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A B S T R A C T

In this theoretical work nonlinear behavior of dust ion acoustic solitary waves (SWs) has been investigated, and
then the effect of the adiabatic change on them has been observed. The complex plasma system consists of inertial
positive and negative ions, Maxwell's electrons, and positively and negatively charged stationary dust particles.
The effects of dust polarity on the dust ion acoustic SWs have also been observed. Using the reductive pertur-
bation method, we first derive K-dV equation which lets to analyze both the positive (bright) and negative (dark)
solitons in a very limited region. After that mK-dV equation has been derived, and this let to analyze positive
soliton for a large region, but cannot show the negative soliton. Finally, the Gardner equation has been derived
employing the same method, through which we were able to analyze both the positive and negative solitons for a
large region. It has been found that both the positive and negative solitons significantly depend on the mass
number density, ion number density, and dust polarity in the adiabatic and isothermal system.
1. Introduction

For the very first time, Shukla and Silin [1] have theoretically proved
the existence of the low-frequency dust-ion-acoustic (DIA) waves in a
dusty plasma system. Four years later, Barkan et al. [2] have experi-
mentally verified the existence of dust-ion-acoustic waves differ from
usual ion-acoustic waves [3]. The linear properties of the DIA waves in
dusty plasma are now well understood [4, 5, 6]. The nonlinear structures
associated with the DIA waves are solitary waves [7,8], shock waves [9,
10, 11], double layers [12], envelope solitons [13,14], etc.

In this work particularly DIA SWs have been searched. These waves
have received a great deal of interest in understanding the basic prop-
erties of localized electrostatic perturbations in space [15,16] and labo-
ratory dusty plasmas [4,5,8]. These DIA solitary waves (SWs) have been
investigated by several authors [7, 8, 9, 10, 11, 12] during the last few
years. F. Deeba et al. [17] have theoretically shown the existence of
dust-ion-acoustic waves in dusty plasma, consisting of inertial ions,
Boltzmann electrons, and negatively charged stationary dust, around a
critical limit, applying the reductive perturbation method to the Gardner
approach. F. Sijo et al. have shown the oblique solitary waves in
lam).
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five-component complex plasma [19]. Sijo Sebastian et al. in 2014 also
worked with a five-component complex plasma system [20].

Generally, in most space and astrophysical plasma systems, dust is
ubiquitous. These dust grains often contain colonized charged particles
inside that make them charged dust. The polarity of the dust grain
significantly modifies the dynamics of the waves by changing the charge
density distribution of the system. Because the sizes of the dust grains are
much larger than the ions and electrons and they contain more charges,
their electrostatic attraction force, and field significantly alter the
compressive and rarefactive motions of the ions and the electrons.

Besides the polarity of the constituent, the dynamics of the waves in
the plasma system may also depend on the thermal state of the system.
Because space is always happening with a lot of events like formations or
deformations of stars and galaxies, solar storms, radiations, it is obvious
that many spaces go through the adiabatic changes frequently. As the
thermal state has a great impact on the motion of the charged particle, it
will also change the wave dynamics significantly. Although few studies
have been done to analyze the impact of the charged particle and the
adiabatic state, to the best of our knowledge no detailed studies have
been done so far to analyze the combined effect of the dust polarity and
the thermal state and compare the outcomes using different models.
ober 2020
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In this paper, we have analyzed the impacts of the dust polarity and
adiabatic changes on the solitary wave profile by deriving and using the
solutions of three different model equations: K-dV (Korteweg–de Vries),
mK-dV (modified Korteweg–de Vries), and Gardner. As the positive sol-
iton represents an increase in the potential of the mediumwhich is why it
is also called a bright soliton. The negative soliton decreases the potential
of the medium which often looks like a hole in the space and called dark
soliton.

The K-dV equation, which is a famous mathematical model to analyze
wave profiles in not only plasma but also other fluid systems like water,
lets us analyze both the positive and negative solitons but in a very
limited region. The extension of K-dV equation leads us to the mK-dV
equation, which lets to analyze positive soliton for a large region but
does not show any negative soliton profile. Hence, finally, the Gardner
equation has been derived employing the same method, through which
lets us analyze both the positive and negative solitons for a large region.
The effect of dust polarity, dust number density (μd), and the thermal
state on the solitons have also been observed. It has been seen that the
charge density, the dust polarity, and the thermal state significantly vary
the width, amplitude, and the polarity of the solitons. The point of sep-
aration for positive and negative K-dV solitons has been observed suc-
cessfully along with the variation of solitons with a nonlinear coefficient
(α).

The manuscript has been organized as follows. At first, the model
equations have been provided in Sec. 2. Then the K-dV (Korteweg-de
Vries) equation and mK-dV equation have been derived in Sec.3 and Sec.
4 respectively. Finally, the standard Gardner (sG) equation has been
derived by using the reductive perturbation method in Sec. 5. A brief
discussion has finally been given in Sec. 6.

2. Model equations

The nonlinear propagation of DIA waves has been considered in
an unmagnetized collisionless complex dusty plasma system consisting
of inertial positive and negative ion, Maxwell's electron, and arbi-
trarily charged stationary dust. For one dimensional multi-ion dust
ion acoustic waves (phase speed is much smaller (larger) than the
electron (ion) thermal speed), the nonlinear dynamics are governed
by:

∂ns/∂t þ ∂nsus /∂x ¼ 0, (1)

∂ui/∂t þ ui∂ui /∂x ¼ � ∂ψ /∂x – (δi/ni)(∂pi /∂x), (2)

∂un/∂t þ un∂un/∂x ¼ 1/μ(∂ψ/∂x � δn/nn ∂pn/∂x), (3)

e∂ψ/∂x – 1/ne ∂pe/∂x ¼ 0, (4)

∂ps/∂t þ us∂ps/∂x þ γps ∂us/∂x ¼ 0, (5)

∂2ψ/∂x2 ¼ [1�μn þ μd]expψ þ μnnn � μd � ni, (6)

where ns is the number density with s ¼ n, i, e, d of negative ion, positive
ion, electron or stationary dust, us is the fluid speed of s, mj is the positive
(when j ¼ i) or negative (when j ¼ n) ion mass, Zd is the number of
electrons residing on the dust grain surface, e is the magnitude of the
electron-charge (q), φ is the electrostatic wave potential; nso, njo, and ndo
are the equilibrium values of ns, nj, and nd respectively, i.e., ns, nj, and nd
are the number densities normalized by nso, njo, and ndo respectively, pi is
the pressure of species i, γ is an adiabatic index, x is the space variable,
and t is the time variable. We applied the conditions, us ¼ cius, ci ¼
(KBTeo/mi)1/2, KB is Boltzmann constant, Teo normalized electron tem-
perature, mi the ionmass. ns¼ nsons, φ¼ (KBTeo/e)ψ, ps¼ nsoKBTsops, s¼
n, i, e and d of negative ion, positive ion, electron, stationary dust, x ¼
λDmx, x is the space variable normalized by X. λDm ¼ (KBTeo/4πnioe2)1/2,
∂/∂t¼ ωpi ∂/∂t, t ¼ (1/ωpi)t, ωpi ¼ (4πnioe2 mi)1/2, ∂/∂x¼ 1/λDm∂/∂x, and
ωpiλDm ¼ ci, ci is the ion acoustic speed, ωpi is ion plasma frequency, and
λDm is the Debye radius.
2

We have also used the condition; l ¼ �1 for negative dust, l ¼ 1 for
positive dust in Eq. (6). In Eq. (4) mass of electron is considered zero. We
choose the ratios are δi ¼ Tio/Teo, Tio(Teo) is the normalized temperature
of positive (negative) ion, δn ¼ Tno/Teo, μ¼mn/mi, mn (mi) is the mass of
negative ion (positive ion), μn ¼ nno/nio, and μd ¼ Zdnd0/Zsnso. At equi-
librium, nn¼ 1, ni¼ 1, ne¼ neo, nn¼ nno, and ni¼ nio; ne, ni, nn and nd are
the number densities normalized by nso, where s ¼ n, i, e, d of negative
ion, positive ion, electron, and stationary dust respectively.

In Eq. (1) the source and sink terms has been neglected which may
arise due to dust-plasma interaction, ionization, recombination, etc., and
in Eq. (2) we have also neglected all collisional terms that may arise due
to the collisions between plasma and dust particles or vise-versa. These
assumptions are valid as long as the collision frequency or the ionization/
recombination rates are much less than the frequency of the dust ion
acoustic waves under the consideration, and these have been investi-
gated by many authors [1,18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30] to study linear [1] and nonlinear [18, 19, 21, 21, 22, 23, 24, 25,27,
28, 29, 30] dust ion acoustic waves.

It can also be noted that these effects would arise as a source of
dissipation and in turn it could lead to the formation of the dust ion
acoustic shock waves. However, if dissipation is very small, the shock
wave will have an oscillatory profile of which the first few oscillations at
the wavefront will be close to solitons [9,18,30]. Many authors showed
that there are many space plasma and laboratory dusty plasma situations
[8,11,19,24,31,32] in which the effects causing the dissipation can be
insignificant compared to that of the dispersion [8] that lead to the for-
mation of dust ion acoustic solitary wave structures.

3. Derivation of K-dV equation

Two stretched coordinates have been considered to obtain K-dV
equations. The stretched coordinates are;

ζ ¼ ε1/2 (x�Vpt), and τ ¼ ε3/2 t, (7)

where, Vp is the dust ion acoustic wave phase speed (ω/k), and ε is a
smallness parameter measuring the weakness of the dispersion (0 < ε <
1). To obtain the dispersion relation, we expand ns, us, ps, and φwith s be
the charged species like positive and negative ion, electron in power
series of ε, to their equilibrium and perturbed parts,

ns ¼ 1 þ εns(1) þ ε2ns(2) þ ε3ns(3) þ⋅⋅⋅, (8)

us ¼ 0 þ εus(1) þ ε2us(2) þ ε3us(3) þ⋅⋅⋅, (9)

ps ¼ 0 þ εps(1) þ ε2ps(2) þ ε3ps(3) þ⋅⋅⋅, (10)

ψ ¼ 0 þ εψ(1) þ ε2ψ(2) þ ε3ψ(3) þ⋅⋅, (11)

where ns(1), us(1), ps(1), and ψ(1) are the perturbed part of ns, us, ps, and ψ
respectively.

To the lowest order in ε, (combining equations(7), (8) (11), and (1, 2,
3, 4, 5, 6)), we get,

un
(1) ¼ {Vp/[γδn �μVp

2]}ψ(1), (12)

ue
(1) ¼ {Vp/γ }ψ(1), (13)

ui
(1) ¼ {Vp/[Vp

2 �γδi]}ψ(1), (14)

pn
(1) ¼ {γ/[γδn �μVp

2]}ψ(1), (15)

pe
(1) ¼ ψ(1), (16)

pi
(1) ¼ {1/[Vp

2 �γδi]}ψ(1), (17)

ni
(1) ¼ {γ/(Vp

2 �γδi)}ψ(1), (18)

nn
(1) ¼ {1/(γδn �μVp

2)}ψ(1), (19)

ne
(1) ¼ {1/γ}ψ(1), (20)



Figure 1. Showing the variations of positive K-dV soliton (up) and negative K-
dV solitons (bottom) with mass number density μ (ranges from 0.1 (orange) to
0.5 (megenta) to 0.9 (black)) when the adiabatic system contains positive dust.
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(1�μn þ μd)ψ(1) þ μnnn(1) �ni
(1) ¼ 0. (21)

Combining above equations, (12, 13, 14, 15, 16, 17, 18, 19, 20, 21),
we get

(1�μn þ μd)ψ(1) þ (μn/d1 – 1/d2)ψ(1) ¼ 0, (22)

where

d1 ¼ (γδn �μVp
2)

d2 ¼ (Vp
2 �γδi)

But ψ(1) 6¼ 0, so that, (1�μn þ μd)þ μn/(γδn �μVp
2)�1/(Vp

2 �γδi)¼
0,

which gives,

Vp ¼ (�b�√(b2 �4ac)/2a) (1/2), (23)

where,

α ¼ (1�μn þ μd), a ¼ μα, b ¼ μn þ μ�αγδn �αμγδi, and c ¼ αγ2δnδi�γδn
�γδiμn

Eq. (23) represents the linear dispersion relation for the DIA waves.
This clearly indicates that the DIA wave phase speed (Vp) increases with
the increase of the dust charge density (Zdnd0). To the next higher order
of ε, we obtain a set of equations, which, after using (12, 13, 14, 15, 16,
17, 18, 19, 20, 21), can be simplified as

∂ni(2)/∂ξ ¼ {1/vp(d2) þ vp/(d2)
2 þ γδi/vp(d2)2}∂ψ(1)/∂τ þ {3/(d2)

2

þ γδi/(d2)3 þ γ2δi/(d2)3}ψ(1)/∂ψ(1)/∂ξ þ (1/(d2))∂ψ(2)/∂ξ, (24)

∂nn(2)/∂ξ ¼ { 1/Vp(d1) � μVp/(d1)
2 � γδn/Vp(d1)

2}∂ψ(1)/∂τ þ {3/(d1)
2

� γδn/(d1)3 �γ2δn/(d1)3}ψ(1)∂ψ(1)/∂ξ þ {1/(d1)}∂ψ(2)/∂ξ, (25)

∂ne(2)/∂ξ ¼ {2/γ2 þ 1/ γ – 1/ γ2 � Vp/γ}ψ(1) ∂ψ(1) /∂ξ þ {1/γ} ∂ψ(2)/∂ξ, (26)

∂2ψ(1)/∂ξ2 ¼ (1�μn þ μd){ψ(2) þ (ψ(1))2/2} þμnnn (2) �ni
(2). (27)

We then, combining Eqn's. (24, 25, 26, 27), and let ψ(1)¼ ψ, obtain an
equation of the form:

∂ψ/∂τ þ Aψ ∂ψ/∂ζ þ β∂3ψ/∂3ζ ¼ 0, (28)

where,

A ¼ Y/X,

β ¼ 1/ X,

X ¼ (2Vp/d2
2)(2Vpμμn/d1),

Y ¼ �c1/d2
3 þ μnc2/d13 þ μnc3/d13,

c1 ¼ Vp
4 þ 2 Vp

2γδi �3Vp
2 þ γ2δi 2�2γδi þ γ2δi,

c2 ¼ Vp
4μ2 �2μ Vp

2γδn þ 3μVp
2,

c3 ¼ γ2δn2 þ 2γδn �γ2δn.

Eq. (28) is known as K-dV (Korteweg-de Vries) equation. The sta-
tionary localized solution of (28) can be done by introducing a trans-
formation ξ ¼ ζ �U0τ, and is given by

ψ ¼ ψmsech
2[(ζ �U0τ)/δ], (29)

where the amplitude ψm and the width δ are given by ψm ¼ 3U0/A and δ
¼√4β/U0, respectively. Here, U0 is the constant speed normalized by ci.
As U0 > 0, (29) clearly indicates that (i) small amplitude solitary waves
with ψ > 0, i.e. positive soliton (bright soliton) exists if A > 0, (ii) small
amplitude solitary waves with ψ < 0, i.e. negative soliton (dark soliton)
exists if A < 0, and (iii) no solitons can exist around A ¼ 0.
3

Eq. (29) is the solution of K-dV equation. This represents a solitary
wave. However, we have numerically analyzed this wave to understand
as well as to study its different characteristics.

Figure 1 shows the variation of the positive and negative K-dV soli-
tons with mass number density (μ) when the system contains positively
charged dust. Here amplitude increases and width decreases with the
increase of ion number density. Whereas, approximately, the same
variation for negatively charged dust has shown in Figure 2. Figures 1
and 2 are for the adiabatic system.

In Figures 1 and 2 for the same set of values, we have found a type
(positive or negative) soliton in the case of adiabatic system, whereas for
the isothermal system (Figure 3 and Figure 4) we have found the opposite
type of variation in amplitude and width of the soliton. This is clear in
Figure 1, Figure 3 and Figure 2, Figure 4. Again, solitons in the adiabatic
system are wider than that in the isothermal system.

The variation of the amplitude and width of the negative K-dV soli-
tons with ion number density (μn), for both the adiabatic and isothermal
systems containing positive dust, have been observed in Figure 5. Here, it
is clear that the width of the negative K-dV solitons for the adiabatic
system is wider than that of the isothermal system. The same variations
for positive K-dV solitons have been observed.

Figure 6 has shown the variations of the positive K-dV solitons with
dust number density μd containing positive dust in the adiabatic and
isothermal systems, respectively. It is again observed from these figures
that solitons for the adiabatic system are wider than that in the
isothermal system.

It has observed that ion number density and dust number density for
different thermal states must not be the same. Otherwise, no soliton
would exist.



Figure 2. Showing the variation of the positive K-dV soliton (up) and negative
K-dV solitons (botton) with mass number density μ (spaced from 0.1 (orange) to
0.5 (megenta) to 0.9 (black)) when the adiabatic system contains negative dust.

Figure 3. Showing the variations of positive K-dV soliton (up) and negative K-
dV solitons (bottom) with mass number density μ (ranges from 0.1 (orange) to
0.5 (megenta) to 0.9 (black)) when the isothermal system contains positive dust.

Figure 4. Showing the variations of positive K-dV soliton (up) and negative K-
dV solitons (bottom) with mass number density μ (ranges from 0.1 (orange) to
0.5 (megenta) to 0.9 (black)) when the isothermal system contains nega-
tive dust.
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Point 0.5 in Figure 7 and Figure 8 is the critical point, showed that
positive and negative solitons have been observed before and after this
point. And no soliton has been obtained at the critical point. At the points
0.475 and 0.53 the soliton goes to infinity, but with opposite polarity. As
if, positive soliton ends and negative one begins.

4. Derivation of mK-dV equation

For plasmas with more than two species, there can arise a situation,
where A vanishes at the critical region, and K-dV equation fails to
describe nonlinear evolution of perturbation. So, higher-order calcula-
tion is required in the critical region. We know that the K-dV equation is
the result of the second-order calculation of the ε. From the third-order
calculation, a modified K-dV (mK-dV) equation is obtained to describe
the nonlinear evolution near the critical parameter region. So, third-
order calculation is needed.

The third-order calculation utilizes a new set of stretched coordinates,

ζ ¼ ε(x�Vpt), τ ¼ ε3t, (30)

Using (30) and (8, 9, 10, 11) in (1, 2, 3, 4, 5, 6), we find the same
values of ni (1),nn(1),ne(1), u i

(1), ue(1), un(1), pi(1), pe(1), pn(1), and Vp as like as that
in K-dV.

To the next order approximation of ε, we obtain a set of equations,
which, after using the values n i

(1),nn(1), ne(1), and Vp, can be simplified as:

ni
(2) ¼ {3/2(Vp

2 �γδi)2 þ γδi/(Vp
2 �γδi)3}ψ(1)2 þ ψ(2)/(Vp

2 �γδi), (31)

nn
(2) ¼ {3/2(γδn �μ Vp

2)2 � γδn/(γδn �μVp
2)3}ψ (1) 2 þ ψ(2)/(γδn �μ Vp

2), (32)

ne
(2) ¼ ψ(1)2/2γ2 þ ψ(2)/γ, (33)



Figure 5. Showing the variations of the negative K-dV soliton with ion number
density μn (ranges from 0.1 (orange) to 0.5 (megenta) to 0.9 (black)) when the
adiabatic (up) isothermal system (bottom) contains positive dust.

Figure 6. Showing the variations of the positive K-dV soliton with dust number
density μd (ranges from 0.1 (orange) to 0.5 (megenta) to 0.9 (black)) when the
adiabatic (up) and isothermal (down) systems contains positive dust. This sol-
iton in isothermal system is clearly narrower than that in the adiabatic system.

Figure 7. 3D view, showing the point of separation of positive and negative K-
dV soliton when the adiabatic system contains positive dust. In the figure white
line is indicating the separation.
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∂2ψ(1) /∂ξ2 �(1�μn þ μd)(ψ(2) þ ψ(1)2/2)�μnnn(2) þ ni
(2) ¼ 0. (34)

Combining the above Eqs. (31), (32), (33), and (34) and applying the
condition, ψ 6¼ 0 (so, its coefficient is zero), we get,

[k/2 þ 3μn/2a12 � γδnμn/a13– 3/2a2
2
– γδi/a23](ψ(1))2 ¼ 0, (35)

where k ¼ (1�μn þ μd). We let,

A ¼ k/2 þ 3μn/2a12 � γδnμn/a13 � 3/2a2
2 � γδi/a23 (36)

Thus,

½ {A(ψ(1))2} ¼ 0 (37)

To the next higher order of ε, we obtain a set of equations:

∂ns (1)/∂τ � Vp ∂ns (3) /∂ξ þ ∂ns (2) us
(1) /∂ξ þ ∂ns (1) us

(2)

/∂ξ þ ∂us (3)/∂ξ ¼ 0, (38)

∂ui (1) /∂τ �Vp ∂ui (3)/∂ξ �Vpni
(1) ∂ui (2)/∂ξ �Vpni

(2) ∂ui(1)

/∂ξþ ui
(1)∂ui(2)/∂ξ þ ui

(2) ∂ui (1)/∂ξ þ ni
(1)ui

(1) ∂ui(1)/∂ξ þ ∂ψ(3)/∂ξ
þ ni

(1)∂ψ(2)/∂ξ þ ni
(2)∂ψ(1)/∂ξ þ δi∂p i

(3)/∂ξ ¼ 0, (39)

∂un (1) /∂τ �Vp∂un(3)/∂ξ �Vpnn
(1)∂un(2)/∂ξ �Vpnn

(2)∂un(1)/∂ξþun
(1)∂un(2)

/∂ξþ un
(1) nn

(1) ∂un(1)/∂ξþ un
(2)∂un(1)/∂ξ – (1/μ)(∂ψ(3)/∂ξ) þ (1/μ)

(nn
(1)∂ψ(2)/∂ξ)�(1/μ)(nn(2)∂ψ(1)/∂ξ �δn∂pn(3)/∂ξ) ¼ 0, (40)

∂ψ(3)/∂ξþ ne
(1) ∂ψ(2)/∂ξþ ne

(2) ∂ψ(1)/∂ξ �∂pe (3)/∂ξ ¼ 0, (41)

∂ps (1)/∂τ �Vp∂ps (3) /∂ξ þ γ∂us (3)/∂ξ us (1) ∂ps (2)/∂ξ þ us
(2)∂ps (1)

/∂ξ þ þγps(1) ∂us(2)∂ξ þ γps (2) ∂us(1)/∂ξ ¼ 0, (42)

∂2ψ(1)/∂ξ2 ¼ (1�μn þ μd){ψ(3) þ ψ(1)ψ(2) þ (ψ(1))3/6}þμnnn(3) �ni
(3). (43)

Combining Eqs. (38), (39), (40), (41), (42), and (43), we obtain
5

∂ψ/∂τ þ αβψ2∂ψ/∂ζ þ β∂3ψ/∂ζ3 ¼ 0, (44)

where

α ¼ F(�a1
2 þ 15/2 � 21γδn/2a1 � 5γ2δn/2a1 �3γ3δ2n/a12)�F(3γ2δn2/a12) þ G(a2

2

�15/2 �21γδi/2a2)�G(5γ2δi/2a2�3γ3δi2/a22 �3γ2δi2 /a22), (45)

β ¼ Vpa1
2a2

2 /(�2μμna22 Vp
2 �2γδia12), (46)

Where

F ¼ μn/a13, G ¼ 1/a2
3, a1 ¼ (γδn �μVp

2), and



Figure 8. Showing the point of separation of positive and negative K-dV soliton
when the adiabatic system contains positive dust.

Figure 9. The variation of the mK-dV soliton with dust number density
μd (spaced from 0.1 (orange) to 0.5 (megenta) to 0.9 (black) when the adiabatic
(up) and isothermal system (bottom) contain positive dust.

Figure 10. The variation of the mK-dV solitons with dust number density
μd (spaced from 0.1 (orange) to 0.5 (megenta) to 0.9 (black) when the adiabatic
(up) and isothermal (bottom) system contain negative dust.
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a2 ¼ (Vp
2 �γδi)

Eq. (44) is known as the mK-dV (modified K-dV) equation. As (44)
does not contain any ψ2 term, it is clear that (44) does not have any DL
wave solution. To obtain the stationary localized solution of Eq. (44) a
transformation ξ¼ ζ�U0τis introduced. The stationary localized solution
is obtained as;

ψ ¼ ψmsech[ξ/Δ], (47)

where the amplitude ψm and the width δ are given by ψm ¼ √6U0/αβ,
and δ¼ 1/ψm√γ. And the amplitude ψm and the widthΔ are given by ψm
¼ √6U0/αβ, Δ ¼ 1/(√γψm), and γ ¼ α/6.
6

Figure 9 shows the variations of the width and amplitude of mK-dV
solitons with the dust number density μd for the adiabatic and
isothermal systems containing positive dust. In this case, amplitude and
width both decrease with the increase of dust number density. However,
the width of the soliton for the isothermal system is wider than that for
the adiabatic system.

Again, Figure 10 shows the variations of the amplitude and width of
the mK-dV soliton with dust number density μd where the adiabatic and
isothermal systems contain negative dust respectively. For the isothermal
system the value of the amplitude and width of the soliton increases with
the increase of μd, but for the adiabatic system amplitude (width) in-
creases (decreases). Furthermore, the adiabatic index γ has also the
opposite effect on the positive and negative dust respectively shown in
Figure 11.

5. Derivation of standard Gardner equation

From Eq. (37) we see that A¼ 0 since ψ6¼ 0. One can find that A¼ 0 at
its critical value (μc) (which is a solution of A ¼ 0). So, for μ around its
critical value (μc), A ¼ A0 can be expressed as

A0 ’ s(∂A/∂μ)μ¼μc |μ�μc| ¼ sε, (48)

where |μ�μc| is a small and dimensionless parameter, and can be taken
as the expansion parameter ε, i.e. |μ� μc|’ ε, and s ¼ 1 for μ < μc and s ¼
�1 for μ > μc. So, ρ(2) can be expressed as

ε2ρ(2) ’ ε3 (1/2)sψ2, (49)

which, therefore, must be included in the third-order Poisson's
equation.



Figure 11. The variation of the mK-dV soliton with the adiabatic index γ
(ranges from 0.1 (orange):0.5(magenta): 0.9(black)) for the positive (up) and
negative (bottom) dust respectively.

Figure 12. The variation of solitons with nonlinear coefficient α
(0.1(orange):0.5(megenta):0.9(black)) when the value of the other nonlinear
coefficient β (2.6) is constant (Figure 12 (up). Figure 13 (bottom) indicates that
the values of α and β show a peculiar behavior of shifting of origin and decrease
of both the amplitude and width, when one is fixed and other is increased
relative to other. The variation of the soliton for the point β ¼ 2.6 with nonlinear
coefficient (α) has been observed (Figure 12(up)) that width and amplitude
decrease with the increase of α. After a certain value of β (approximately greater
than 273) origin has shifted along with the decrease of both the amplitude and
width (Figure 12 (bottom)).
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To the next higher order of ε, we obtain a set of equations:

∂ns(1)/∂τ �Vp∂ns(3)/∂ξ þ ∂ns(2) us(1)/∂ξ þ ∂ns(1) us(2)/∂ξþ∂us(3)/∂ξ ¼ 0, (50)

∂ui(1)/∂τ �Vp∂ui(3)/∂ξ �Vpni
(1) ∂ui(2)/∂ξ �Vpni

(2) ∂ui(1)/∂ξþui
(1) ∂ui(2)

/∂ξþ ui
(2)∂ui(1)/∂ξþ ni

(1) ui
(1)∂ui(1)/∂ξþ∂ψ(3)/∂ξ þ ni

(1)∂ψ(2)/∂ξþ ni
(2)∂ψ(1)/∂ξþ

δi∂pi(3)/∂ξ ¼ 0, (51)

∂un(1)/∂τ �Vp∂un(3)/∂ξ �Vpnn
(1)∂un(2)/∂ξ�Vpnn

(2)∂un(1)/∂ξþ u n
(1) ∂un(2)/∂ξþ

un
(1)nn

(1)∂u n
(1)/∂ξþun

(2) ∂u n (1)/∂ξ � 1/μ(∂ψ(3)/∂ξ) þ1/μ(nn(1)∂ψ(2)/∂ξ)
�1/μ(nn(2) ∂ψ(1) /∂ξ �δn∂p n

(3) /∂ξ) ¼ 0, (52)

∂ψ(3) /∂ξþ n e
(1) ∂ψ(2) /∂ξþ n e

(2) ∂ψ(1) /∂ξ �∂p e
(3) /∂ξ ¼ 0, (53)

∂ps(1)/∂τ �Vp∂p s
(3) /∂ξþ γ∂us(3)/∂ξ us(1)∂ps(2)/∂ξþus

(2)∂ps(1)/∂ξþ γps(1)∂us(2)/∂ξþ
γps(2)∂us(1)/∂ξ ¼ 0, (54)

∂2ψ(1)/∂ξ2 ¼ (1�μn þ μd)(ψ(3) þ ψ(1)ψ(2) þ(ψ(1))3 6) þ μnNn
(3) � Ni

(3) þ1/2
sψ2. (55)

Now, combining (50)–(55), and let (ψ(1)) ¼ ψ, we obtain an equation
of the form:

∂ψ/∂τþ sβψ ∂ψ/∂ζþ αβψ2 ∂ψ/∂ζþ β ∂3ψ/∂ζ3 ¼ 0, (56)

where the coefficients, α and β, has the usual meaning as derived above,
(45, 46). Eq. (56) is known as Gardner or often called mixed mK-dV
equation because it contains both ψ2 term of K-dV and ψ3 term of mK-
dV. Eq. (56) is valid for its critical value (μc). As (56) contains both ψ2

and ψ3 terms, it supports both SWs and DLs solutions.
In Eq. (56) α and β are not any parameters, they are the nonlinear

coefficients. And α and β are functions of μ only. If we neglect theψ2 term,
Eq. (56) reduces to the mK-dV equation which has been derived in Sec. 4,
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and to K-dV equation (Sec. 3) by using a lower order stretching viz. ζ ¼
ε1/2 (x�Vpt), τ ¼ ε 3/2 t. The solitary wave solution [33,34] of standard
Gardner equation is, therefore, directly given by

ψ ¼ [ 1/ψm2 �(1/ψm2 – 1/ψm1)cosh
2(ξ δ)]�1, (57)

where ψm1,2 are given by

ψm1,2 ¼ ψm [1 � √(1 þ U0 V0)], (58)

where ψm ¼ �s/α, and V0 ¼ s2β/6α. Soliton width δ is

δ ¼ 2/√(�γψm1ψm2) ¼ √(β/U0), (59)

Eq. (57) represents a solitary wave solution of the Gardner equation.
From the above equation it is clear that to have GSs we must have U0 <

V0, otherwise ψm1,2 becomes imaginary. When s ¼ 1, (57) represents a
positive (bright) soliton, whereas when s ¼ �1, (57) represents a nega-
tive (dark) soliton [35].

Figure 13 shows the variations of the positive and negative Gardner
solitons with mass number density μ when the adiabatic system contains
positive dust. Whereas, Figure 14 shows the variations of the positive and
negative Gardner solitons with mass number density μ when the adia-
batic system contains negative dust. It has been observed that the
amplitude and width of the Gardner solitons increased with the increase
of μ for both positive and negative solitons in the presence of positive and



Figure 13. The variation of amplitude and width of positive GSs (up) and
negative GSs (bottom) with mass number density μ (0.1(orange):0.5(Megenta)
0.9 (black)) when the adiabatic system contains positively charged dust.

Figure 14. The variation of positive GSs (up) and negative GSs (bottom) with
mass number density μ (0.1(orange):0.5(Megenta)0.9 (black)) when the adia-
batic system contains negatively charged dust.
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negative dust, respectively. We got approximately the same result for the
isothermal system.

The variations of positive and negative Gardner solitons with ion
number density μn for adiabatic and isothermal systems containing pos-
itive and negative dust have been observed (Figure 15 and Figure 16).
From these figures, it has observed that the amplitude and width
decreased (increased) with the increase of μn for the positive (negative)
solitons when the system contains positive (negative) dust. Again, it is
observed that the result is approximately the same for adiabatic and
isothermal systems, but the width of the Gardner soliton for the adiabatic
system is wider than that of the isothermal system.

6. Results and discussion

Dust ion acoustic K-dV, mK-dV, and Gardner solitons have been
theoretically investigated in a complex dusty plasma system consisting of
inertial positive and negative ions, Maxwell's electrons, and arbitrarily
charged stationary dust. The K-dV solitons are not valid for a parametric
regime that vanish the nonlinear coefficients of the K-dV equation. Again,
the DIA mK-dV solitons are also not valid for the parametric regime
which also vanish the nonlinear coefficient. Finally, the DIA GSs have
been investigated in our present work which is valid in the parametric
regime. The results have summarized as follows;

1. The existence of positive and negative K-dV soliton is observed.
2. The amplitude and width of the K-dV soliton vary with dust po-

larity. Amplitude of the positive and negative soliton increases
with the increase of mass number density when the system con-
tains positive dust, but it decreases for negative dust.

3. The values of ion number density and dust number density must
not be the same; otherwise, no soliton will exist.
8

4. For the variation of amplitude with ion number density positive K-
dV soliton is obtained when the adiabatic system contains positive
dust, but if the system is isothermal then the positive soliton
changes to negative soliton rapidly. This peculiar result is only
obtained for positive dust.

5. K-dV solitons in the adiabatic system are wider than that in the
isothermal system.

6. Negative K-dV soliton with negative dust gives comparatively
wider soliton than that with positive dust.

7. For the positive K-dV soliton, if dust is positive amplitude in-
creases, and width decreases with the increase of ion number
density. However, if dust is negative then amplitude decreases,
and width increases with the increase of ion number density. So,
ion number density effects on the amplitude and width of the K-dV
soliton significantly. For negative K-dV soliton, result is also the
same with opposite polarity.

8. The point 0.5, in Figure 8, is the critical point. Positive soliton is
obtained before the point and negative soliton is obtained after
the point. No soliton exists at the point 0.5. A typical dusty plasma
parameter was found by some authors, μ ¼ 0.5–1.8 [36], for the
existence of small amplitude solitary waves with negative poten-
tial (same as we got), and they also found μ¼ 4–5 for the existence
of small amplitude solitary DIA waves with positive potential.
According to our point of view and chosen parameters the critical
point, we found, is correct.

9. The existence of positive mK-dV solitons is observed.
10. On the amplitude andwidth of mK-dV soliton dust number density

has just the opposite effect for both the adiabatic and isothermal
systems, i.e., the value of the amplitude and the width of the
mKdV soliton decreases with the increase of dust number density



Figure 15. The variation of amplitude of positive (up) and negative GSs (bot-
tom) with ion number density μn (0.1(orange):0.5(megenta):0.9(black))when
the adiabatic system contains positive dust.

Figure 16. The variation positive (up) and negative (bottom) GSs with ion
number density μn (0.1(orange):0.5(megenta):0.9(black)) when the adiabatic system
contains negatively charged dust.
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μd for positive dust. But for negative dust, we see different char-
acteristics, i.e., (1) for isothermal system amplitude, and width
both increase, (2) for adiabatic system amplitude increases and
width decreases.

11. The width of the soliton for the isothermal system is wider than
that for the adiabatic system.

12. The adiabatic index γ has an interesting effect on the positive and
negative dust (Figure 11), i.e., the amplitude (width) of the pos-
itive mK-dV soliton increases (decreases) with adiabatic index γ
for positive dust, but both decrease for negative dust.

13. The amplitude and width of the soliton decrease with the increase
of nonlinear coefficients α and β.

14. The existence of positive and negative Gardner solitons has been
observed.

15. In the adiabatic system, the amplitude and width of the Gardner
solitons increase with the increase of mass number density μ for
both the positive and negative solitons when the system contains
positive and negative dust, respectively. The result is approxi-
mately the same for the isothermal system.

16. The amplitude and width decreased (increased) with the increase
of μn for the positive (negative) solitons when the system contains
positive (negative) dust, respectively. It is observed that the result
is approximately the same for adiabatic and isothermal systems,
but the width of the Gardner soliton for the adiabatic system is
wider than that of the isothermal system.
7. Conclusion

Nonlinear waves are the amazing manifestation of nature, arising out
properties like dispersion, dissipation, and nonlinearity. Space consti-
tutes a magnificent laboratory to investigate the plasma phenomena and
nonlinear wave structures. This theoretical research would offer deep
physical insight to uncover the nonlinear phenomena, with the presence
of dust particles, happening in space. And of course, this is unique
research for dust ion acoustic K-dV, mK-dV, and Gardner solitons in a
complex dusty plasma system consisting of inertial positive and negative
ions, Maxwell's electrons, and arbitrarily charged stationary dust. The
investigation is done to analyze the variations in the wave profiles where
space contains plasma with charged dust and undergo through the
adiabatic changes frequently, due to the events like formations or de-
formations of stars and galaxies, solar storms, radiations, etc. The com-
parisons of outcomes for the isothermal and adiabatic systems, which we
believe, make our paper more suitable.

In this theoretical work, Landau damping or effect of phase-mixing is
negligible. Generally, ion acoustic waves are subject to ion Landau
damping, and is severe for the case of Te ~ Ti, where Te is electron
temperature and Ti is ionization temperature. However, this is not the
case, for the dust ion acoustic waves, where wave-particle resonance at
VTi ~ Vp no longer holds since Vp >> VTi.

Though positive and negative ions, Maxwell's electrons, and arbi-
trarily charged stationary dust have been considered in this theoretical
work, and applicable only for small amplitude waves, the experimental
setups of Barkan et al. [5] or Nakamura et al. [8] may be used to observe
the solitons, and new experiment based on our results may also be
performed.
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