Chapter 4

DATA ANALYSIS AND OUTBREAK
DETECTION

The analysis components of a syndromic surveillance system focus on
detecting the changes in public health status, which may be indicative of
disease outbreaks. At the core of these analysis components is the automated
process of detecting aberration or data anomalies in the public health
surveillance data, which often have prominent temporal and spatial data
elements, by statistical analysis or data mining techniques. These methods
are also capable of dealing with various common problems in epidemiological
data such as bias, delay, lack of accuracy, and seasonality. These techniques
are the focus of this chapter.

When processing public health surveillance data streams, it is often
necessary to map the collected syndromic data into a small set of syndrome
categories to facilitate follow-up analysis and outbreak detection. Section 4.1
discusses related syndrome classification approaches. In Section 4.2, we pro-
vide a taxonomy of anomaly analysis and outbreak detection methods used
for biosurveillance. Sections 4.3—4.6 summarize various specific detection
methods spanning from classic statistical methods to data mining approaches,
which quantify the possibility of an outbreak conditioned on surveillance data.

1. SYNDROME CLASSIFICATION

The onset of a number of syndromes can indicate certain diseases thre-
atening public health. For example, the influenza-like syndrome could be due
to an anthrax attack, which is of particular interest to biodefense. Syndrome
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classification thus is one of the first and important steps in syndromic data
processing and analysis.

A substantial amount of research effort has been expended to classifying
free-text chief complaints into syndromes. This classification task is difficult
because different expressions, acronyms, abbreviations, and truncations are
often found in free-text chief complaints (Sniegoski, 2004). For example,
“chst pn,” “CP,” “c/p,” “chest pai,” “chert pain,” “chest/abd pain,” and
“chest discomfort” can all mean “chest pain.” On the basis of our summary
findings reported in Section 3.1, a majority of syndromic surveillance systems
use chief complaints as a major source of data. Therefore, the problem of
mapping each chief complaint record to a syndrome category, referred to as
syndrome classification, is an important practical challenge needing a
solution. Another syndromic data type often used for syndromic surveillance
purposes, i.e., ICD-9 or ICD-9-CM codes, also needs to be grouped into
syndrome categories. Processing such information is somewhat easier as the
data records are structured.

A syndrome category is defined as a set of symptoms, which is an indicator
of some specific diseases. For example, a short-phrase chief complaint
“coughing with high fever” can be classified as the “upper respiratory”
syndrome. Table 4-1 summarizes some of the most commonly-monitored
syndrome categories. Note that different syndromic surveillance systems
may monitor different categories. For example, in the RODS system there
are seven syndrome groups of interest for biosurveillance purposes, whereas
EARS defines a more detailed list of 43 syndromes. Some syndromes are of
common interest across different systems, such as respiratory or gastrointestinal
syndromes.

LRI

Table 4-1. Diseases and syndrome categories commonly monitored.

Influenza-like Respiratory Dermatological
Fever Neurologic Cold
Gastrointestinal Rash Diarrhea
Hemorrhagic illness Severe illness and Asthma
death
Localized cutaneous lesion  Specific infection Vomit
Lymphadenitis Sepsis Other/none of the above
Constitutional
Bioterrorism agent-related diseases
Anthrax Botulism- Plague
like/botulism
Tularemia Smallpox SARS (severe acute

respiratory syndrome)
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1.1 Syndrome Classification Approaches

The syndrome classification process can be either manual or implemented
through an automated system. The BioSense system, developed by CDC
(Ma et al., 2005), for instance, relies on a working group that develops
syndrome mapping using CDC definitions. However, automated, computerized
syndrome classification is essential to real-time syndromic surveillance. A
software application that analyzes chief complaint records or ICD-9 codes
and then determines appropriate syndrome categories is often known as a
syndrome classifier.

Manual Grouping The BioSense system (Bradley et al., 2005; Sokolow
et al., 2005) and the Syndromal Surveillance Tally Sheet program used in
EDs of Santa Clara County, California, use a manual approach to classify the
symptoms. They ask the medical experts in syndromic surveillance, infectious
diseases, and medical informatics to perform the mapping of laboratory test
orders into 11 syndromes categories defined by a multi-agency working
group (Ma et al., 2005).

Automated Classification Existing automated classification methods
can be roughly categorized into three groups: supervised learning, rule-based
classification, and ontology-enhanced classification. The supervised learning
methods require as input a set of CC records labeled with syndromes as
learning samples before they can proceed to classify unlabelled CC records
by syndromes. Naive Bayesian and Bayesian network-based methods are
two examples of the supervised learning methods (Ivanov et al., 2002;
Sniegoski, 2004). For instance, the CoCo chief complaints classifier
developed as part of the RODS system is a Bayesian classifier (Chapman
et al., 2003). Often, a learning approach has a natural language processing
(NLP) component, which classifies free-text CCs with simplified grammar
containing rules for nouns, adjectives, prepositional phrases, and conjunctions.
As part of RODS, Chapman et al. adapted the MPLUS, a Bayesian network-
based NLP system, to classify the free-text chief complaints (Wagner et al.,
2004a; Chapman et al., 2005). Implementing learning algorithms is straight-
forward; however, collecting training records is usually costly and time-
consuming. Another major disadvantage of supervised learning methods is
the lack of flexibility and generalizability. Recoding for different syndromic
definitions or implementing the CC classification system in an environment
that is different from the one where the original labeled training data were
collected could be costly and difficult.
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In contrast, rule-based classification does not require labeled training
data. A text string searching process for syndrome category classification is
a typical rule-based approach. In general, the CC records are first cleansed
and then mapped to the syndrome categories according to a set of rules often
predefined by medical experts following the definitions of syndromes of
interest. For instance, an example rule could be “fever, if NOT animal
and NOT environmental and fever.” Many applications, for example, EARS
(Hutwagner et al., 2003), ESSENCE (CDC, 2003), and the National Bioterrorism
Syndromic Surveillance Demonstration Program (Yih, Abrams et al., 2005),
make use of such rules. Rule-based methods are relatively flexible, as the
inference rules can be easily modified and updated. A major problem with
rule-based classification methods is that they cannot handle symptoms not
covered in the set of predefined rules.

The third category of automated approaches, ontology-based classification,
utilizes relations between medical concepts (Leroy and Chen, 2001). Two
representative methods are the BioPortal CC Classifier, which relies on
Unified Medical Language System (UMLS) vocabularies and semantics (Lu
et al., 2006, 2008), and the BioStorm approach, which uses a vocabulary
abstraction method (Crubézy et al., 2005). BioPortal CC Classifier uses
UMLS’s Meta-thesaurus and SPECIALIST Lexicon to suggest a symptom
grouping (as an intermediary representation) for a given CC record and then
classify it using rules. It is able to provide a flexible architecture that supports
easy adaptation to new syndromic categories. The BioStorm approach
creates a series of intermediate abstractions up to a syndrome category from
the primitive data (e.g., signs, lab tests) for syndromes indicative of illness
due to an agent of bioterrorism.

We summarize representative syndrome classification methods in Table 4-2.
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An interesting complementary method using both manual and natural-
language processing techniques to create CC classifiers is presented by Halasz
et al. (2006). They apply an n-gram text processing program to build an ICD9
classifier to a training set of ED visits for which both the CC and ICD9 code
are known. A collection of CC substrings with associated probabilities was
constructed and used to generate a CC classifier program. This approach
allows the rapid automated creation and updating of CC classifiers based on
ICD9 groupings.

Researchers have also started working on a CC classifier for non-English
CCs. It is noted that there is a critical need for the development CC
classification systems capable of processing non-English CCs as syndromic
surveillance is being increasingly practiced around the world. One design
first maps non-English CCs to English CCs and then use well-tested English
CC classification systems to process translated CCs (Lu et al., 2007a).

1.2 Performance of Syndrome Classification Approaches

On the basis of our survey, about 40% of syndromic surveillance systems
use automated syndrome classification, while the other 40% rely on a manual
approach (details are unknown for the remaining 20%). There is clearly room
for improvement and adoption of automated methods.

Evaluation studies have been conducted to compare various classifiers’
performance for selected syndrome types (Travers and Haas, 2004). For
instance, experiments comparing two Bayesian classifiers for the acute
gastrointestinal syndrome showed a 68% mapping success against expert
classification of ED reports (Ivanov et al., 2002). In general, however, it is
difficult to paint a general picture of how well syndromic classifiers perform
and how they fare against each other as many systems have not been evaluated
on classification accuracy. In addition, the performance of these classifiers
varies with different syndrome categories, further complicating the evaluation
task.

Many prior studies show that a considerable portion (30-40%) of the
chief complaints data is not classifiable because they are too noisy. However,
combining chief complaints with the diagnostic codes (such as ICD-9) during
the same visit can achieve a better classification accuracy (Reis and Mandl,
2004).

Another challenge facing syndrome classification is that there are no
universally-accepted, standardized syndrome definitions. As a result, significant
rewriting/fine-tuning efforts are needed when applying a classification approach
in particular application contexts. One possible approach to deal with these
difficulties is to create intermediary representations (such as symptom groups)
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and create explicit rules that map these intermediary representations into
customized syndrome categories (Lu et al., 2006).

2. A TAXONOMY OF OUTBREAK DETECTION
METHODS

Syndromic surveillance systems typically make available multiple outbreak
detection algorithms, as no single method can deliver superior performance
across a wide range of scenarios or meet different surveillance objectives
(Buckeridge et al., 2003).

Many statistical and data mining techniques for syndromic surveillance
have been proposed in the literature. These methods can be generally divided
into retrospective and prospective approaches. If instead we consider the
characteristics of the surveillance data analyzed, another orthogonal classific-
ation scheme is possible, dividing the outbreak detection methods into
temporal analysis, spatial analysis, and spatial-temporal analysis approaches.
This subsection focuses on both schemes.

Interested readers are referred to http://statpages.org/, which provides
tutorials for various kinds of parametric and nonparametric statistical tests
that form the statistical foundation of outbreak detection, and http://www.
autonlab.org/tutorials/, which includes statistical data mining and machine
learning tutorials. The review articles on data mining and its application in
health and medical information (Bath, 2004; Benoit, 2002) are also good
references to provide in-depth background for the material presented in this
section.

2.1 Retrospective vs. Prospective Syndromic
Surveillance

A number of surveillance approaches fall under the general umbrella of
retrospective models, which aim at testing statistically whether events are
randomly distributed over space and time for a predefined geographical region
during a predetermined time period (Kulldorff, 2001). Some examples of
retrospective methods include space scan statistic (Kulldorff, 1997), Nearest
Neighbor Hierarchical Clustering (NNH) (Levine, 2002), and Risk-adjusted
Support Vector Clustering (RSVC) (Zeng et al., 2004a). When applying
retrospective methods, there is usually a clear distinction between the baseline
data points and the observations of interest, where the baseline data correspond
to known “normal” health status and the observations of interest are case
reports to be examined for surveillance purposes. In applications where the
separation between the baseline data and observations of interest can be
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cleanly and meaningfully done, retrospective methods can be effectively
applied.

One major limitation of retrospective methods is that they are slow in
detecting emerging clusters when the separation between the baseline data
and observations of interest is not obvious. The resulting manual trial-and-
error interventions severely limit the applicability of retrospective methods.

Prospective surveillance often entails repeated analyses performed
periodically on incoming surveillance data streams to identify statistically
significant changes in an online context (Chang et al., 2005). Using such a
method, the separation of the baseline data and observations of interest is no
longer needed as the system automatically tries various combinations of
having some time windows as the baseline and some periods after them as
the time of interest.

Prospective analysis has long been used in disease surveillance applications.
The CUSUM method is one of the most established methods. Other examples
include Rogerson’s approaches (Rogerson, 1997), Kulldorff’s prospective
version of time-space scan statistics (Kulldorff, 2001), and the Prospective
Support Vector Clustering (PSVC) method (Chang et al., 2005).

2.2 Temporal, Spatial, and Spatial-Temporal Outbreak
Detection Methods

Table 4-3 summarizes a wide range of outbreak detection methods, all of
them implemented in one or more syndromic surveillance systems surveyed.
They are divided into three groups: temporal, spatial, and spatial-temporal
(Buckeridge et al., 2005b; Mandl et al., 2004). Note that this table does not
attempt to exhaustively list every detection algorithm proposed in the
literature. Interested readers can refer to (Brookmeyer and Stroup, 2004;
Lawson and Kleinman, 2005) for recent in-depth reviews of a more
comprehensive set of algorithms. The methods listed in Table 4-3 are chosen
because of their connection with the syndromic surveillance systems surveyed.
Although not exhaustive, it covers most of the detection method types and
provides a useful snapshot of the state of the art. Sections 3-5 provide
additional analysis of these three groups of detection methods, respectively.
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Because of the importance of outbreak detection algorithms for syndromic
surveillance, we review some of the critical methods adopted in more detail
below. The readers should note that the models we are about to discuss can
be written in a number of mathematically equivalent ways, while the ones
presented in the text are one of the representations.

3. TEMPORAL DATA ANALYSIS

This section discusses representative temporal anomaly detection methods.
Temporal anomaly detection belongs to the vast domain of time series analysis.
It monitors public health events or incidences as a sequence of data points,
measured typically at evenly-distributed successive times. Temporal anomaly
detection methods attempt to identify unusual patterns, smooth out naturally-
occurring (or known) variations, and distinguish the variations caused by a
possible outbreak from natural variations. Such methods either study the
event frequency or the intensity of adverse event occurrences (time intervals
between occurrences) to detect changes. These changes could follow different
trends (e.g., linear, exponential).

3.1 Statistical Process Control (SPC)-Based Anomaly
Detection

A majority of the systems surveyed employ statistical process control
(SPC)-based algorithms. These algorithms were originally developed to monitor
a process and its mean in industrial settings. The ability to differentiate the
“out-of-control” mean from the “in-control” mean makes these methods
readily applicable for anomaly detection.

The basic idea behind SPC-based algorithms is as follows. A small random
sample x=(x,,...X,,...) is drawn repeatedly at certain time intervals. The
sample mean is compared against given thresholds; alarms are triggered at
t, = mjn{s;sample_rnean(xs) > G(s)}, if the sample mean exceeds the
control limit G(s). The alerting threshold is either theoretically defined, or
dynamically estimated through historical data. The later one is proved to be
more robust than the former (Buckeridge et al., 2005a). The single time-
series analyzed often exhibits substantial day-of-week or seasonal patterns.
As such, it is a common practice to estimate the incidence rate using a linear
or Poisson regression model, and then to apply a SPC-based method to the
regression residuals (Buckeridge et al., 2005a).

The Control Statistical Cumulative Sums (CUSUM) and Exponentially
Weighted Moving Average (EWMA) methods are two standard SPC-based
methods that have been widely applied for outbreak detection. CUSUM
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keeps track of the accumulated deviation between observed and expected
values.  Formally, the accumulated deviation is defined as

S, =max(0,S,_, +z, —k), where £ is a control parameter and z, models the

o . . x, - . . .
distribution of the variable of interest (e.g., z, :’—’u’, if the variable is

t

normally distributed) (Rogerson, 2005). Different forms of CUSUM have
been developed, which assume that the underlying distribution could be
Poisson or exponential (Rogerson, 2005). Nonparametric models have also
been developed, removing the need for knowledge of the underlying
distribution. A deployed SPC method often incorporates a short guard band
(e.g., 2 days) between the baseline period and the day to be monitored. The
guard band may lift the sensitivity by avoiding a gradually increasing
outbreak contaminating the baseline with the outbreak signal. CUSUM
methods have been specifically designed to deal with limited availability of
historical data. Three CUSUM algorithms used in the EARS system require
less than 10 days as the baseline period. They differ from each other by the
different settings of the baseline period and the threshold levels, resulting in
different levels of sensitivity (Hutwagner et al., 2003).

The Shewhart method is another simple form of SPC-based methods. It
can be viewed as performing repeated significance tests on deviations of an
observation from a target constant. The Shewhart method performs poorly
for small and moderate shifts, but for large shifts, CUSUM actually converges
to the Shewhart method (Lawson and Kleinman, 2005). One study used a
Shewhart control chart to detect epidemics of Influenza A (Quenel et al., 1994).

Instead of considering only the last observation in the Shewhart method,
the exponentially weighted moving average (EWMA) method monitors all
the previous observations, summing up the multiple deviations in a weighted
scheme, giving the most recent observation the greatest weight, and all the
previous observations geometrically decreasing weights (Neubauer, 1997).

SPC-based methods are widely used in surveillance due to their simplicity.
Their performances have been tested in many real settings. BioSense, EARS,
and ESSENCE syndromic surveillance systems among others implemented
either CUSUM or EWMA or both, and reported their early aberration detection
capacity for influenza-like illness and other diseases (Hutwagner et al., 2005a;
Zhu et al., 2005). The details of the performance evaluation can be found in
Chapter 6.

3.2 Serfling Statistic
Serfling’s method uses cyclic regression to model the normal pattern of

the numbers of patients susceptible to death for pneumonia and influenza
when there is not an epidemic with the objective of determining an epidemic
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threshold. Its use requires a clear definition of the disease, the selection of
data to identify a normal pattern of susceptible patients, and the assumption
that the normal pattern is periodical.

The Serfling statistic was originally proposed by Serfling for statistical
analysis of weekly pneumonia and influenza deaths in 108 US cities in 1963
(Serfling, 1963). Serfling’s method uses cyclic regression to establish an
expected threshold for daily statistic based on history data excluding the
epidemic weeks, accounting for seasonal variations. It requires a clear definition
of the disease and the assumption that the normal pattern is periodical (Mandl
et al., 2004). A theoretical form of this method is formulated as:

. t t
H)y=c, +cot +cysin(2r—) +c, cos(2x—
() 1 TC6 3 ( 52) 4 ( 52)

Serfling’s method is regarded as a traditional modeling technique applied
to a number of disease surveillance practices such as the French influenza-like
syndrome data (Costagliola et al., 1981). Serfling’s method has also been
used by RODS system to model hospital visitation data for influenza
(Tsui et al., 2003).

33 Autoregressive Model-Based Anomaly Detection

The autoregressive integrated moving average (ARIMA) method is a
class of time-series analysis models that are typically specified by three
parameters: the order of autocorrelation (AR), the order of integration (I),
and the order of moving average (MA) (Box et al., 1994). These parameters
determine two things: how much of the past should be used to predict the
next observation and how much do the past observations weigh in predicting
the next observation. The higher-order models are more complex and can
usually achieve a better fit of the training data set, while the simpler low-
order models are usually less likely to over-fit to training dataset (Reis and
Mandl, 2003). Description of the class of ARIMA methods in full details can
be found in (Box et al., 1994). We here give an example ARIMA (1, 1, 1)
model to simply show the notations. In the following equation, x is a
constant term, (Y(#—1)—Y(¢—2)) represents a first-order “autoregressive”
term, and the forecast error — first-order moving average at period -1 is
e(t—1). ¢ and @ are coefficients.

V()= pu+Y(t-)+gX(t-1)-Y(t —2))— et —1)
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ARIMA models have been applied to pneumonia and influenza deaths
for detection of outbreaks (Reis and Mandl, 2003). In the Automated
Epidemiologic Geotemporal Integrated Surveillance (AEGIS) program at
Children’s Hospital Boston and Harvard Medical School, a hybrid of
ARIMA with cyclic regression was found to have excellent predictive ability
(Mandl et al., 2004). These models are available in many common statistical
software packages (e.g., SAS Time Series Forecasting module). One
drawback of the ARIMA models is that there is no systematic way to update
model parameters when new data points arrive.

The Recursive Least Square (RLS) algorithm is another method based on
autoregressive linear models and is implemented as part of RODS (Wong
et al., 2002, 2003). It learns from the time series but does not need a large
learning sample. Also it is more sensitive to recent historical data to predict
outcomes, so it is well suited to surveillance for short-term events. Unlike
ARIMA or the Serfling method, RLS continuously updates its parameters.
RLS operates by converging on a set of coefficients (for a weighted linear
equation) that best predicts historical values. The algorithm uses these
coefficients to predict the current value. It calculates the prediction errors
between the predicted values and the time series values. Using the prediction
errors and algorithm threshold (expressed in number of standard deviations),
RLS computes a threshold value. This algorithm is ideal for detecting spikes
of cases when there is little historical data. Using these models implies that
transformation of the data leads to a stationary time series, for which a single
underlying probability distribution is assumed. These two hypotheses are not
necessarily true, however; the data may present abrupt and wide changes of
magnitude as well as irregular periodicity, in situations such as epidemics,
modifications of the case-definition, screening, or vaccination (Le and
Carrat, 1999).

34 Hidden Markov Model (HMM)-Based Models

The SPC-based models and the cyclic regression methods need nonepidemic
data to model the baseline distribution, which is not always available without
data preprocessing. This makes it an obstacle for automated surveillance.
Researchers, therefore, have proposed to use Hidden Markov Models
(HMM) to segment the time series of influenza indicators into epidemic and
nonepidemic phases. Hidden Markov models have found major success in
temporal pattern recognition such as speech and handwriting recognition,
and bioinformatics. The basic idea behind HMM-based models is to add
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another layer of random signal generation process conditioned on the state of
a hidden Markov process to determine the conditional distribution of each
observed data point.

The sequence of state transitions in HMM is reconstructed using statistical
methods to calculate the most likely trends of the surveillance data. HMM-
based models are flexible enough to be easily adapted automatically to trends,
seasonality, covariates (e.g., gender and age), and different distributions
(normal, Poisson, Gaussian, Gamma, etc.). HMM-based models have been
applied in a number of surveillance data time series analysis studies. For
example, Le Strat and Carrat applied a univariate HMM to ILI time series
surveillance in France (Le and Carrat, 1999). More technical details of
HMM in disease surveillance can be found in (Madign, 2005). The author
further discussed the proper number of hidden states, multivariate extensions
to the above univariate HMM, as well as HMMs with random observation
times. Madigan also pointed out that a key extension to the existing research
on HMM-based surveillance would be to incorporate a spatial component in
the hidden layer of the models.

4. SPATIAL DATA ANALYSIS

Spatial analysis techniques are used to find the extent of “clustering” of
cases across a map and have long been an important component of the
surveillance analysis toolset. More specifically, spatial clustering analysis
aims to detect and locate the anomalies in disease occurrences or outbreaks
by examining the surveillance data’s spatial distribution, as clusters might be
of insufficient size to be detected in analyses that consider only an entire
region. This would also allow for the possibility that some areas contained
populations more likely to become sick, such as older people, or more likely
to seek healthcare, as might be the case for certain cultural groups. It thus
provides the capability of tracking the progression of disease outbreaks and
identifying the population at risk for proper treatment and prevention.

The rationale behind spatial surveillance is that natural disease outbreaks
or biological attacks are typically localized at some spatial scale. Spatial
analysis in syndromic surveillance uses spatial information residing in the
data, such as the patient’s home residence, sometimes the work place, and
the location of the hospital where the illness is reported. Temporal analyses
we discussed in the earlier section are capable of detecting elevated rates
across an entire region, but would be less sensitive to a smaller number of
spatially focused cases. Furthermore, spatially correlated random effects are
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often ignored by pure time series methods, thus it is assumed that all tests
are independent.

Investigations of clusters in space often associate the varying population
density with the null hypothesis. Denote the intensity of the disease cases
(the number of expected events per unit area) by 4, (s), where s represents a
location in the study area. Also denote by A4,(s) the intensity function of the
population at risk. The null hypothesis of normal spatial distribution is in
fact a proportional intensity function, H, :4,(s) = pA (s),where p is the
expected number of cases divided by the expected number at risk.

One widely-used spatial analysis algorithm is SMART, made available
through the BioSense system and the National Bioterrorism Syndromic
Surveillance Demonstration Program. Other popular methods include the
GLMM algorithm (Kleinman et al., 2004); spatial scan statistics (Kulldorff,
1999) and a number of its variations such as Modified spatial scan statistics
(Duczmal and Buckeridge, 2005); and the Risk-adjusted Support Vector
Clustering (RSVC) method (Zeng et al., 2004a).

Temporal analysis methods such as CUSUM can also be adapted to
analyze spatial information by maintaining CUSUM charts for the surrounding
neighborhood of each individual region as local spatial statistics or by
maintaining multivariate CUSUM charts for all regions in a global setting
(Lawson and Kleinman, 2005). Vice versa, spatial clustering techniques
could be adapted to temporal surveillance, if considering time as one-
dimensional space.

4.1 Generalized Linear Mixed Models and SMART
Algorithm

Kleinman et al. (2005a) proposed the use of Generalized Linear Mixed
Model (GLMM) statistics based on a logistic regression model to estimate
the probability that each subject under surveillance is a case, in each area, on
a given day. The simple logistic regression model introduces ‘“shrinkage”
estimators showing the density of population in each area, as the size of the
population under surveillance in each area often varies. The proposed
method treats each small area as if it was an individual, and the relative
locations of the small areas are not taken into account by the model. This
method in essence ignores much spatial information and cannot detect
elevated counts over several contiguous areas.

SMART is an adaptation of the GLMM method, taking additional para-
meters into account to adjust for seasonal, weekly, social trends, and holiday
status (Bradley et al., 2005). In such an approach, generalized linear models
are used to establish the expected count per ZIP code per day based on
regressing historical series of counts in each small area. The established
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distribution of case counts are then refined to account for multiple ZIP codes
through multiple testing. One experimental study suggested that SMART
delivered slightly inferior results to the spatial scan statistic method. However,
both methods achieved good performances (Kleinman et al., 2005a).

4.2 Spatial Scan Statistic and Its Variations

Most syndromic surveillance systems make use of spatial scan statistic and
its variations. Using such methods for spatial analysis, a large set of circular
windows with varying sizes is imposed on the map in different locations to
search for clusters over the entire region. As the cluster size is unknown a
priori, the scan statistic method uses a likelihood ratio test where the
alternative hypothesis is that there is an elevated rate within the scanning
window when compared with outside. The most likely clusters can then be
identified based on the likelihood-ratio test if the null hypothesis is rejected.
For each distinct window, the likelihood ratio 1is proportional
to: Ly (e

U N-p
total number of cases, and u is the expected number of cases inside the circle
(Kulldorff, 1997). Other probability models, i.e., distribution from which the
case incidence are generated, have also been used for scan statistics. Poisson
model is commonly seen. Bernoulli model can be used for on-off case-
control type data, and exponential model is for survival data.

There are several advantages with scan statistic methods. First, they
avoid preselection bias regarding the size or location of clusters. Second,
they can be easily adjusted for nonuniform population density as well as
other factors such as age.

The spatial-temporal version of the scan statistic uses cylinders instead of
circles, where the height of the cylinder represents time. Still, the circular
base defines a geographic area with a varying radius. The size of the area
that is circled could be from zero to hundreds of kilometers or everything in
between. The height of the cylinder can represent a time of day or years. The
rest of the process is largely unchanged. A moving cylindrical window with
variable sizes in both space and time visits all spatial-temporal locations to
identify a significant excess of cases within it, until it reaches a predetermined
size limit (Kulldorff, 1999, 2001). On the basis of the flexible purely spatial
scan statistic, Takahashi et al. proposed a flexibly shaped space-time
scan statistic for detecting irregularly-shaped clusters, which may not be
detected by the circular spatial scan statistic (Takahashi et al., 2008). The
performance of the flexibly-shaped space-time scan statistic is compared
with the cylindrical scan statistic with a space-time power distribution

)¥™", where n is the number of cases inside the circle, N is the
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developed by extending the purely spatial bivariate power distribution
(Takahashi et al., 2008).

SaTScan is a freely-available software package that implements various
types of spatial and space-time scan statistics (2006j). It has been used in
more than 10 syndromic surveillance systems, according to our survey. Two
commercial products, WpiAnalyst extension for ArcView GIS from the
Public Health Research Laboratories (2003d) and ClusterSeer developed by
TerraSeer (2006¢) contain both spatial and spatial-temporal scan statistics
together with many other statistical clustering methods. The SaTScan Macro
Accessory for Cartography (SMAC) package consists of four SAS macros
and was designed as an easier way to run SaTScan multiple times and add
graphical output. The package contains individual macros, which allow the
user to make the necessary input files for SaTScan, run SaTScan, and create
graphical output all from within SAS software. The macros can also be
combined to do this all in one step (Abrams and Kleinman, 2007).

A modified spatial scan statistic proposed by Duczmal and Buckeridge
considers work-related factors. A factor reflecting the number of “contamin-
ations” from workers at the nearest neighbors is added to the observed cases
in the residential zones (Duczmal and Buckeridge, 2005). Their simulation
shows that their approach can achieve greater detection power than the scan
statistics that do not consider people movements. To apply their approach,
workplace location information is required, which unfortunately is not
commonly available in surveillance data sources.

There are a few known problems with spatial scan methods. First, they
can only identify clusters in simple regular shapes. Second, it is difficult to
incorporate prior knowledge, such as the size or shape of the outbreaks or
the impact on disease infection rate. Third, exhaustive searches over a large
region to perform statistical tests could be computationally expensive.

The method summarized in the next subsection deals with the first pro-
blem. To address the second and third problems, Neill et al. (2005) proposed
a Bayesian spatial scan statistic that is computationally more efficient and
capable of combining the a priori knowledge of the investigated outbreak.
A conjugate Gamma-Poisson model, as opposed to the Poisson model in
Kulldorff’s original spatial scan statistic, is used to produce a spatially
smoothed map of disease rates, with a focus on computing the posterior pro-
babilities to determine the outbreak likelihood and to estimate the location and
size of potential outbreaks.
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4.3 Risk-Adjusted Support Vector Clustering (RSVC)
Algorithm

Zeng et al. developed an approach called RSVC that combined the risk
adjustment idea with a robust Support Vector Clustering (SVC) method to
improve the quality of retrospective spatial-temporal analysis. Specifically,
for regions with prior dense baseline data distribution, data points are less
likely to be grouped to form anomaly clusters. Several steps are involved in
the clustering process. First, the input data are implicitly mapped to a high-
dimensional feature space defined by a kernel function (typically the Gaussian
kernel). Second, the algorithm finds a hypersphere in the feature space with
a minimal radius to contain most of the data. The problem of finding this
hypersphere can be formulated as a quadratic or linear programming problem
depending on the distance function used. Third, the function estimating the
support of the underlying data distribution is then constructed using the
kernel function and the parameters learned in the second step. The width
parameter in the Gaussian kernel function is dynamically adjusted based on
kernel density computed using background data. When mapped back to
original space, the hypersphere splits into several clusters, which indicated
high risk outbreak areas (Zeng et al., 2004b).

S. SPATIAL-TEMPORAL DATA ANALYSIS

5.1 Rule-Based Anomaly Detection with Bayesian
Network Modeling

The “What’s Strange About Recent Events” (WSARE) algorithm performs
a heuristic search over combinations of temporal and spatial features to detect
irregularities in space and time. The case features analyzed by WSARE include
syndrome category, age, gender, and geographical information. For example, a
two-term case feature could be “Gender = Male AND Home Location = NW.”
The number of the cases satisfying and those not satisfying the case feature are
computed to be used to determine whether there is significant discrepancy
between the observed statistic of the current day and the baseline.

Historic data (e.g., recent weeks before the day of analysis) is fed to a
Bayesian network to create a baseline distribution. The network is constructed
using an algorithm called optimal reinsertion (Moore et al., 2003) based on
ADTrees (Moore and Lee, 1998). The benefit of the approach relies on
Bayesian network’s generalization capability that is able to predict the pro-
bability of a situation that may not have been encountered in the past. The
network structure is rebuilt every month, while the parameters are updated
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daily. Environmental attributes such as season and day of week can be
incorporated in the model as conditional probability.

All feature-value combinations are then searched and scored exhaustively.
The scores are generated by conducting hypothesis testing for each feature-
value combination against the baseline distribution. Instead of exhaustively
searching for i-term feature-value combinations with an exponential complexity
(i=1,2, ..., n, suppose that there are n features in total), a greedy search
approach is designed by searching the best 1-term case feature first and then
adding another term to it to compose a 2-term case feature, and so forth.
Compared with several other algorithms that do not examine covariate
information, WSARE performed better as measured by timeliness at the
expense of slightly higher false-positive rate (Wong et al., 2002).

5.2 Population-Wide Anomaly Detection and
Assessment (PANDA)

Population-Wide Anomaly Detection And Assessment (PANDA) is a
causal Bayesian network-based model constructing and inferring the spatial-
temporal probability distribution of disease in a population as a whole. The
causal Bayesian network consists of a large set of inter-linked patient-
specific probabilistic causal models, each of them including variables that
represent risk factors (e.g., infectious disease exposures of various types),
disease states, and patient symptoms (Cooper et al., 2004). Simulation con-
ducted by the RODS team showed that the model can handle a population
size of 1.4 million (Cooper et al., 2004).

6. MONITORING MULTIPLE DATA STREAMS

In Sections 6 and 7, we discuss two specific sets of issues concerning
outbreak detection that are worth separate treatments.

In disease surveillance, multiple data sets (data are collected simultaneously
from pharmacies, hospitals, nurse help telephone calls, and clinics) are
usually available for surveillance. However, the majority of implemented
detection algorithms monitor individual data sources and do not cross reference
between them. The problem is that no single data source captures all the
individuals in the outbreak (Kulldorff et al., 2005). One potentially fruitful
detection approach is a data-fusion approach using multiple sources of data
(e.g., ED visits and OTC sales data) to perform outbreak detection. For
example, MCUSUM and MEWMA (Yeh et al., 2003, 2004) were developed
to increase detection sensitivity while limiting the number of false alarms.
Multiple univariate statistical techniques and multivariate methods have also
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been used in prior studies based on different independence assumptions
among the data streams. Multiple univariate methods assume independence
among the data; while multivariate methods establish the covariance matrix
typically estimated from a baseline period (Buckeridge et al., 2005a). In the
ESSENCE II project, chief complaints data and sales of OTC medications
are treated as covariates (Lombardo et al., 2004). However, to model the
multiple univariate signals from different data streams, an in-depth investing-
ation and characterization of health-care-seeking behavior is necessary.

Another approach is to monitor stratified data (e.g., based on syndrome
type or age group, counties, or treatment facilities) in parallel. The WSARE
(What is Strange About Recent Events) system proposed by Wong et al.
(2003) is one example, which searches for outbreaks in various groupings of
age, gender, or census tracts. Kulldorff et al. (2003) developed a tree-based
scan statistic to do surveillance on groupings that can be preclassified into a
hierarchical tree structure.

In addition, during major public events, unpredictable shifts in the healthcare
data may occur due to changes in healthcare utilization patterns. This problem is
addressed by Reis et al. Instead of monitoring different healthcare data streams
individually, they proposed a class of epidemiological network models that
monitor the interrelationships among these data streams. The integrated
network-based modeling of the interrelationships among the epidemiological
data streams allows more robust performance in the face of shifts in healthcare
utilization during epidemics and major public events (Reis et al., 2007).

Simultaneous wavelets analysis over multiple time series are practiced by
Dillard and Shmueli (Shmueli and Fienberg, 2006). Rigorous comparative
evaluations to quantify the gain of using covariates from multiple data sources
in surveillance are needed.

7. SPECIAL EVENTS SURVEILLANCE

Another challenging issue for real-time outbreak detection is that the
surveillance algorithms often rely on historic datasets that span a considerable
length of time. Few methods demonstrate reliable detection capability with
short-term baseline data. This is a particular concern for surveillance systems
for special events (also referred to as drop-in models), which are implemented
against bioterrorism attacks or natural disease outbreaks in settings such as
international and national sports events or meetings that involve many
participants in a short time window.

EARS was used for syndromic surveillance at several large public events
in the United States, including the Democratic National Convention of 2000,
the 2001 Super Bowl, and the 2001 World Series (Hutwagner et al., 2003).
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The RODS system was used during the 2002 Winter Olympic Games
(Gesteland et al., 2002). The LEADERS system often serves as a drop-in
surveillance system intended to facilitate communication and coordination
within and between public health facilities (Ritter, 2002).

8. SUMMARY OF DATA ANALYSIS PROCESS FOR
SYNDROMIC SURVEILLANCE

In this chapter, we first introduce syndrome classification as the first step
of syndromic data analysis. We then summarize a large number of disease
surveillance algorithms. These algorithms are organized in two dimensions.
In the first dimension, a surveillance method is either retrospective surveillance
or prospective. Retrospective analysis focuses on analyzing historical data,
whereas prospective analysis is more useful for processing online data streams.
In the second dimension, a surveillance method can be seen as either a
temporal, spatial, or spatial-temporal analysis method. Methods designed for
special events are discussed separately due to their unique characteristics.
We also examine methods that monitor multiple data streams, which warrant
further exploration due to their importance and applicability. We conclude
this chapter by pointing out some technical issues to watch for while
applying these surveillance methods.

First, the outbreak detection methods make a number of assumptions
about the analyzed data. The distribution of the disease events are in many
cases assumed, so before the application of any surveillance methods to the
disease data, there should be analysis regarding disease behaviors such as the
outbreak patterns and events distribution. Second, an algorithm’s performance
is related to a number of settings: (1) the availability of historic data; data
collection process as discussed in Chapter 2 is thus closely related to a
surveillance algorithm performance; (2) the type of outbreak signals (e.g.,
slow-building or surge outbreak); (3) the spatial granularity of the data in
spatial analysis.

All the complications due to the dynamics of different diseases need to
be considered and well investigated before applying a detection algorithm.
In (Burkom and Murphy, 2007), the authors propose a data-adaptive method
selection scheme to “suit the remedy to the case,” by first evaluating a
number of data discriminates such as mean, variance, and skewness before
selecting a detection algorithm for analysis. The BioStorm research group
developed an ontology-based method to incorporate the a priori knowledge
so that different analytical methods are assigned to different types of
surveillance data in different settings (Crubézy et al., 2005).
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