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Abstract

Pigeonpea is a major source of dietary protein to the vegetarian population of the Indian sub-

continent. Crop improvement to mitigate biotic and abiotic stresses for realization of its potential

yield and bridging yield gap is the need of the hour. Availability of limited genomic resources in

the cultivated germplasm, however, is a serious bottleneck towards successful molecular breed-

ing for the development of superior genotypes in pigeonpea. In view of this, improvement of

pigeonpea can be attempted through transgenesis or by exploiting genetic resources from its

wild relatives. Pigeonpea wild relatives are known to be bestowed with agronomic traits of impor-

tance; discovery and deployment of genes from them can provide a lucrative option for crop

improvement. Understanding molecular signatures of wild relatives would not only provide infor-

mation about the mechanism behind desired traits but also enable us to extrapolate the informa-

tion to cultivated pigeonpea. The present study deals with the characterization of leaf

transcriptomes of Cajanus cajan and one of its wild relatives, Cajanus platycarpus. Illumina

sequencing revealed 0.11 million transcripts in both the species with an annotation of 0.09 mil-

lion (82%) transcripts using BLASTX. Comparative transcriptome analyses on the whole,

divulged cues about the wild relative being vigilant and agile. Gene ontology and Mapman analy-

sis depicted higher number of transcripts in the wild relative pertaining to signaling, transcription

factors and stress responsive genes. Further, networking between the differentially expressed

MapMan bins demonstrated conspicuous interactions between different bins through 535

nodes (512 Genes and 23 Pathways) and 1857 edges. The authenticity of RNA-seq analysis

was confirmed by qRT-PCR. The information emanating from this study can provide valuable

information and resource for future translational research including genome editing to alleviate

varied stresses. Further, this learning can be a platform for in-depth investigations to decipher

molecular mechanisms for mitigation of various stresses in the wild relative.
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Introduction

Escalating global food demand and the potential impact of climate change have created an

increased need for effectual crop improvement programmes. Management of resilience to an

array of biotic and abiotic stresses and improvement of productivity through appropriate utili-

zation of available genetic resources requires attention [1–3]. Considering this, development

of crops with increased tolerance/resistance to environmental stresses can be a promising

option for improvement of food security and agricultural sustainability.

Pigeonpea [Cajanus cajan (L.) Millspaugh], also known as red gram, is the sixth most

important grain legume crop grown in the semi-arid tropics of Asia, Africa and the Caribbean

[4]; India being the largest producer and consumer globally. Productivity of pigeonpea has

stagnated over the past years [5] due to a range of vagaries under the scenario of changing cli-

matic conditions. Hence, the major challenge for pigeonpea improvement is not only increas-

ing productivity but also stress mitigation.

Wild relatives, the ancestors of crop plants have been exposed to natural challenges com-

pared to their cultivated counterparts. Continuous exposure to severe climatic conditions has

helped them evolve at the genetic level, making them not only more genetically diverse but

also more resilient towards the adverse impacts of climate change and incidence of pests and

diseases [6]. It is known that pigeonpea was domesticated >3,500 years ago from its wild pro-

genitor, Cajanus cajanifolius Maesen in peninsular India [7]. The genus Cajanus is composed

of 34 species [8], amongst which C. cajan is the only cultivated member, while the wild rela-

tives are assigned to secondary or tertiary gene pools [9]. Studies have demonstrated that

despite possessing unexploited resources that help mitigate a range of stresses, wild relatives of

pigeonpea have remained under-utilized due to linkage drag and cross-incompatibility with

the cultivated species [10–13].

Cajanus platycarpus from the tertiary gene pool is one of the wild relatives of C. cajan
found growing along the hedges with slender and climbing plant type. The leaves and pods are

extremely pubescent and produce rectangular dark brown seeds on maturity. C. platycarpus
has the same chromosome number as that of cultivated pigeonpea (2n = 22) [14] and is

bestowed with various agronomic traits of importance [15–18]. Several characters of this wild

relative both at biochemical and morphological levels have been deciphered by scientists

worldwide [6, 13, 19, 20]. Despite being laden with resources, cross incompatibility issues led

to it not being exploited by conventional techniques [11, 21]. It is therefore evident that

through plant domestication, pigeonpea might have lost many of these useful traits present in

wild relatives [7] as humans used them to develop plants to suite morphological or physiologi-

cal traits such as overall yield and edibility [22,23]. This strategically delineates the increased

need for not only securing the resources contained in the wild relatives but also exploit its var-

ied applicability in crop improvement programmes. The major focus of our group has been in

the area of crop improvement of pigeonpea for pod borer resistance [24, 25] and the broader

perspective being deciphering the molecular mechanism of pod borer resistance in C. platycar-
pus. In view of this, the major aim of the study has been the characterization of baseline tran-

scriptomes of the cultivated and wild pigeonpea as it can provide fascinating insights on the

basic differences in their molecular signatures. Such comparative baseline transcriptomes have

been developed in numerous important crops as a step towards broadening the genetic base

and better molecular understanding [26–28].

Corroboratory efforts have been made in various crops for extrapolation of the information

obtained through molecular characterization of crop wild relatives for revelation of traits

endowed to them both under stressed and non-stressed conditions [6, 11, 29–31]. However, in

depth depiction to support the use of pigeonpea wild relative towards broadening genetic
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diversity in the crop has not been embarked upon thus far. Hence, this study, the first of its

kind, primarily highlights on the characterization of the baseline transcriptomal differences in

C. cajan vis a vis C. platycarpus.

Materials and methods

Plant material

Two species of pigeonpea, C. cajan (cultivated pigeonpea cv. TTB7, a high yielding medium

duration variety) procured from UAS, GKVK, Bangalore, India and C. platycarpus (ICPW

068, a wild relative of pigeonpea) procured from ICRISAT, Hyderabad, India were used in the

present study. Seeds of both the species were sown in plastic pots (14 inch diameter and 60

inch height) and maintained under greenhouse conditions. In order to obtain enough plant

material for RNA isolation, at least two plants were maintained per pot. Fully expanded and

healthy leaves from 3rd or 4th positions were collected from 45 days old plants. Samples were

collected from six different plants separately and made into two individual pools; two such

pooled samples were considered as replicates. The samples were frozen in liquid nitrogen and

stored at -80˚C until use.

RNA extraction, cDNA synthesis, library preparation and sequencing

Total RNA was extracted from C. cajan and C. platycarpus leaf samples using Spectrum Plant

Total RNA kit (Sigma) following manufacturer’s instructions. RNA samples (5μg) were later

treated with DNase to remove the residual genomic DNA and integrity was checked on 1%

formaldehyde agarose gel. Total RNA quality control was performed using Agilent 2100 Bioa-

nalyzer (Agilent Technologies, SantaClara, USA) and samples with an RNA integrity number

(RIN) of 8.0 were used for mRNA purification. mRNA was purified from 1 μg of intact total

RNA using oligodT beads (TruSeq RNA Sample Preparation Kit, Illumina). The purified

mRNA was fragmented at an elevated temperature (90 0C) in the presence of divalent cations

and reverse transcribed with Superscript II Reverse Transcriptase (Invitrogen Life Technolo-

gies) by priming with random hexamers. Second strand cDNA was synthesized in the presence

of DNA polymerase I and RNaseH. The cDNA was further cleaned using Agencourt Ampure

XP SPRI beads (Beckman Coulter) and Illumina adapters were ligated after end repair and

addition of an ‘A’ base followed by SPRI clean-up. The resultant cDNA library was amplified

using PCR for enrichment of adapter ligated fragments, quantified using a Nanodrop spectro-

photometer (Thermo Scientific) and validated for quality with a Bioanalyzer (Agilent Technol-

ogies). The cDNA library was sequenced using Illumina Hi-Seq 2500 platform with 100 bp

read length obtained in paired end module. Paired end FASTQ files were subjected to standard

quality control with Phred Score >20 using NGSQC Tool Kit [32] to obtain high quality (HQ)

filtered reads.

De Novo transcriptome assembly and analysis

All the HQ filtered paired end libraries were subjected to de novo transcriptome assembly. For

this study, we chose de novo bruijn graph-based Trinity Assembler [33] with criteria, a) default

K-mer, b) less memory foot print, c) optimized for Illumina paired end data, d) reproducibility

and e) configurable for all computing capacities. The assembled transcripts with length>200

bp were then clustered using CD-HIT-EST tool to obtain non-redundant transcripts set [34].

Clustered transcripts of>200 bp length were considered as secondary assembly and taken fur-

ther for annotation and expression profiling.

Comparative RNAseq analysis
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Annotation and quantification of the transcriptome

Annotation of the unique transcripts (>200 bp) was performed using BLASTX homology

search against NCBI non-redundant (nr) protein database (Protein BLAST: http://blast.ncbi.

nlm.nih.gov/Blast.cgi?PAGE=Protein). BLAST hits with e-value cutoff� 1e-14 and query cov-

erage of>80% were considered as annotated homologous proteins and AWK script was used

for filtering reciprocal best hits. BLAST hits were processed to retrieve associated Gene Ontol-

ogy (GO) terms describing biological processes, molecular functions, and cellular components.

Expression levels of all the transcripts in the individual libraries in replicates were assessed by

mapping high quality (HQ) filtered reads using BOWTIE2 [35]. Mapped reads were further

normalized using Fragments Per Kilo base Per Millions (FPKM) method.

Functional annotation of specific and differentially expressed transcripts

Transcripts annotated in both the Cajanus spp. were individually plotted as pie-donut charts

for five major GO terms and pathways by using an online server (Highcharts: https://www.

highcharts.com) followed by GO categorization using another online server, Wego [36]. For

MapMan [37] analysis, transcripts expressed in both the species were annotated with TAIR

database (Arabidopsis homologs). BIN level information and gene identifiers were also derived

from the same database.

Differential gene expression analysis of the expressed transcripts was performed using

DESeq [38] software based on R programming environment. Transcripts that were�2 fold up

or down-regulated with a p-Value (Derived by Student t-test) of�0.05 indicative of FDR were

considered as differentially expressed. Unsupervised hierarchical clustering of up and down-

regulated genes was performed using Cluster 3.0 software [39] by applying Pearson uncentered

algorithm with average linkage rule. Further, clusters of transcripts were visualized using Java

Tree View software [40] to identify the pattern of up and down-regulated transcripts. Isotig

analyses of annotated transcripts were carried out to understand redundancy in each of the

libraries. Biological analysis of differentially expressed genes was performed based on GO

annotations obtained from EBI-GOA database [41] and KEGG Pathway database [42].

Network modeling of differentially expressed genes

Enriched biological categories along with differentially expressed genes were used as input for

Bridge Island Software (Bionivid Technology Pvt Ltd, Bangalore, India) for identifying key

edges that connect genes and biological categories. Statistical scores from differential expres-

sion and biological analyses were used as attributes to visualize the network. Output of Bridge

Island Software was used as input to CytoScape V 2.8 [43]. The nodes were colored based on

the Log 2 fold change values of genes representing induction (red) and repression (green)

between the two Cajanus spp and pathway clusters.

Validation of the transcriptome data by qRT PCR

About 2 μg total RNA was used for cDNA synthesis by Superscript Vilo cDNA synthesis kit

(Invitrogen). The diluted cDNA was used as a template in qRT PCR and amplified with gene

specific primers (Table A in S1 File) using SYBR Green PCR master mix on AriaMx Real-

Time PCR system (Agilent USA) according to the manufacturer’s instructions. Expression of

IF4α gene in each sample was used for normalization. RT PCR conditions were set as: initial

denaturation at 95˚C for 5 min, followed by 40 cycles each of 95˚C for 10 sec, 60˚C for 15s and

72˚C for 15s. qRT-PCR was performed in two independent biological replicates with three

technical replicates along with no template control. For analysis, C. platycarpus was considered
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as the test and C. cajan as control. The data was first normalized by subtracting internal refer-

ence gene from test and control samples and fold change was calculated [44].

Results

C. platycarpus is an incompatible wild species from the tertiary gene pool of pigeonpea and

morphologically distinct from C. cajan. While the domesticated pigeonpea portrays tall bushy

plants that bear flowers at the end of the branches (Fig 1A and 1B), C. platycarpus are climbing

plants that are slender and pubescent (Fig 1C and 1D).

Transcriptome sequencing and assembly

Subsequent to RNA sequencing, reads having�70% of the bases with a quality score�Q20

were selected using NGS QC Toolkit. An average of 16 million high quality reads per cDNA

library with a QScore of�Q20 was obtained of which 97% of reads were of high quality

(Table B in S1 File). We also observed that the cDNA libraries had an average of 46% GC con-

tent in both the transcriptomes (Table B in S1 File). Transcriptome assembly resulted in an

average of 64,000 transcripts in both C. cajan and C. platycarpus transcriptomes individually.

The total transcriptome accounted for an average of 65 Mb with a minimum transcript length

of 200 bp and maximum of 13.5 kb with a N50 value of 1.4 kb, indicating an optimized unfrag-

mented transcriptome assembly. In order to obtain a non-redundant transcriptome for both

the species, transcripts from individual assemblies were subjected to CD HIT EST clustering

analysis. Further, upon combining the two non-redundant assemblies, 114781 transcripts

accounting for 113 megabases were obtained without any change in the minimum and maxi-

mum transcript length and N50 value (Table C in S1 File). The authenticity of the combined

transcript assembly was validated by aligning the reads from the replicate cDNA libraries of

both the species to all 114781 transcripts using Bowtie 2 (Table B in S1 File). Transcript length

distribution analysis of C. cajan and C. platycarpus libraries showed ~70% of the transcripts

having an average of 1 Kb length (Fig 2A and 2B).

Functional annotation of the transcriptome

According to BLASTX scores using an e value cutoff of 1e-14 and minimum query coverage of

80%, 94136 (82%) transcripts were annotated (Table A in S1 Data). These annotated ESTs

were found to match with multiple plant species (Fig 3A) and maximum similarity was

obtained with Glycine max followed by C. cajan.

Transcript expression profiling and comparative transcriptome analysis

Read counts for all the 114781 transcripts obtained from the validated transcriptome were pro-

vided as input to DESEQ pipeline for normalization and expression profiling and further clas-

sified as up-regulated, down-regulated, C. cajan-specific and C. platycarpus-specific.

Expression was detected in 68980 (60%) transcripts with<10 Read count out of the total

114781 transcripts. We also observed 13203 (11.5%) transcripts to be C. platycarpus-specific

and 11402 (10%) to be C. cajan-specific (Table A in S1 Data). Differential expression analysis

with pValue <0.05 and a fold change cutoff of�2 as up-regulated and�-2 as down-regulated

resulted in the identification of 9151 (8%) transcripts to be up and 8580 (7.52%) transcripts

down-regulated (Table B in S1 Data). Correlation covariance analysis of replicate samples in

C. cajan and C. platycarpus showed an R2 value of 0.956 for C. cajan replicate samples and

0.991 for C. platycarpus replicate samples (Fig 3B and 3C), indicating a very high degree of bio-

logical replicate reproducibility. Further, volcano plot depicted uniform distribution of up and
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down-regulated transcripts in C. cajan compared to C. platycarpus indicating trait specific

gene regulation (Fig 3D). Furthermore, Isotig analysis revealed >90% of the genes expressed

were represented by only 1 transcript indicating a very high degree of integrity (Fig 3E). All

clean reads were deposited in the NCBI Short Read Archive (SRA) database and can be

accessed with accession numbers—SRR6785591, SRR6785590, SRR6785593, SRR6785592.

Functional enrichment analysis

Transcriptomal variation between the two species was analyzed by GO categorization of all the

transcripts into four major categories viz., cellular components, biological process, molecular

function and pathways (Fig 4A and 4B). Though major differences were not observed in the

category cellular components, genes related to photosystem I were seen to be major in C. cajan
(Fig 4A) whereas, genes related to integral components of membrane were prominent in C.

platycarpus (Fig 4B). Further, with respect to molecular function, genes related to transcrip-

tional activity like RNA polymerase III, nucleotide binding, uridine kinase activity, tRNA-

intron endonuclease activity and transcription factors were shown to be more in C. cajan. An

entirely different situation was however observed in C. platycarpus as the genes concerned

with ATP binding, zinc ion binding, DNA binding, serine/threonine kinases and metal ion

binding were seen to be enriched.

In the GO category of pathways, majority of genes belonging to purine and thiamine

metabolism, biosynthesis of antibiotics and aminobenzoate degradation were seen to be

expressed in both the systems. Interestingly, genes related to carbohydrate metabolism were

dominating in C. cajan whereas, T-cell receptor signaling pathway genes were more in C. pla-
tycarpus (Fig 4A and 4B). Further, profound variation between the two systems was observed

in the GO category of biological processes. While genes related to transcription and related

processes like tRNA wobble uridine modification and transcription were predominant in the

Fig 1. (a—b) morphology of cultivated pigeonpea (C. cajan) plant and their pods respectively. (c—d) morphology of

the wild relative of pigeonpea (C. platycarpus) plant and their pods respectively.

https://doi.org/10.1371/journal.pone.0218731.g001
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cultivated pigeonpea, protein phosphorylation, oxidation–reduction process and transcription

were seen to be more in C. platycarpus (Fig 4A and 4B). The number of transcripts pertaining

to each of the GO categories was also seen to be differing between the two systems as evidenced

in Fig 5A and 5B.

Functional characterization by MapMan analysis

For comprehensive assessment of variations/similarities in the transcriptomes of both the spe-

cies, transcripts were mapped by MapMan tool and were separated by bins based on their

functional ontology (Fig 6). Fascinatingly, significant variation was observed between the two

systems with respect to genes related to important functions like those involved in different

aspects of signaling viz., G proteins, kinases etc; genes related to secondary metabolism which

are pertinent in response of plants to various environmental stimuli; genes related to transla-

tion of the perceived stimuli in terms of DNA binding. An in-depth analysis of genes expressed

in these categories that actually demarcate the two species was considered as relevant and

major emphasis was therefore given on the following bins.

Transcripts related to transcription factors

MapMan analysis depicted that totally 1060 transcripts were mapped from both the species;

514 and 379 transcripts being specific to C. platycarpus and C. cajan respectively. Though

Fig 2. Transcript length distribution analysis of (a) C. cajan and (b) C. platycarpus libraries.

https://doi.org/10.1371/journal.pone.0218731.g002
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Fig 3. (a) Species distribution of transcripts; Correlation covariance analysis depicting correlation between the biological replicates of (b) C. cajan and (c) C.

platycarpus; (d) Uniform distribution of up- and down- regulated transcripts in C. cajan in comparison to C. platycarpus as illustrated by the volcano plot; (e)

Distribution of Isotigs in the combined transcriptomes.

https://doi.org/10.1371/journal.pone.0218731.g003
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major differences in the kind of transcripts were not observed between the two species, heat

shock transcription factors were seen to be expressed more in number in C. platycarpus (S2

Data). About 125 transcripts were differentially expressed in both species and more than 78

transcripts among those were up-regulated in C. platycarpus. Further, WRKY and MYB tran-

scription factors (TFs) were seen to be expressed in more numbers compared to other TFs.

Fig 4. Classification of top five Gene Ontology (GO) categories of annotated transcripts in (a) C. cajan and (b) C. platycarpus.

https://doi.org/10.1371/journal.pone.0218731.g004
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Comparatively, WRKY transcription factors showed higher expression in C. platycarpus
whereas more number of MYB TFs displayed higher expression in C. cajan. However, highest

expression level of both the transcription factors was seen in C. platycarpus. In contrast to

MYB, TFs belonging to homeobox-leucine zipper were found to be expressing more in C.

cajan (Table 1; S3 Data). Further, analysis depicted that bZIP protein, BEL1-like homeodo-

main protein 6, calmodulin-binding transcription activator 1-like isoform X2, E2F transcrip-

tion factor-like E2FE isoform X2, ethylene insensitive 3-like 1 protein and GATA

transcription factor 7-like TFs were present in higher levels in C. platycarpus. On the other

hand, heat stress transcription factors, MADS-box protein SOC1-like isoform X1, protein

LHY isoform X3, protein REVEILLE 7 and scarecrow-like protein 14 isoform X1 transcription

factors were seen to be expressing at higher levels in C. cajan.

Transcripts related to signaling and protein modification

With respect to various transcripts belonging to signaling and G- proteins, a total of 6076 tran-

scripts were expressed in both the species. Among them, 977 and 701 transcripts were seen to

be specific to C. platycarpus and C. cajan respectively. Transcripts belonging to G-proteins,

calcium signaling and receptor kinases were specifically found to be dominating in C. platycar-
pus (S2 Data). It was observed that 653 transcripts were differentially expressed with 410 tran-

scripts being up-regulated and 243 down-regulated in C. platycarpus compared to C. cajan.

With respect to the differentially expressed transcripts, those that belonged to calcium medi-

ated signaling and the family of receptor like kinases (RLKs) were seen to be abundant.

Among the transcripts pertaining to calcium mediated signaling, calcium-transporting

ATPase, calcium-dependent protein kinase, calcium-binding protein, calmodulin-like protein,

and calmodulin-binding protein/transcription activators were displayed in higher levels in C.

platycarpus. Nevertheless, calcineurin B-like protein and CBL-interacting serine/threonine-

protein kinases were predominantly expressed in C. cajan (Table 2; S3 Data).

Leucine-rich repeat receptor-like protein kinases (LLR-RLKs) were seen to be abundantly

expressed in both the species compared to other RLKs. Distinctively, LLR-RLKs were predom-

inantly expressed in C. platycarpus along with proline-rich and LysM domain RLKs. Further,

probable/putative receptor like kinases and threonine-protein kinases were specifically up-reg-

ulated in C. platycarpus whereas, G-type lectin-RLKs (GsRLKs) showed higher level of expres-

sion in C. cajan (Table 2; S3 Data).

Protein kinases and phosphatases are important regulators of proteins in biological systems.

Based on differential gene expression analysis, mitogen-activated protein kinase, casein kinase,

receptor protein kinase TMK1, wall-associated receptor kinase, and putative receptor protein

kinase ZmPK1 were seen to be specifically up regulated in C. platycarpus. However, L-type lec-

tin-domain containing receptor kinase was equally expressed in both the species. Different iso-

forms of protein phosphatases were also found to be up-regulated in both the species.

The study illustrated that 48 transcripts that belonged to G-proteins were differentially

expressed in both species, out of which, 27 transcripts were found to be up-regulated in the

wild relative. Particularly, the up-regulated transcripts included, extra-large guanine nucleo-

tide-binding protein 1-like, EVI5-like protein isoform X4, ras-related protein Rab11A-like and

rop guanine nucleotide exchange factor 5-like isoform X1. In the domesticated pigeonpea,

transcripts belonging to 22B isoform X1, a member of TBC1 domain family proteins and

GTP-binding protein SAR1A were seen to be up-regulated (Table 2; S3 Data).

Fig 5. Gene Ontology (GO) classification of annotated transcripts in (a) C. cajan and (b) C. platycarpus.

https://doi.org/10.1371/journal.pone.0218731.g005
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Fig 6. MapMan analysis depicting gene expression in functional categories associated with different pathways in both the Cajanus species.

https://doi.org/10.1371/journal.pone.0218731.g006
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Secondary metabolism

According to MapMan analysis, the bin pertaining to secondary metabolism consisted of 803

transcripts that expressed in both the species; C. platycarpus and C. cajan specific transcripts

being 160 and 169 respectively. However, no major difference was seen in the types of tran-

scripts between both the species (S2 Data). It was observed that 147 transcripts were differen-

tially expressed in C. platycarpus compared to C. cajan wherein, 62 transcripts were up-

regulated and others were down-regulated. Among the differentially expressed transcripts,

phenylpropanoid and flavonoid biosynthesis pathway genes were predominantly expressed in

both species (Table 3; S3 Data). Interestingly, transcript annotated as 4-hydroxyphenylpyru-

vate dioxygenase displayed higher level of expression in C. platycarpus (Table 3; S3 Data) indi-

cating improved synthesis of tocopherols in this species as a putative regulator of reactive

oxygen species.

MapMan bins for abiotic stress, redox and other stresses showed that 2056 transcripts were

mapped amongst which 186 and 105 were expressed specific to C. platycarpus and C. cajan
respectively (S2 Data). Around 210 transcripts were differentially expressed in C. platycarpus

Table 1. Representative transcripts of transcription factors differentially expressed in C. platycarpus compared to C. cajan.

Transcript ID log2 fold change Transcript description

CP_TR48453|c0_g1_i1_len = 1796 7.0 PREDICTED: ETHYLENE INSENSITIVE 3-like 1 protein

CP_TR2864|c0_g1_i1_len = 1587 5.2 PREDICTED: trihelix transcription factor GTL2-like

CP_TR23396|c0_g1_i1_len = 1249 5.0 PREDICTED: GATA transcription factor 7-like

CP_TR2657|c0_g2_i3_len = 1176 4.9 PREDICTED: myb-related protein Myb4-like

CP_TR46143|c0_g1_i2_len = 872 4.9 WRKY65

CP_TR8901|c0_g1_i1_len = 1585 4.9 PREDICTED: probable WRKY transcription factor 41

CP_TR24329|c0_g1_i1_len = 1886 4.9 PREDICTED: probable WRKY transcription factor 3

CP_TR38258|c0_g2_i1_len = 985 4.5 hypothetical protein PHAVU_009G004800g

CP_TR38258|c0_g1_i1_len = 726 4.1 PREDICTED: BEL1-like homeodomain protein 6

CP_TR29370|c0_g3_i1_len = 3564 4.0 PREDICTED: calmodulin-binding transcription activator 1-like isoform X2

CP_TR27324|c0_g1_i2_len = 1359 3.4 PREDICTED: E2F transcription factor-like E2FE isoform X2

CP_TR15447|c0_g1_i2_len = 1931 3.0 bZIP protein

CP_TR32168|c4_g1_i4_len = 2950 2.7 PREDICTED: homeobox-leucine zipper protein ATHB-8-like

CP_TR10018|c0_g2_i1_len = 968 2.4 PREDICTED: homeobox-leucine zipper protein HDG11-like

CP_TR5066|c0_g1_i1_len = 400 2.0 PREDICTED: calmodulin-binding transcription activator 2-like

CC_TR2425|c0_g1_i1_len = 1079 -2.1 PREDICTED: transcription factor MYB34

CC_TR30934|c0_g1_i4_len = 1348 -2.2 PREDICTED: transcription factor TGA6 isoform X1

CC_TR19500|c0_g1_i1_len = 1535 -2.6 PREDICTED: transcription factor TGA2-like isoform X1

CC_TR27394|c1_g2_i3_len = 1342 -2.7 PREDICTED: myb family transcription factor APL-like

CC_TR4919|c0_g1_i1_len = 2458 -2.9 PREDICTED: scarecrow-like protein 13

CC_TR9284|c0_g1_i1_len = 657 -3.0 hypothetical protein PHAVU_006G182000g

CC_TR22466|c0_g1_i2_len = 591 -3.1 hypothetical protein PHAVU_001G091100g

CC_TR31096|c3_g1_i9_len = 2583 -3.9 PREDICTED: scarecrow-like protein 14 isoform X1

CC_TR13358|c1_g1_i1_len = 795 -4.0 PREDICTED: homeobox-leucine zipper protein ATHB-12-like

CC_TR30641|c0_g1_i4_len = 3236 -4.2 PREDICTED: homeobox-leucine zipper protein ATHB-15

CC_TR25327|c0_g1_i2_len = 1720 -4.7 hypothetical protein PHAVU_005G100700g

CC_TR44167|c0_g1_i1_len = 638 -5.0 PREDICTED: protein LHY isoform X3

CP_TR10174|c0_g2_i1_len = 1176 -5.3 heat stress transcription factor A-6b-like

CP_TR20195|c1_g1_i1_len = 476 -5.8 PREDICTED: protein REVEILLE 7

CC_TR52932|c0_g1_i1_len = 833 -6.0 PREDICTED: MADS-box protein SOC1-like isoform X1

https://doi.org/10.1371/journal.pone.0218731.t001
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compared to C. cajan wherein, 115 were up-regulated and the remaining down-regulated (S3

Data). Transcripts from nucleotide binding and leucine rich repeats (NBS-LRR) family were

seen to be abundantly expressed in both the species (Table 4) along with PR proteins.

With respect to the genes related to abiotic stress, expression of heat shock proteins and

heat stress transcription factors was observed in both the species, except for heat stress tran-

scription factor B-2b which was not up-regulated in C. cajan (Table 4; S3 Data). Further, heat

shock related chaperone, dnaJ protein homologs were seen to be equally expressed in both the

species. Besides, common stress related genes such as probable methyltransferase genes were

also seen to be predominantly expressing in C. platycarpus (Table 4; S3 Data).

The bins which consisted of significantly varying transcripts between the two species were

deciphered further for a better understanding of the scenario in the wild relative. Towards this,

a total of 23 biologically important pathways comprising of 512 significantly expressed genes

were found and presented in the network consisting of 535 nodes (512 Genes and 23 Path-

ways) and 1857 edges (S4 Data). It was explicit that the transcripts in the respective bins were

strongly interacting (Fig 7) with three distinct clusters evident in the network (Fig 7) showing

both up- as well as down-regulation. Interestingly, network analysis demonstrated co-ordina-

tion of signal perception and its transduction in the pigeonpea wild relative. Cluster one deci-

phered the nature of interaction happening in the signaling category and was seen to be a

dense cluster with more number of nodes and many of them up-regulated in C. platycarpus.

Table 2. Representative transcripts related to signaling differentially expressed in C. platycarpus compared to C. cajan.

Transcript id Log2 fold change Transcript description

Protein kinases, phosphatase and G-proteins

CP_TR32556|c0_g1_i5_len = 2652 6.9 G-type lectin S-receptor-like serine/threonine-protein kinase

CP_TR29770|c0_g4_i1_len = 2696 5.3 PREDICTED: putative receptor protein kinase ZmPK1

CP_TR3510|c0_g1_i1_len = 2199 5.0 PREDICTED: probable receptor-like protein kinase At1g67000

CP_TR30988|c0_g3_i2_len = 3286 4.9 PREDICTED: extra-large guanine nucleotide-binding protein 1-like

CP_TR22760|c0_g2_i2_len = 2065 4.9 PREDICTED: wall-associated receptor kinase-like 14

CP_TR21388|c0_g1_i1_len = 1475 4.5 PREDICTED: probable protein phosphatase 2C 78 isoform X1

CP_TR45053|c0_g1_i1_len = 2253 4.3 PREDICTED: L-type lectin-domain containing receptor kinase VII.1

CP_TR30933|c0_g1_i4_len = 3258 4.3 PREDICTED: receptor protein kinase TMK1-like

CP_TR29347|c0_g1_i1_len = 3427 4.3 PREDICTED: LRR receptor-like serine/threonine-protein kinase HSL2

CP_TR32141|c0_g1_i4_len = 2751 4.1 PREDICTED: EVI5-like protein isoform X4

CP_TR443|c0_g2_i1_len = 1474 3.9 PREDICTED: lysM domain receptor-like kinase 3

CP_TR30412|c0_g2_i1_len = 960 3.8 PREDICTED: proline-rich receptor-like protein kinase PERK9

CP_TR29703|c0_g1_i1_len = 3630 3.5 PREDICTED: leucine-rich repeat receptor-like tyrosine-protein kinase PXC3

CP_TR2871|c0_g1_i1_len = 1453 3.3 PREDICTED: rop guanine nucleotide exchange factor 5-like isoform X1

CC_TR30364|c0_g1_i4_len = 1332 -3.1 PREDICTED: TBC1 domain family member 22B isoform X1

CC_TR1558|c0_g2_i1_len = 957 -3.2 PREDICTED: GTP-binding protein SAR1A

CP_TR37415|c0_g1_i1_len = 1865 -4.3 PREDICTED: L-type lectin-domain containing receptor kinase VIII.2-like

CC_TR30321|c0_g1_i4_len = 1904 -4.6 PREDICTED: probable protein phosphatase 2C 40

CC_TR30662|c1_g2_i3_len = 3242 -7.9 PREDICTED: cysteine-rich receptor-like protein kinase 25 isoform X1

Calcium dependent signaling

CC_TR23765|c0_g2_i1_len = 434 4.7 PREDICTED: calcium-transporting ATPase 2, plasma membrane-type-like

CP_TR22900|c0_g1_i1_len = 1333 3.8 PREDICTED: calcium-dependent protein kinase 2

CP_TR14743|c0_g1_i1_len = 2533 3.4 PREDICTED: calmodulin-binding protein 60 E-like isoform X1

CC_TR29574|c0_g1_i6_len = 590 -3.2 PREDICTED: calcineurin B-like protein 10 isoform X3

CC_TR47011|c0_g1_i1_len = 1177 -6.8 PREDICTED: CBL-interacting serine/threonine-protein kinase 10-like

https://doi.org/10.1371/journal.pone.0218731.t002
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Specifically, the nodes consisted of biological categories like, glycoprotein, lectin/glucanases,

receptors, serine/threonine kinases, tyrosine kinase signaling, lectine-rich repeats, phosphory-

lation and kinases. Further, a group of genes that displayed higher expression in C. platycarpus
in the same cluster were also shared by two other biological categories, plant pathogen interac-

tion and calcium binding. These two biological categories consisted of some other nodes

which were not shared by cluster one but displayed up-regulation in C. platycarpus (Fig 7).

The second cluster consisted mainly of biological processes related to the transduction of sig-

nal in terms of transcription factors. Nodes that belonged to DNA binding and bHLH domain

that were present in cluster 2 were shown to be up-regulated in the wild relative. A sub cluster

Table 3. Representative transcripts related to secondary metabolite synthesis pathways differentially expressed in C.platycarpus compared to C. cajan.

Transcript ID Log2 fold change Transcript description

Phenylprophanoids metabolisam

CP_TR441|c0_g1_i1_len = 1967 4.1 PREDICTED: 4-coumarate--CoA ligase-like 9

CP_TR16870|c0_g1_i1_len = 1265 3.6 PREDICTED: cinnamoyl-CoA reductase 2-like

CP_TR21053|c0_g3_i1_len = 1054 2.8 PREDICTED: probable caffeoyl-CoA O-methyltransferase At4g26220

CP_TR15201|c0_g1_i1_len = 1560 2.3 PREDICTED: phenylalanine ammonia-lyase class 3 isoform X1

CC_TR79|c0_g1_i1_len = 1250 -2.4 PREDICTED: phenylalanine ammonia-lyase 1

CP_TR8874|c0_g2_i1_len = 685 -3.7 PREDICTED: shikimate O-hydroxycinnamoyltransferase isoform X3

CC_TR18917|c0_g1_i1_len = 1236 -4.1 PREDICTED: cinnamoyl-CoA reductase 1-like

CC_TR18296|c0_g1_i1_len = 1729 -5.1 PREDICTED: probable cinnamyl alcohol dehydrogenase

CC_TR50583|c0_g1_i1_len = 1614 -5.7 PREDICTED: shikimate O-hydroxycinnamoyltransferase isoform X2

CC_TR21336|c0_g2_i1_len = 2198 -6.8 PREDICTED: 4-coumarate--CoA ligase 1

Flavonids metabolisam

CP_TR7759|c0_g2_i1_len = 1325 6.2 PREDICTED: anthocyanidin 3-O-glucosyltransferase 5-like

CP_TR37480|c0_g1_i1_len = 1762 5.2 PREDICTED: flavonoid 3&apos;-monooxygenase-like

CP_TR49870|c0_g1_i1_len = 468 4.4 PREDICTED: chalcone synthase 5

CP_TR26778|c0_g1_i2_len = 795 4.4 flavonol synthase/flavanone 3-hydroxylase

CP_TR24400|c0_g1_i5_len = 1557 3.5 PREDICTED: putative dihydroflavonol-4-reductase

CP_TR12032|c0_g1_i1_len = 1308 3.5 anthocyanidin synthase

CC_TR27457|c0_g1_i1_len = 1684 -3.4 PREDICTED: anthocyanidin 3-O-glucosyltransferase 5-like

CC_TR24066|c0_g2_i1_len = 939 -3.6 PREDICTED: dihydroflavonol-4-reductase-like

CC_TR36517|c0_g1_i1_len = 1031 -4.4 PREDICTED: chalcone--flavonone isomerase-like

CC_TR45250|c0_g1_i1_len = 1623 -4.9 Anthocyanidin 3-O-glucoside 2&apos;&apos;-O-glucosyltransferase-like

CC_TR45038|c0_g1_i1_len = 1222 -5.6 flavonol synthase

CC_TR19556|c0_g1_i2_len = 1527 -5.6 PREDICTED: leucoanthocyanidin dioxygenase

Terpenoids metabolisam

CP_TR4750|c0_g1_i1_len = 2429 2.8 PREDICTED: probable 1-deoxy-D-xylulose-5-phosphate synthase 2, chloroplastic

CP_TR24428|c0_g1_i3_len = 2136 2.1 PREDICTED: 3-hydroxy-3-methylglutaryl-coenzyme A reductase 1-like

CC_TR6946|c0_g1_i1_len = 1805 -3.5 1-deoxy-D-xylulose 5-phosphate reductoisomerase, chloroplastic-like

CC_TR13227|c0_g2_i1_len = 1545 -4.4 PREDICTED: geranylgeranyl pyrophosphate synthase, chloroplastic-like

CC_TR22580|c0_g1_i4_len = 750 -4.6 PREDICTED: beta-amyrin synthase

CC_TR10054|c0_g1_i1_len = 2017 -6.6 glucosyltransferase

CC_TR4266|c0_g1_i1_len = 2042 -10.0 PREDICTED: isoprene synthase, chloroplastic-like

Tocopherol metabolisam

CP_TR10466|c0_g2_i1_len = 1729 4.0 PREDICTED: 4-hydroxyphenylpyruvate dioxygenase

CP_TR22271|c0_g1_i1_len = 1375 3.8 PREDICTED: tocopherol O-methyltransferase, chloroplastic-like

Stress related genes

https://doi.org/10.1371/journal.pone.0218731.t003
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present in cluster 2 was shared by biological categories such as helicase and DNA repair dis-

playing down-regulation in C. platycarpus. Cluster 3 consisted of lesser number of nodes that

belonged to biological categories such as subtilisin, proteinase inhibitor, serine protease and

endopeptidase activity that are primarily concerned with protein catabolic regulation. Though

this cluster had lesser number of nodes, half of the genes were up-regulated in C. platycarpus
while genes shared by endopepdidase activity displayed down-regulation in the wild relative.

Validation of RNA-seq analysis by qRT-PCR

Twenty genes (Table A in S1 File) selected for qRT-PCR mainly belonged to transcription fac-

tors, receptor like kinases and genes involved in secondary metabolism as well as those that

were identified through network analysis. These genes were selected based on their signifi-

cance in differential expression between the two species as revealed by RNA-Seq analysis.

Among receptor like kinases, Cysteine-rich receptor-like protein kinase, G-type lectin S-recep-

tor-like serine/threonine-protein kinase, Receptor-like protein kinase FERONIA, wall-associ-

ated receptor kinase-like 14 and lysM domain receptor-like kinase 3 that were displaying up-

regulation in the wild relative were chosen. Whereas, L-type lectin-domain containing recep-

tor kinase VIII.2-like that showed down-regulation were also selected for validation. Tran-

scription factor bHLH48-like, calmodulin-binding transcription activator 1-like isoform X2

and probable WRKY transcription factor 41 which showed up-regulation and transcription

factor PIF3-like, heat stress transcription factor A-6b-like, B-box zinc finger protein 18-like

and protein LHY isoform X3 which showed down-regulation in the wild relative were the

genes chosen among transcription factors. Genes pertaining to protein modification were,

probable methyltransferase PMT19 and Subtilisin-like protease showing up-regulation and U-

box domain-containing protein which was down-regulated in the wild relative were chosen

for qRT-PCR. The analysis demonstrated strong corroboration between the two expression

analyses indicating authenticity of the RNA seq analysis (Fig 8).

Table 4. Representative transcripts belonging to stress response genes differentially expressed in C. platycarpus compared to C. cajan.

Transcript id Log2 fold change Transcript description

Biotic stress

CP_TR32736|c3_g3_i3_len = 3757 6.8 disease resistance protein (TIR-NBS-LRR class)

CP_TR39176|c0_g1_i1_len = 1035 4.9 PR-5b protein precursor

CP_TR37702|c0_g1_i1_len = 1077 4.6 PREDICTED: acidic endochitinase-like

CP_TR30626|c0_g4_i1_len = 3795 4.4 PREDICTED: TMV resistance protein N-like

CP_TR31255|c0_g1_i4_len = 4069 4.1 LRR and NB-ARC domain disease resistance protein

CP_TR30484|c0_g1_i4_len = 3219 3.9 PREDICTED: disease resistance protein RPM1-like

CP_TR28412|c0_g1_i2_len = 1372 3.4 PREDICTED: thaumatin-like protein 1

CP_TR14448|c0_g1_i1_len = 1269 2.2 PREDICTED: lipase-like PAD4 isoform X1

CC_TR29841|c0_g1_i8_len = 1949 -3.1 PREDICTED: putative disease resistance protein RGA3

CC_TR31064|c0_g1_i2_len = 4039 -4.3 PREDICTED: putative disease resistance RPP13-like protein 1

CC_TR21614|c0_g1_i1_len = 1308 -4.9 PREDICTED: chitinase-like protein 2

Abiotic stress

CP_TR23836|c0_g1_i2_len = 1334 5.6 PREDICTED: probable methyltransferase PMT19

CP_TR20408|c0_g3_i1_len = 1509 2.5 PREDICTED: ultraviolet-B receptor UVR8-like isoform X2

CC_TR1092|c0_g1_i1_len = 1396 -3.9 PREDICTED: dnaJ protein homolog 1-like

CC_TR50239|c0_g1_i1_len = 3229 -4.1 heat shock protein

CC_TR22001|c0_g2_i1_len = 2595 -6.3 PREDICTED: heat shock protein 83-like

Network analysis

https://doi.org/10.1371/journal.pone.0218731.t004
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Discussion

Plant domestication has been a process where plants with altered morphological and physio-

logical traits have evolved to meet human requirements like yield, harvest and edibility/

Fig 7. Biological categories-based network analysis depicting connection between the genes mapped in different MapMan bins.

https://doi.org/10.1371/journal.pone.0218731.g007
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Fig 8. Validation and comparison of the RNA-seq and qRT- PCR expression profile of differentially expressed genes [Cysteine- rich receptor- like protein 3

(DEG1); G-type lectin receptor-like serine/threonine protein kinase (DEG2); Receptor-like protein kinase FERONIA (DEG3); Wall-associated receptor kinase-like

14 (DEG4); LysM domain receptor-like kinase 3 (DEG5); L-type lectin-domain containing receptor kinase VIII.2-like (DEG6); Transcription factor PIF3-like

(DEG7); Heat stress transcription factor A-6b-like (DEG8); Protein LHY isoform X3 (DEG9); Transcription factor bHLH48-like (DEG10); calmodulin-binding

transcription activator 1-like isoform X2 (DEG11); Probable WRKY transcription factor 41 (DEG12); probable methyltransferase 19 (DEG13); Subtilisin-like

protease SBT1.6 (DEG14); U-box domain-containing protein 4 (DEG15); Zeatin expoxidase (DEG16); Delta-1-pyrroline-5-carboxylate synthase-like isoform X2

(DEG17); Flavonol synthase/flavanone 3-hydroxylase (DEG18); Probable inositol transporter 2 isoform X2 (DEG19); B-box zinc finger protein 18-like (DEG20)].

https://doi.org/10.1371/journal.pone.0218731.g008
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palatability [22, 23]. With time and rigorous selection process, there has been a reduction in

the level of genetic variation amongst the cultivated varieties of different crops that are eco-

nomically important [6]. As a result, the wild moved apart from the cultivated species and got

placed in secondary or tertiary gene pools based on their crossability with cultivated species [6,

45]. The advent and surge in various biotechnological tools, especially omics-based applica-

tions, have enabled proficient sequencing of crop wild relatives for their use in crop improve-

ment [12, 29–31].

Among the wild relatives in the incompatible tertiary gene pool, C. platycarpus has received

considerable attention because of many desirable traits important for pigeonpea improvement

[14, 18, 46]. Though preliminary efforts have been made towards deciphering the molecular

scenario in the wild relatives of pigeonpea, there is still deficiency in the in-depth understand-

ing of molecular signatures leading to various traits of importance. A comparative transcrip-

tomic profiling would therefore depict the specific molecular structure in each of the cases and

provide leads for a better comprehension of major differences between them [26–28]. The

present study is the very first of its kind and is an initiation towards not only generation of

genomic resources in C. platycarpus but also a step towards exploitation of the identified

resources in crop improvement programs. The choice of C. platycarpus accession, ICPW068

in the present study was because of its potential to resist various stresses [13, 14, 16, 19, 20]

while TTB-7, a medium duration high yielding variety susceptible to various diseases and pests

of pigeonpea including pod borer [24, 47, 48].

Expression profiling is better exploited in actively growing stages of plants. In pigeonpea,

the epitome of vegetative growth happens during 45–60 days after sowing and at this stage of

the crop growth, the response of plants to various stresses can be maximal [49, 50]. In the pres-

ent study, leaf tissues from actively growing and healthy 45 days old TTB7 as well as C. platy-
carpus were harvested for transcriptome analysis. Leaf tissue was chosen in the study with a

broader aim of understanding the relevance of the wild relative in mitigating insect herbivory

and the fact that the larvae of H. armigera initially feed on leaves before reaching the pod [24,

25].

The quality of leaf transcriptomes of both the species was found to be reliable with respect

to parameters like N50, number and length of transcripts. Based on KEGG analysis, C. cajan
was seen to focus more on energy metabolism and pathways required for normal cellular

machinery. However, C. platycarpus was seen to be proactive in signal perception and trans-

duction processes as the annotated genes in all major terms were related to cell signaling.

Interestingly, C. platycarpus annotated with one of the pathway GO terms, "T cell receptor sig-

nalling pathway", which is commonly annotated in mammals, concomitantly called Toll/inter-

leukin-1 receptor (TIR) homology domain in plants, an intracellular domain common among

the identified plant R-proteins [51]. Similar to mammalian and insect TIR genes [52], plant

TIR genes are also known to play a major role in plant innate immunity involved in the activa-

tion of transcription factors through adopter proteins/protein kinases. The GO analysis

reported in this study is the first of its kind where transcriptome of the cultivated pigeonpea

was compared with its wild relative, though some studies have been carried out in other

legumes [53–56].

In-depth analysis of the transcriptome would be definitely fascinating for a better percep-

tion of the species under study. Towards this, MapMan, an advanced bioinformatics tool for

comprehensive interpretation of transcriptome data and visualization of functions of associ-

ated genes was used. This analysis allowed us to explore gene categories from the large data

sets to get meaningful information. Through MapMan, it was evident that significant variation

between the two species was conspicuous with respect to genes related to transcription factors

(TFs), signaling, secondary metabolites, and stress response. Exploration of specific bins was
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attempted in order to decipher major similarities as well as differences between the two

systems.

In general, TFs are seen to be involved in various plant processes like growth, development

and stress signaling [26, 57–59]. Interestingly, MapMan analysis showed that the wild relative,

C. platycarpus expressed more number of WRKY transcripts when compared to its cultivated

counterpart depicting its role in regulation of various abiotic and biotic responses [60, 61].

Similarly, the wild relative also portrayed higher expression of another TF, MYB that plays an

important role not only in plant development but also stress mitigation [62] indicating inher-

ent agility of the wild relative.

Further support for this assumption was established based on the analysis of genes involved

in cellular signal transduction. Response of plants to various environmental and developmen-

tal signals is pertinent for successful growth and reproduction [63, 64]. Proactive response to

environmental/developmental cues was explicitly depicted in C. platycarpus as a large number

of varied kinases, especially receptor like kinases and those involved in calcium-mediated sig-

naling [65] were seen to be inherently up-regulated. Furthermore, it was also seen that the wild

relative expressed a large number of transcripts coding for numeral G-proteins. Information

accruing from literature implicates G-proteins with various functional processes including

response to growth, development and environmental cues [66, 67].

Secondary metabolism produces a large number of specialized molecules that are required

for the plant to survive in its environment and essential for communicating with other organ-

isms in a mutualistic (eg. to attract beneficial organisms such as pollinators) or antagonistic

(eg. to combat herbivores and pathogens) manner. Under baseline or non-stress conditions, it

is expected that mutualistic metabolites or those required for normal physiological processes

are expressed [68, 69]. This scenario was unambiguously seen in the present study as major

differences were not observed between the two species. However, tocopheral biosynthesis

genes were interestingly seen to be upregulated in Cajanus platycarpus. Tocopheral plays a

crucial role in wax accumulation in plant leaves. It is a known fact about C. platycarpus that it

portrays more pubescence, increased hardening of leaves (sclerophyly) by cuticular wax accu-

mulation, cell wall thickening and lignifications. These traits are expected to prevent plants

from insect attack by making them non-preferable, unpalatable and undigestable [16, 70, 71].

The increase accumulation of tocopherol can be extrapolated to the specific phenotype of the

wild relative and it being a deterrent to insects.

Furthermore, another interesting feature observed was the variation in the transcripts per-

taining to biotic and abiotic stress. Though, the study did not involve imposition of stress, still

majority of stress-related gene transcripts were seen to be up-regulated in C. platycarpus. This

variation presented in the study repeatedly depicted intrinsic differences between the two spe-

cies at transcriptome level thus reconfirming earlier evidences in other categories like TFs and

signaling.

Perfect corroboration was evident from interactions between the differentially expressed

genes of specific bins derived from MapMan analysis. The inherent variation in the kind and

specific function of transcripts between the two species was clear when it was observed that

distinct clusters densely packed with transcripts dominated by C. platycarpus were found to be

interacting in the developed network.

Therefore, considering different aspects of the study, clear disparity was seen in the tran-

scriptome profiles of the two pigeonpea species, with the wild relative demonstrating skewed

expression of transcripts pertaining to signaling, transcription factors and certain biotic stress

related genes. However, dynamics of the transcriptome under specific stress conditions will

provide intriguing insights and reasoning for the variety of desirable agronomic traits persist-

ing in the wild relative. This learning can be a platform for further investigations with respect
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to the wild relative in deciphering the hidden molecular mechanisms towards mitigation of

various biotic/abiotic stresses.
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