoring the proliferation of existing MDR strains and emergence of novel MDR strains
are primary goals of AMR surveillance programs carried out by governmental agencies across
the world including, but not limited, to the Department of Agriculture (USDA), Food and
Drug Administration (FDA) and Centers for Disease Control and Prevention (CDC) in the
United States [12-14], the Department of Health in the United Kingdom [15], the European
Centers for Disease Control and Prevention (ECDC) in the European Union [16, 17], and the
collaborative Transatlantic Task Force on Antimicrobial Resistance created in 2009 [18, 19].
These agencies' survey methodologies and their published reports have been largely focused on
univariate phenotypic resistances and the prevalence of MDR strains [20]. These surveillance
reports however provide little information about the joint distributions of drug resistances in
the overall population that may contribute to MDR strain development and emergence via col-
lateral resistance. Outside of AMR surveillance, several studies of in vitro and in situ bacterial
populations have begun to explore joint resistance distributions in an effort to identify strate-
gies to mitigate MDR development [21-23].

Studying joint distributions of resistances in AMR surveillance data is necessary to under-
stand in situ MDR strain evolution, but poses a number of challenges. The number of estimated
correlation coefficients required to fully describe the pair-wise resistance distributions grows
quadratically with the number of drugs in a panel, specifically ,C, = k*/2 —k/2 for a panel of k
drugs; Most AMR panels contain a dozen drugs or more, requiring at least ;,C, = 66 correla-
tions to be estimated. Hypothesis testing may be used to determine which drug pairs are not
correlated, but the large number of estimated correlations results substantial type I error rate
inflation. Pair-wise correlations also do not control for confounding by other variables in the
dataset.

Better methods are needed to characterize and quantify the joint resistance distributions in
bacteria. We propose graphical models, specifically Markov networks, to study joint distribu-
tions in AMR surveillance. Graphical models are mathematical constructs which represent the
interactions between elements in complex systems. A variety of well-studied parameters, e.g.,
density and modularity, have been described to summarize these models at multiple levels of
complexity. This study’s objective is to estimate the Markov networks' structures that represent
existing AMR surveillance data to effectively describe and visualize AMR relationships among
a population of bacteria. This technique is intended to supplement the current methods used
to analyze and report AMR surveillance results. The method is demonstrated here using data
collected by the National Antimicrobial Resistance Monitoring System for Enteric Bacteria
(NARMS).

Materials and Methods
Surveillance data

The NARMS study tracks AMR in E. coli, Salmonella spp., Enterococcus spp., and Campylobac-
ter spp. isolated from slaughter houses, retail meat, and cases of food borne illness by the
USDA, FDA and CDC respectively. Surveillance results from NARMS between 1998 and 2013
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were recently made publically available [24]. Isolates were tested for AMR with genus-specific
drug panels, typically containing 13 to 15 drugs with resistance results reported as minimum
inhibitory concentrations (MIC).
To demonstrate our approach, a subset of the NARMS data was selected from the AMR
results from E. coli isolated between 2004 and 2012 (n = 14,418). The MIC results for the fol-
lowing 16 of the available 23 drugs were used to demonstrate the networks: ampicillin (AMP),
amoxicillin and clavulanic acid (AMC), ceftriaxone (AXO), cefoxitime (FOX), ceftiofur (TIO),
amikacin (AMI), gentamicin (GEN), kanamycin (KAN), streptomycin (STR), nalidixic acid
(NAL), ciprofloxacin (CIP), sulfisoxazole (FIS), trimethoprim and sulfamethoxazole (COT),
chloramphenicol (CHL), tetracycline (TET), and azithromycin (AZI). The drug resistances
were grouped into classes based on the structure of the drug tested (Table 1). The breakpoints
for these antimicrobials and summary of observed resistances in the NARMS data are provided

in Table 2.

Additional information regarding the data and sample sizes is available in supplemental

material (S1 Text).

Statistical analysis

All statistical analyses were performed using R version 3.2.3 [25]. Spearman's rank correla-

tions were used to estimate MIC relationships and trends in graphical parameters over time
[26]. Sparse graphical model structures were constructed using the glasso package version
1.8 [27] and graphical parameters were estimated using the igraph package version 1.0.1

[28].

Table 1. Descriptions of 16 antimicrobial drugs included in the AMR panel for E. coliisolates from chicken carcass rinsates and commercial
chicken breasts between 2004 and 2012 collected by the NARMS study.

Drug
Ampicillin
Amoxicillin + Clavulanic Acid
Ceftriaxone
Cefoxitime
Ceftiofur
Amikacin*
Gentamicin
Kanamycin
Streptomycin
Ciprofloxacin
Nalidixic Acid
Trimethoprim + Sulfamethoxazole
Sulfisoxazole
Tetracycline

Chloramphenicol

Azithromycint

Abbrev.

AMP
AMC
AXO
FOX
TIO
AMI
GEN
KAN
STR
CIP
NAL
COT
FIS
TET

CHL

AZ|

Class
B-lactams

Aminoglycosides

Quinolones

Sulfonamides

Tetracyclines

Phenicols

Macrolides

* Amikicin was only included in the drug panels during 2004—10, and removed afterward.
TAzithromycin was included in panels during 2011 & 2012

doi:10.1371/journal.pcbi.1005160.t001

Target Mechanism (Targets)
Cell Wall Synthesis (Penicillin Binding Protein)

Protein Synthesis (30S Ribosomal Subunit)

DNA Synthesis Inhibition
(Topoisomerase IV & Gyrase)
Folic Acid Synthesis (Dihydropteroate Synthase)

Protein Synthesis
(30S Ribosomal Subunit)
Protein Synthesis
(50S Ribosomal Subunit)
Protein Synthesis
(50S Ribosomal Subunit)
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Table 2. Summary of AMR testing ranges, resistance breakpoints, and results from 14,418 E. coliisolates collected from chicken carcass rin-
sates and commercial chicken breasts between 2004 and 2012 to an AMR panel of 16 drugs by the NARMS study. The breakpoints were collected

from CLSI and USDA-ARS documents [57, 63].

Drug

AMP
AMC
AXO
FOX
TIO
AMI
GEN
KAN
STR
CIP
NAL
COoT
FIS
TET
CHL
AZ|

Min. Obs MIC*

<1
<1
<1/4
<1/2
<1/8
<1/2
<1/4
<8
<32
<1/64
<1/2
<1/8
<16
<4
<2
<1/2

Max. Obs MIC

> 32
> 32
> 64
> 32
>8

<16
>16
> 64
> 64
>4

> 32
>4

> 256
> 32
> 32
>16

Dil’ns Obs Range Tested(# MIC Breakpt. Min Res. (%) Max Res. (%) Mean % Res.
Dil’'ns)
7 1]-32(6) > 32 17.2 24.3 20.5
7 1]-32(6) > 32*% 5.6 14.9 10.7
10 1/4 | - 64 (9) >4 4.4 13.4 9.8
8 1/2|-32(7) > 32 5.0 14.1 10.3
8 1/8 | -8(7) >8 4.4 10.5 7.9
6 1/2 | - 64 (8) > 64 0.0 0.0 0.0
8 1/4 | -16(7) >16 30.8 42.0 38.0
5 8 |-64(4) > 64 5.7 10.6 8.4
3 32 |-64(2) > 64 38.9 62.7 49.0
10 1/64 | -4(9) > 1t 0.1 0.6 0.3
8 1/2 |-32(7) >32 2.3 7.4 4.2
6 1/8 | - 4 (6) > 4% 3.1 9.9 6.7
6 16| -256 (5) | >512 39.2 51.4 47.5
5 4-32(4) >16 40.2 49.8 45.5
6 2(-32(5) > 32 0.9 2.2 1.4
7 1/8 |- 16 (8) > 32 0.0 0.4 0.2

*Reported breakpoint for primary drug in combination: Amoxicillin in AMC and Sulfamethoxazole in COT
tTReported breakpoints conflict between those reported by CLSI (> 4) and the USDA-ARS website (> 1). The USDA-ARS breakpoint was used to define in
the current study.

doi:10.1371/journal.pchi.1005160.t002

Overview of network inference

A graphical model G of a system is comprised two sets: the vertex set G(V) which defines the
system’s k discrete elements and the edge set G(E) which defines the m pair-wise interactions
between the system’s elements. For simple graphical models, G(E) may be expressed as the set
of unique, unordered pairs of adjacent vertices (G(E) = {(v;, vj)| v; adjacent to vj, i # j} or as an
adjacency matrix [29].

A Markov network is a specific type of undirected graphical model used to represent rela-
tionships between variables in a data set [30, 31]. Each of the dataset’s k constituent random
variables are represented by a vertex in the Markov network (G(V) = {v,, ..., »}). Edgesina
Markov network are defined by the variables' partial correlations (w;;), which represent the
standardized covariance of a pair of variables v; and v; when conditioned on all other variables
in the dataset. When w;; = 0, v; and v; are conditionally independent and are not adjacent in a
Markov network. Therefore, a Markov network's edge list consists of the 7 unique, unordered
pairs of variables which are not conditionally independent (G(E) = {(v;, v))| w;; # 0}) and the
network’s adjacency matrix A may be defined from € using the indicator function 1) (Eq 1).

Ay =1y (0;) = [w; # 0] Eql

K

When the structure of a system's Markov network is unknown, it is possible to estimate the
partial correlations and network structure from observed data. An empirical correlation matrix
can be inverted to produce an precision matrix © (@ = ™), which in turn can be used to esti-
mate Q (Eq 2) [32].
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Graphical models estimated in this way are typically complete (m = ;C,) since trivial corre-
lations will persist, even after conditioning on the other variables in the set. However, graphical
models, including Markov networks, are easier to interpret and are more useful when they are
sparse (m << ;C,) [31].

The least absolute shrinkage and selection operator (LASSO) is a method used to generate
more parsimonious models of joint distributions. The graphical LASSO applies an L;-regulari-
zation penalty p to estimate a penalized precision matrix (@) [27]. The penalization reduces
the absolute value of all elements of @ (|9;| > |9';|) and if the penalty is large enough, some 9;;
are reduced to zero. When estimated from ©* instead of @, the trivially small partial correla-
tions are reduced to zero and the Markov network will be sparse. While any non-negative value
may be assigned to p, its useful range is limited to min|9;|< p < max(|9;|). When p > max(]|
9;]), ©* and Q are diagonal, all w;; are trivial, and G(E) = §; conversely, if p < min(|9;|), then
no wj; are trivial, and the resultant graphical model will typically be complete, similar to using
the unpenalized precision matrix.

Graphical models of collateral resistance

The Markov networks of collateral resistance developed here are subsequently referred to as
"R-nets" and two versions are presented: simple R-nets (R) and weighted R-nets (R’). For these
networks, R(V) = R(V) and R(E) = R(E), but their adjacency matrices are different. For R, the
simple adjacency matrix A is defined by Eq 1. For R’, Q is used as the weighted adjacency
matrix where the elements w;; represent the strength and direction of the relationship. The ver-
tices of an R-net represent the observed distribution antimicrobial resistances, e.g., TIO repre-
sents the observed set of MICrjo. The edges of an R-net represent correlated resistances, which
in turn identify potential collateral resistances in the population. A Spearman's rank correlation
matrix X, was estimated for the adjusted log,MIC values within each year y. A non-parametric
estimator was used because the distribution of the MICs, even when transformed, frequently
did not conform to a normal distribution, and Pearson’s correlation estimates may yield biased
results when applied to non-normal data [26]. The graphical LASSO and Eq 2 were used to
estimate the structures of R, and R’,. The graphical LASSO method assumes multivariate nor-
mal data, but it has been demonstrated that an untransformed Spearman’s correlation matrix
may be substituted for the more traditional parametric correlation matrix, provided the former
is positive semidefinite [33].

Regularization penalty selection

The structures of sparse Markov networks generated via the graphical LASSO are conditional
on the L;-penalty used to estimate @', thus the selection of the penalty is an important step in
the inference process. In general, the value of p should be low enough to assure no important
edges are lost, and high enough to effectively reduce the density of the graph. Comparisons of
R, and R’, over time were restricted to sets of R-nets generated from a common penalty to
improve comparability of the networks. To select a common penalty value, 12 sets of R and R’
were produced and evaluated with each set of networks generated using a separate value of p
between 0.05 and 0.60. The structure and distribution of density (771,; Eq 3) within each set of
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R-nets were subjectively evaluated to select a single penalty value to apply across all years. The
common penalty was selected via a supervised review of the R-nets based on network interpret-
ability and trends in 7, over p. A network should be sparse enough to be understood when
visualized, meaning the graph should not be too dense for a viewer to understand the set of
edges present. Edges representing expected cross-resistances, e.g., NAL-CIP, AMP-AMC, and
FIS-COT, should be strong and frequently present. Additionally, the number of unstable cycles
(cycles with an odd number of negative edges) should be minimized [34]. The median density
(m,) and range of m, was plotted against the evaluated values of p and a point was sought
where the slope of the line broke from steeply decreasing to level off; this method is similar to
the Scree test for factor retention in FA and PCA [35, 36]. The lowest penalty that generated R
and R’ that met these criteria were selected for further evaluation.

7 = Eq3
m, = — q
kCZ

Longitudinal comparison of graphical parameters

Three graphical parameters were used to evaluate changes in AMR resistance over time
described by R and R" density, vertex degree, and modularity. Density quantifies a graph's
overall interconnectivity and trends in 7 could indicate overall trends in AMR relationships
and risk of collateral resistance in the population over time [37]. Increasing density over time
represents more interconnectivity of drug resistances.

Vertex degree d; is equal to the number of other vertices adjacent to v;. In an R-net, d
describes the number of other resistances one MIC is related to in the population. In the R-nets
vertices with high d; may represent resistances which are influential to the development of
MDR strains. For example, if resistance to drug A had a high degree in a bacterial population,
e.g.,da = 5, the use of drug A could select for increased resistance to A and potentially affect
resistance to five other drugs, assuming that the covariance structure of phenotypic drug resis-
tance identified by the Markov networks reflects genetic mechanisms allowing for collateral
resistance. The high vertex degree of A does not indicate that the drug resistance is responsible
for resistance noted in five adjacent vertices, only that selection for A could possibly influence
the other resistances.

Modularity (Q) measures how frequently adjacent vertices are similar or dissimilar as
defined by vertex attributes [38]. The class of drug associated with the resistance of each vertex
was used to assign group membership (Table 1). Modularity is positive when edges join similar
vertices more frequently than would be expected by chance and negative when dissimilar verti-
ces are more frequently than would be expected by chance. Trends in modularity may repre-
sent shifting tendencies in resistance relationships to exist between more similar or less similar
drugs. Similar estimates of modularity for signed and weighted networks (Q’) can be estimated
[39]. The value of Q" describes the relative strength of edges between similar vertices compared
to dissimilar vertices. Spearman's rank correlation was used to test for a trends in 71, Q, and Q'
over time due to the small number of values being compared [26].

Principal component analysis

Principal component analysis has been used to study resistance relationships and was per-
formed here to evaluate how the current method compares to a previously employed
method [23]. Three years of the study were selected to represent data from the beginning,
middle, and end of the study, respectively, and PCA was performed separately on the data
from each year. The eigenvalues of X, (1) were computed and the components for which 4
> 1 were extracted and subsequently oblimin rotated [40, 41]. The oblimin rotation, an

PLOS Computational Biology | DOI:10.1371/journal.pcbi. 1005160 November 16, 2016 7/25
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oblique rotation method, was used to allow the loadings to assort naturally without impos-
ing orthagonality. Drug resistances with component loadings that had an absolute value
greater than 0.4 were considered to be important and were assigned to the respective rotated
component [42]. The rotated components were compared to the respective R-nets to evalu-
ate agreement between the two methods.

Results
Regularization penalty selection

The range of p evaluated was fully contained in the useful range identified above, with 0 < |9;]
< 2.7 for all years in the study. The upper region of the possible penalties (0.6 < p < 2.7) was
not evaluated since the networks generated in this region would have produced networks too
sparse to be informative. The density of R-nets over all p values and years ranged from 4.8% to
57.1% over the evaluated range of p, and 0.3 < p < 0.5 generated graphs with very similar den-
sities between 10% and 20%, indicating consistent graph structures in this range of p (Fig 1)
and changes in the slope of 771, over p were noted at p = 0.10 and p = 0.25 (Fig 2). In general,
the R-nets generated by p = 0.10 were too dense to easily interpret and several unstable cycles
were noted in R’50s, R'2009 and R’5910. The R-nets generated by p = 0.25 were sparse enough to
be interpreted with reasonable effort. Additionally, R’ under p = 0.25 contained no unstable
cycles since all partial correlations were positive. The latter penalty of p = 0.25 was selected as
the common penalty and used to generate R and R’ interpreted below (Fig 3). The supplemen-
tal material provides an overview of p’s impact on density and modularity (S2 Text) and a
more in-depth description of R and R’ conditioned on p = 0.10 (S3 Text).

Network structure

A total of 119 unique edges could have observed during the entire study period (the AZI-AMI
edge could not have been observed since both drugs were never included in the same year), and
105 edges could have been observed in each year. Of these 119 unique edges,33 unique edges
were observed in at least one year of the study, and 15 appeared in all 9 years. A bimodal distri-
bution was noted in the frequency of edge appearance, with one group of edges observedin 1
to 4 years, and another group of edges observed for 6 years or more (Fig 4). Sixteen of the 33
observed edges found represented resistance relationships between drugs of the same class
(blue areas of Fig 4), most of which were present in all nine years during the study (13/16
within-class edges) indicating the relative stability of these relationships during the study
period (Fig 5A). Seventeen between-class edges (red areas of Fig 4) were identified, of which
only 4 were present for 8 or 9 years. The majority of between-class edges (12/17 between-class
edges) were present for 3 years or less (Fig 5B).

Graphical parameters

No significant trend in 777 over time was noted (Spearman’s rho = -0.14, p = 0.71). Two dense
subgraphs of R were noted to be frequently present. The first frequent dense subgraph Rpy o
contained the five B-lactam drug resistances AMC, AMP, AXO, FOX, and TIO and formed a
clique in every R,. The second frequent dense subgraph R,sr included GEN, KAN, STR, COT,
FIS and TET, and m,, exceeded 50% in six out of the nine years.

Individual vertices demonstrated several different patterns of degrees during the study
period, and d < 6 for all vertices and time periods. For the B-lactam drugs, d = 4 was typical
but occasionally increased to 5 or 6. Different patterns were noted among the degrees of the
aminoglycosides: di an Was high the earlier in the study and decreased in later years (3 > dxan

PLOS Computational Biology | DOI:10.1371/journal.pcbi. 1005160 November 16, 2016 8/25



.@' PLOS COMPUTATIONAL
2 : BIOLOGY Markov Networks of Collateral Resistance in E. coli

60 —
—'-”\
o Y N
~‘- o" ‘\\ o" “
“ee \_.- ‘o “ "
- 1 o
. L’
50 — °
40 ~ Ve ’
7 \\ 7/ \ /
7 S \ /
P \ / p=0.15
-’ .-
c 30 - /\/
- p=0.3
-----"./....---——st‘--- ;‘.."‘447‘_.—
10 - -l
S
N
~
p=0.6
0 —J

[ | I I I [ f I |
2004 2005 2006 2007 2008 2009 2010 2011 2012

Year

Fig 1. Size of Markov networks of AMR surveillance data over time, stratified by L, regularization value.
Networks were generated via the graphical least absolute shrinkage and selection operator with 12 L, penalty values
(p) from 0.05 to 0.60. Antimicrobial data includes 16 antimicrobial drugs results from 14,418 E. coliisolates collected
from chicken carcass rinsates and commercial chicken breasts between 2004 and 2012.

doi:10.1371/journal.pcbi.1005160.9001

in 2009 and prior and 2 < dian in 2010 and later), dggn and dang were more consistent, and
dstr varied widely and without a clear pattern. In every time period, dcip = 1, corresponding to
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Fig 2. Size of Markov networks of AMR surveillance data (m) over L, regularization values. R-nets were
generated using 12 L; penalty values (p), from 0.05 to 0.60 in increments of 0.05 for all 9 time periods in the study.
The solid line represents the median graph size (mso) for the set R, which contains one R-net for each of the 9 years
in the study at each evaluated value of p, and the dashed lines above and below ms, represent the maximum and
minimum size of R, respectively. R-net size decreased rapidly until p ~ 0.3, where the slope started to stabilize. The
slope of msq appeared to change most abruptly near p = 0.10 and p = 0.25. The vertical line at p = 0.25 represents
the set of R-nets presented in Fig 3. The set of R-nets generated at p = 0.10 are presented in S3-1 Fig with further
discussion in S3.

doi:10.1371/journal.pchi.1005160.9002

its edge with NAL, but dyar, tended to increase through the study. The values for dcyr, dgrs,
dcor> and d, 7y changed little during the study period. There was substantial variation in drgr
and did not appear to follow a pattern.

Modularity defined by class in the unweighted R-nets ranged from Q015 = 0.267 to Qxg05 =
Q2006 = 0.420. Modularity was not significantly associated with time (Spearman's rho = -0.49,
p = 0.18; Fig 6). When weighted by partial correlation, modularity estimates ranged from
Q’012 = 0.321 to Q'005 = 0.466, and a statistically-significant decreasing trend was noted in Q'
(Spearman's rho = -0.95, p < 0.005).
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Fig 3. Markov networks of AMR surveillance data. Nine weighted Markov networks representing AMR data
consisting of 14,418 total isolates of E. coli collected from chicken carcass rinsates and commercial chicken breasts
from each year from 2004 to 2012. Networks were generated via the graphical least absolute shrinkage and
selection operator with p = 0.25. The edges were decorated with line weights and styles to indicate the relative |w;}
magnitude. Vertex size indicates the percent of isolates with an MIC meeting or exceeding the published breakpoint
for respective drug (Table 2). Vertex colors indicate the Class of drug associated resistance as follows: Vertex
colors indicate the Class of drug associated resistance as follows: B-lactams-light green, quinolones—blue,
aminoglycosides—purple, sulfonamides—yellow; chloramphenicol-dark green; tetracycline—red; macrolide—pink.

doi:10.1371/journal.pchi.1005160.9g003
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Fig 4. Histogram of edge frequency in Markov networks of AMR surveillance data. Thirty-three unique edges
were identified in 9 Markov networks estimated using AMR data from 14,418 total isolates of E. coli collected from
chicken carcass rinsates (USDA-ARS) and commercial chicken breasts (FDA) between 2004 and 2012. Networks
were generated via the graphical least absolute shrinkage and selection operator with p = 0.25. Edges are
categorized by the types of antibiotic resistances they joined, either resistances from the same class (blue) or
different classes (red).

doi:10.1371/journal.pchi.1005160.g004
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Fig 5. Heatmap of non-zero partial correlations between drug resistances over time. (A) Edge weights for 16 edges between resistances of
drugs of the same class and (B) 17 edges between resistances to drugs of different classes in Markov networks of AMR data. Resistance data was
collected from 14,418 total isolates of E. colicollected from chicken carcass rinsates and commercial chicken breasts between 2004 to 2012.
Networks were generated via the graphical least absolute shrinkage and selection operator with p = 0.25. Grey areas represent years of missing
data due one of the antibiotic drugs was not included in the panel (AMI after 2010 and AZI prior to 2011).

doi:10.1371/journal.pcbi.1005160.g005

Principal component analysis

Principal component analysis was performed on 2,404, 2008, 22012- In each of the three years,
four components were identified for extraction and oblimin rotation. Combined, these rotated
components accounted for 61%, 64%, and 61% of the overall variance in log,MIC in 2004,
2008, and 2012 respectively. The loadings for each component were similar, though not identi-
cal, over all three years (Table 3). Correlations between the rotated components were small,
with -0.10 < r < 0.25. Most rotated components aligned with subgraphs with 77 > 50% (Fig 7).

Discussion

The representation of AMR surveillance data using Markov networks generated via the graphi-
cal LASSO is a novel method to characterize potential collateral resistances in bacterial popula-
tions. The graphical nature of this method lends itself to simple visualization which allows
complex relationships to be communicated clearly. The structures of Ryg04, Rao0s, and Ryg15 are
similar to the variance structures identified by the respective PCA results, but the R-nets pro-
vide results that are simultaneously more detailed and more interpretable than the results from
PCA.

PLOS Computational Biology | DOI:10.1371/journal.pcbi. 1005160 November 16, 2016 13/25
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Fig 6. Modularity in Markov networks of AMR surveillance data over time. The unweighted modularity (Q, blue
line) and weighted modularity (Q’, red line) over time for Markov networks of AMR data based on the class (See
Table 1). The data set consisted 14,418 total isolates of E. coli collected from chicken carcass rinsates and
commercial chicken breasts from each year from 2004 and 2012. Networks were generated via the graphical least
absolute shrinkage and selection operator with p = 0.25. A statistically negative trend over time was noted in Q’

(p <0.005), but notin Q(p=0.18).

doi:10.1371/journal.pcbi.1005160.9006

Several resistance relationship patterns appeared in the models over time. Resistances to the
B-lactam drugs were consistently and strongly related to each other in all years, generating the
complete induced subgraph Rp; 4. These patterns of related classes are likely an example of
cross-resistance, though pleiotrophic and co-resistance mechanisms may also be present. The
elements of Ryg7(V) did not represent resistances to a single class of drugs or even drugs target-
ing a common metabolic pathway. A similar grouping of resistances without GEN was previ-
ously described in beef cattle, where it was attributed to antibiotics frequently used in
production medicine [23]. The quinolone drugs were always correlated with each other, and
while CIP was only correlated with NAL, NAL was additionally correlated with CHL, TIO, and
AMP in some years. Additionally, these patterns are consistent with those seen in the PCA of
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Table 3. Eigenvalues (A) and loadings for the oblimin-rotated components identified in the principal component analysis (PCA) of the Spear-
man’s rank correlation matrix of MICs to 15 drugs from the NARMS study in 2004 (12994 = 2097), 2008 (n200s = 1292), and 2012 (n912 = 1376). Vari-
ables with loadings > 0.4 were used to interpret the component, and the density of the induced subgraphs containing the variables with loading > 0.4 for each
component are provided inm,. The m, of components consisting of a single variable were undefined (N/D). Resistance results for azithromycin (AZI) was
not available in 2004 and 2008, and resistance results for amikacin (AMI) was not available in 2012.

2004 2008 2012
M A As A M A As A M A As As
3.31 2.94 1.70 1.20 3.71 3.10 1.57 1.29 3.41 272 1.78 1.21
AMC 0.85 0.89 0.83
AMP 0.81 0.85 0.81
AXO 0.77 0.84 0.82
FOX 0.79 0.83 0.79
TIO 0.81 0.85 0.81
AMI 0.91 0.81 - - - -
GEN 0.73 0.83 0.76
KAN 0.67 0.69 0.47
STR 0.63 0.74 0.75
cIP 0.78 0.87 0.94
NAL 0.85 0.80 0.55 0.49
FIS 0.88 0.87 0.85
coT 0.71 0.59 0.65
TET 0.49 0.5 0.46
CHL 0.49 0.61 0.75
AZI - - - - - - - - 0.82
m, (%) 100 73.3 66.7 N/D 100 66.7 100 0 100 53.3 100 100

doi:10.1371/journal.pchi.1005160.t003

the same data, and similar to patterns seen in a previous study of AMR relationships in E. coli
[23].

Evaluation of the graphical parameters provided additional insight into changes in the joint
distributions of resistance over time. No temporal trend was apparent in 71 indicating that, on
average, the amount of interconnectivity of AMR in this population of E. coli did not change
substantially over time. The negative trend noted in Q' indicates a shift towards stronger rela-
tionships between drugs of different classes, weaker relationships between drugs of the same
class, or both. Visual evaluation of Fig 5A and 5B suggests both processes may be occurring,
with within-class edges becoming slightly weaker over time and the appearance of more, stron-
ger between-class edges. Lower weighted modularity values over time were consistent across
the common penalties and may indicate a concerning increase in co-resistance and pleio-
morphic mutations in this population of E. coli. Neither the source of the decreasing trend in
Q’ or the behavior of any specific edge can be assigned without isolate covariate data, which
were not available for data from the NARMS study. Quantification of specific network struc-
tures into simple numeric criteria is one of the major advantages of graphical models. While
some information about a graph’s structure is lost when the structure is condensed into a sim-
ple criterion, these criteria greatly facilitate the comparison of graphs. Parallel interpretation of
multiple criteria, as is done here with Q, Q’, and #1, can provide a more complete description.

It should be emphasized that the R-nets describe the joint relationships of resistances at the
population level, hence little can be inferred about the genotype or the phenotypic resistance
profile of an individual isolate from these results. At best, a probabilistic statement can be
made about some MIC values given knowledge about the others. It is also not currently
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Fig 7. Markov network structure versus oblimin-rotated components. Comparison of Markov network
structures (R’,) and oblimin-rotated components (PCA) show good alignment indicating a both methods give
similar result. Networks and components were estimated from E. coliisolates from chicken carcass rinsates
and commercial chicken breasts collected in 2004 (204 = 2097), 2008 (N200s = 1292; B), and 2012 (nsg12 =
1376). Networks were generated via the graphical least absolute shrinkage and selection operator with p =
0.25. Sets of variables with loadings > 0.4 on each component are circumscribed with dashed circles and
labeled with the component’s eigenvalue (A).

doi:10.1371/journal.pchi.1005160.9007

possible to infer the source of the resistance or resistance relationships based on these models.
The edges of the R-nets represent potential resistance relationships, but existence of the edge
alone is not sufficient to induce collateral resistance. For example, even though GEN and FIS
were adjacent, GEN will not affect FIS unless there exists a concurrent selection pressure for or
against gentamicin resistance. Induction of collateral resistance for FIS by GEN requires the
combination of the FIS-GEN resistance relationship and the selection for GEN, potentially
from the therapeutic use of gentamicin. This illustrates that knowledge of the resistance rela-
tionships alone is insufficient to determine how the R-nets have influenced the patterns of
resistance observed; antimicrobial use data are also needed and combining R-net results with
exposure data is a topic of ongoing research. Despite this limitation, the R-nets can still identify
phenotypic resistances of interest prospectively, specifically vertices of relatively high degree.

Application of the methods to multiple strains from varied sources will allow the opportu-
nity to objectively identify resistance patterns, and potentially enable predictions about resis-
tance relationship evolution based on previously observed R-nets. There are several
applications where the population-level focus of the currently described method would be use-
ful. First, this method could be directly applied to AMR surveillance in health care facilities
where local evolution of highly resistant bacterial strains is a major concern [7]. While the data-
set used to demonstrate the current method was relatively large and # >> m even in the unpe-
nalized case, the graphical LASSO can perform well even when the number of parameters to
estimate exceeds the number of available observations [43]. Therefore, the current method
may be employed to estimate R even when the sample size is modest, as may be the casein a
single health care facility. R-nets can be estimated retrospectively from clinical data to monitor
for antimicrobials with a high degree, indicating a high risk of extensive collateral resistance. If
drug use data were available from patient records, limited inference could be made about how
an MDR strain evolved in a clinical environment. If appropriate negative correlations were
noted, a selection inversion could also be attempted [21]. The R-nets could also be applied to
monitor emergence of novel resistance relationships at any scale over time. Knowledge of resis-
tance relationship dynamics will help improve clinical decision making by informing the physi-
cian about what resistances may altered by use of a specific drug. The R-nets can help inform
policy making by similarly tracking resistance relationships and detecting resistance of rela-
tionships of concern, and can help facilitate AMR research by screening large numbers correla-
tions to locate non-trivial associations.

The R-nets revealed several interesting patterns of AMR involving the resistances the quino-
lones drugs NAL and CIP. In E. coli, quinolone resistance may be increased by mutations in
the A and B subunits of DNA gyrase [9, 44] and mutations in parC and parE, which encode
subunits of DNA topoisomerase [V[45-47]. Increases in NAL and CIP due to these mutations
would be expected to lead to a strong relationship between NAL and CIP, but no other drugs in
the panel since the quinolones are the only class of antimicrobials affected by DNA gyrase and
topoisomerase mutations. This relationship was observed, with wnar,crp > 0.1 in most years
indicating a consistent strong NAL-CIP edge. Increased expression of active, non-specific
efflux pumps in E. coli is an alternate and complementary mechanism of quinolone resistance,
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and also increases resistance to chloramphenicol, tetracycline, and other classes of drugs [10,
11, 48]. If efflux pumps were an important mechanism of quinolone resistance in the sampled
population of E. coli, correlations should be noted among NAL, CIP, TET and CHL and a
dense subgraph including these vertices should be noted. However, no such subgraph was
noted: TET was never found to be correlated with CIP, NAL, or CHL, and wcpyp nar < 0.05
most years. Efflux pump expression may explain the weak CHL-NAL edge but, overall, these
results would appear to support the conclusion that efflux pumps expression was not an impor-
tant source quinolone resistance, or at least was not a major contributor to resistance in this
population.

Given p = 0.25, every edge in every year represented a positive partial correlation in resis-
tances, indicating that, on average, increasing resistances to one drug was only associated with
increased, and never decreased, resistances of the adjacent vertices. Among the unpenalized
partial correlations, positive partial correlations outnumbered negative partial correlations by
about a 2-to-1 margin, and the median absolute value of negative partial correlations was
about half that of positive correlations. Negative partial correlations were only noted when p <
0.15. These findings are consistent with the phenomenon of genetic capitalism where the prog-
eny of bacteria with at least one advantageous mutation tend to acquire other additional advan-
tageous traits over time via recombination and HGT [6]. The relative weakness and
infrequency of negative partial correlations compared to positive partial correlations is also
consistent with the patterns seen in the resistance relationship networks of previous studies
[22, 49]. One application of R-nets and similar networks is to identify pairs or larger groups of
collaterally susceptible antibiotics to create a selection inversion: a reduction in overall AMR
via strategic antibiotic use [21, 22]. Without any negative partial correlations, it is unlikely that
a selection inversion could be achieved in this population of E. coli, but could be feasible in
other populations.

The purpose of the L; penalization in the graphical LASSO procedure is to eliminate trivial
edges from the graph by reducing their corresponding elements of Q to zero, but the penaliza-
tion also biases the non-trivial elements towards zero, as well [27, 50]. This is effect is the
‘shrinkage’ aspect of the least absolute shrinkage and selection operator. For example, the esti-
mated unpenalized partial correlation between AMC and AMP in 2012 is 0.62, but when esti-
mated via the graphical LASSO with p = 0.25 this estimated partial correlation is reduced to
0.36; the latter estimate of wanc, amp has been moved towards 0, or shrunken, compared to
the former due to the L; penalization. This bias caused by the penalization should be kept in
mind when interpreting the magnitudes of the edge weights since edges attributed to small
penalized partial correlations may actually correspond to substantially larger partial correla-
tions in the unpenalized matrix. The penalized partial correlations are still useful, though,
because they provide a useful method to compare the relative strengths edges within a graph or
graph series. Though R(E) = R'(E), the unweighted models are not affected by this bias since A
does not incorporate magnitude of the partial correlations. Hence, R may be preferable to R’
for some applications.

One important limitation of Markov networks is that they cannot specifically identify the
higher order dependence structure of joint distributions complete induced subgraphs [31].
Without additional information about the population or the random variables comprising by
R(V), the researcher must rely on induction to determine which covariance structure is more
likely to be correct. For example, a complete induced subgraph of a Markov network with k = 4
could be the result of six separate pair-wise correlations, a combination of one 3-way and 3
pair-wise correlations, or a single 4-way correlation. The frequent dense subgraph Rp; 4 is a
case in the current study where a higher order dependence structure may exist but cannot be
specified. Due to the strength of the edges, consistency of edges over time, and similarity of the
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drugs in R 4, it would be reasonable to attribute the observed structure to a single 5-way cor-
relation element, but combinations of multiple lower order interactions are possible.

The R-nets are unable to distinguish the biochemical or genetic mechanisms responsible for
the observed phenotypic relationships, and individual edges may represent multiple categories
of collateral resistance. However, some inferences may be reached via induction based our bio-
logical knowledge of the resistance mechanisms. Edges between drug resistances in the same
class could be caused by cross-resistance mechanisms, or pleiotropic mutations affecting the
common site of multiple drugs. For example, it is likely that B-lactamase enzymes, variations in
penicillin-binding proteins or both are responsible for the dense subgraph of AMP, AMC,
AXO, FOX, and TIO[51, 52]. Edges between drug resistances that belong to different classes
could be caused by either co-resistance or pleiotropic resistance separately. Multiple different
mechanisms may be present active in a single R-net, and multiple types of collateral resistance
may contribute to a particular edge. The AZI-CHL edge was observed both years where AZI €
R,(V), and both drugs target the 50S ribosomal subunit. This relationship could be attributed
to a pleiotropic mutation of the 50S subunit affecting the action of both AZI and CHL, co-resis-
tance from genes residing on a plasmid or in the same genetic cassette, or both. Genotypic data
could be used to elucidate the mechanisms underlying the observed phenotypic correlations,
and the structure of R may provide insight into the genetic mechanisms leading the MDR bac-
teria. An important step in the validation of the current method will be to demonstrate the
structure of R generated by a bacterial population conforms to the combinations of resistance
genes present in the sampled bacteria.

The selection of p in the current method is of particular importance due to its influence on
the generated networks. Here, p = 0.25 was selected because this value produced biologically
coherent graphs in an informative range of densities around 20%. Larger or smaller values of p,
such as the scenario presented in S3, may be appropriate for other applications. The subjectiv-
ity of the selection is mitigated since @ is uniformly penalized, so any edges that are trivial at a
given value of p will also be trivial at all higher values. Future work will explore additional
methods for selecting p to improve standardization across studies.

The graphical nature of this method lends itself to simple visualization, allowing for com-
plex relationships to be communicated clearly and additionally provides a framework for fur-
ther analysis where the presence and magnitude of the partial correlations provide an outcome
for evaluation via other statistical methods. Continuous covariates, including the number of
gene copies present in an isolate, could be included as nodes in an R-net in addition to the drug
resistances. Edges between a covariate node and resistance nodes could identify relationships
similar to collateral resistance. Covariates of high degree may identify avenues for the indirect
induction of AMR similar to collateral resistance, albeit indirectly. Graphical parameters for
these covariate nodes such as centrality could provide additional insight into the evolution of
highly resistant strains. A separate strategy for comparing R-nets is to test for differences in Q
generated by bacterial subpopulations. A number of methods for comparison of covariance
matrices have been proposed [53] and may present a feasible proxy method to compare R’
structure since R’ is defined by Q. Samples can be stratified using isolate date, e.g., isolate
source, time interval of collection, genotype, etc., R” estimated for each stratum, and € com-
pared across the strata. Unlike the strategies for comparison of covariates described earlier,
which included covariates as nodes within the network, Q2 comparisons estimate separate R-
nets based on covariates external to the network and therefore must identify covariates of inter-
est a priori. Additional work is needed to determine how to best evaluate covariates in R-nets,
and it will be important to validate the phenotypic findings against genetic data to improve the
interpretability of results.
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We chose evaluate joint distributions of log-transformed MIC values, but it is common
practice to dichotomize MIC values into susceptible or resistant categories based on break-
points when analyzing resistance data [14, 49, 54]. The transformed AMR data contain more
information than dichotomized results, and therefore analyses of the continuous data is more
powerful than similar analyses of dichotomized data [55, 56]. The dichotomization of MIC val-
ues is also dependent on the selected breakpoints, which are based on clinically-relevant drug
concentrations, and not based on the distribution of MICs within bacterial populations [57].
Breakpoints may also vary over time and geographic region [57-61]. We believe the networks
developed from continuous resistance data more accurately represent the resistance relation-
ships than networks based on more traditional dichotomized results.

Previous studies have used directed graphical models to describe the structure joint distribu-
tions of resistance in E. coli [22, 49, 62]. Directional edges represent types of causal relation-
ships in the system they represent. In some cases, it is appropriate to assign directionality to
AMR relationships, e.g., collateral resistance generated by in vitro selection for resistance to
individual drugs [22] or the association between genes and phenotypical resistances [62]. In
many other situations, including observational or surveillance studies of AMR where antimi-
crobial use is unknown, causality of an AMR relationship, if any exists, must be assumed [49].
In contrast, Markov networks are undirected and have no implied causality, which avoids the
risk of incorrect assumptions regarding cause and effect.

While effective for describing and visualizing AMR relationships, the R-nets cannot provide
information about univariate changes to the MICs over time. Hence, this method is intended
complement current surveillance methodologies, not replace them. It was noted that the
majority of MICs test ranges included at most 1 dilution above the CLSI suggested breakpoint
for resistance, and some MIC test ranges had as few as two dilutions. Increasing the number of
dilutions tested for MICs would capture more information and increase the accuracy of the R-
nets.

Conclusions

The graphical models presented provide a novel method of mapping resistance relationships in
observedin AMR surveillance data. The R-nets present a powerful and useful tool can provide
insight into the evolution of MDR bacterial strains and allow simple visualization of complex
AMR data. Future work is needed to validate the R-nets against genotypic results to confirm
the observed phenotypic resistances accurately represent the underlying biochemical mecha-
nisms of AMR. The application of the method to pathogenic species of bacteria, including
MRSA, Salmonella spp. and Campylobacter spp., is planned and may provide insight into anti-
microbials driving the evolution and emergence MDR bacteria.

Supporting Information

S1 Text. Data source and sample sizes. Summary of E. coli isolates and resistance testing
methods for NARMS data used to demonstrate the R-net method. Includes table S1-1 and S2-
2.

(DOCX)

S2 Text. Exploration of results under various L; penalties. An expanded evaluation of how
the L, penalty effects the structure of R-nets. Includes tables S2-1 and S2-2.
(DOCX)

S3 Text. Alternate R-net Results. A review of the structure of the E. coli R-nets conditioned
on L; = 0.10. This penalty was identified using the objective methods described in S2, but was
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rejected in favor of a higher penalty due to difficultiesin interpreting the dense networks pro-
duced here. Includes tables S3-1 and S3-2.
(DOCX)

S1 Fig. Sample size for E. coli by NARMS agency and year. A stacked histogram representing
the 14,418 E. coli isolates provided to the NARMS study between 2004 and 2012 by the United
States Department of Agriculture Agricultural Research Service (USDA-ARS, red portions)
and Food and Drug Administration (FDA, blue portions) from chicken carcass rinsates and
commercially-packed chicken breast products, respectively.

(TIF)

S2 Fig. Comparison of proportion of within- and between-class edges under multiple L,
penalties. Edges joining resistances to drugs of a similar class (‘within-class’ edges) were sub-
stantially more robust to low regularization penalties (p < 0.30), while edges joining resistances
of different antimicrobial classes were disproportionately removed by the lower penalties. The
difference in behavior between these two types of edges led to differences in unweighted modu-
larity based on the selected penalty. The drug resistances were grouped into one of the follow-
ing classes based on drug structure: aminoglycosides, B-lactams, fluoroquinolones (including
NAL), sulfonamides, tetracyclines, and macrolides (see Table 1). Network structures were esti-
mated from MIC data for 16 drugs from 14,418 E. coli isolates collected by the FDA and USDA
during 2004-12. The vertical line at p = 0.25 indicates the penalty used to generate R and R’ in
the presented study.

(TIF)

$3 Fig. Markov networks of AMR surveillance data under an alternate regularization pen-
alty. Nine weighted Markov networks representing AMR data consisting of 14,418 total iso-
lates of E. coli collected from chicken carcass rinsates and commercial chicken breasts from
each year from 2004 to 2012. Networks were generated via the graphical least absolute shrink-
age and selection operator with p = 0.10. In general, these graphs were considered too dense to
be informative and included unstable cycles in several instances. The edges were decorated
with line weights and styles to indicate the relative |wij| magnitude and the sign of the partial
correlation. Vertex size indicates the percent of isolates with an MIC meeting or exceeding the
published breakpoint for respective drug (See Table 2). Vertex colors indicate the Class of drug
associated resistance as follows: B-lactams-light green, fluoroquinolones-blue, aminoglyco-
sides—purple, sulfonamides-yellow; chloramphenicol-dark green; tetracycline-red; macrolide-
pink.

(TIF)

S4 Fig. Histogram of edge frequency in Markov networks of AMR surveillancedata under
an alternate regularization penalty. Sixty-one unique edges were identified across 9 Markov
networks estimated using AMR data from 14,418 total isolates of E. coli collected from chicken
carcass rinsates (USDA-ARS) and commercial chicken breasts (FDA) between 2004 and 2012.
Networks were generated via the graphical least absolute shrinkage and selection operator
(LASSO) with p = 0.10. A similar bimodal distribution to that seen under p = 0.25 was noted,
but with a higher peak at the lower end of the plot representing infrequently present edges.
Edges are categorized as either within-class (blue) or between-class (red) edges.

(TIF)

S5 Fig. Heatmap of non-zero partial correlations between drug resistances over time
under an alternate regularization penalty (A) Edge weights for 17 edges between resistances
of drugs of the same class and (B) 44 edges between resistances to drugs of different classes in
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Markov networks of AMR data. Red and green coloring represent the magnitude of the positive
and negative partial correlations, respectively, defining the edge. Grey areas represent years
when one of the antibiotic drugs was not included in the panel (AMI after 2010 and AZI prior
to 2011) and the edge could not be observed. The AMI-KAN edge was the only within-class
edge found under p = 0.10 that did not appear under p = 0.25. The lower penalty found many
more unique between-class edges (44 vs 17), but many of these were transient. Edges that
appeared transiently when p = 0.25 were more consistently present under p = 0.10.

(TIF)

S6 Fig. Modularity in Markov networks of AMR surveillancedata over time. The
unweighted modularity (Q, blue line) and weighted modularity (Q, red line) based on the class
of drug associated with the resistance (See Table 1) for Markov networks of AMR data over
time. Networks were generated via the graphical least absolute shrinkage and selection operator
with p = 0.10. A statistically negative trend over time was noted in both Q (Spearman’s rho =
-0.86, p < 0.005) and Q (Spearman’s rho = -0.96, p < 0.005).

(TIFF)
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