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Abstract

The construction of fitness landscape has broad implication in understanding molecular evolution, cellular epigenetic state,
and protein structures. We studied the problem of constructing fitness landscape of inverse protein folding or protein
design, with the aim to generate amino acid sequences that would fold into an a priori determined structural fold which
would enable engineering novel or enhanced biochemistry. For this task, an effective fitness function should allow
identification of correct sequences that would fold into the desired structure. In this study, we showed that nonlinear fitness
function for protein design can be constructed using a rectangular kernel with a basis set of proteins and decoys chosen a
priori. The full landscape for a large number of protein folds can be captured using only 480 native proteins and 3,200 non-
protein decoys via a finite Newton method. A blind test of a simplified version of fitness function for sequence design was
carried out to discriminate simultaneously 428 native sequences not homologous to any training proteins from 11 million
challenging protein-like decoys. This simplified function correctly classified 408 native sequences (20 misclassifications, 95%
correct rate), which outperforms several other statistical linear scoring function and optimized linear function. Our results
further suggested that for the task of global sequence design of 428 selected proteins, the search space of protein shape
and sequence can be effectively parametrized with just about 3,680 carefully chosen basis set of proteins and decoys, and
we showed in addition that the overall landscape is not overly sensitive to the specific choice of this set. Our results can be
generalized to construct other types of fitness landscape.
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Introduction

Protein design has been the focus of many experimental,

theoretical, and computational studies [1–9]. Despite significant

challenges, important progresses have been made, with profound

implications in biotechnology and biomedicine [10–15].

Here we studied the problem of designing a protein sequence

that is compatible with an a priori specified three-dimensional

template protein fold. This problem was first formulated 30 years

ago [16,17]. Also known as the inverse protein folding problem, it

addresses the fundamental problem of designing proteins to

facilitate engineering of proteins with enhanced or novel

biochemical functions.

A key component for designing a protein sequence is a fitness

function: it can detect if a solution has been found, and can also

guide the search of viable sequences. An ideal fitness function can

characterize the properties of fitness landscape of many proteins

simultaneously. Such a fitness function would be useful for

designing novel proteins and novel functions, as well as for

studying the global evolution of protein structure and protein

functions.

The development of a fitness function for protein design is

closely related to the development of a scoring function for protein

structure predictions, protein folding, and protein-protein/ligand

docking [18–23]. There are many different approaches in

constructing the fitness function. Several studies employ a linear

fitness function in the form of weighted linear sum of pairwise

contacts, with sometimes additional solvation terms derived from

exposed surface area [2,3,5]. Such functions can be obtained from

statistical analysis of a database of protein structures [24], or from

perceptron learning/linear programming [21,25,26], or by gradi-

ent descent [27,28]. Another approach is to use a force field such

as those used in molecular dynamics simulations [6,29–31].

However these functions often do not provide global character-

ization of the overall fitness landscape for protein design. They

also often have poor performance in blind test when challenged

with the task of designing simultaneously many different proteins

[32], or are so complex that they can not be used in high-

throughput test. Inaccurate fitness functions can lead to low

success rates in protein design [33].

A promising alternative approach is to use nonlinear function to

capture the complex design of fitness landscape. In the study of

[32], a nonlinear Gaussian kernel function was constructed by

maximizing soft margins between native proteins and decoy non-

proteins. This fitness function significantly outperforms linear

functions in a blind test of identifying 201 native proteins from 3

million challenging protein-like decoys [32]. However, it is

parametrized by about 350 native proteins and 4,700 non-protein

decoys and its form is rather complex. It is computationally

expensive to evaluate the fitness of a candidate sequence. Although
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obtaining a good answer at high computational cost is acceptable

for some tasks, it is difficult to incorporate a complex function in a

search algorithm. It is also difficult to characterize global

landscape properties of protein sequence design using a complex

function.

In this study, we demonstrated how to significantly improve

nonlinear function for characterizing fitness landscape of protein

design. Using a rectangular kernel with proteins and decoys

chosen a priori, we obtained a nonlinear kernel function via a

finite Newton method. The total number of native proteins and

decoy conformations included in the function was reduced to

about 3,680. In the blind test of sequence design to discriminate

428 native sequences from 11 million challenging protein-like

decoy sequences, this fitness function misclassified only 20 native

sequences (correct rate 95%), which far outperform statistical

function [34] (87 misclassification, correct rate 57%) and linear

optimal functions [26,28] (44–58 misclassification, correct rate

78%–71%) both of which were tested on a smaller scale to

discriminate 201 native sequence from 3 million challenging

protein-like decoy sequences. It is also comparable to the results of

18 misclassification (correct rate 91%) using far more complex

nonlinear fitness function with .5,000 terms [32].

This paper is organized as follows. We first describe our theory

and methods for sequence design. We then discuss computational

details. Results of a blind test are then presented. We conclude

with discussion and remarks.

Theory and Methods

We use a d-dimensional vector c[Rd to represent both the

sequence and structure of a protein [35]. One possible choice is

the vector of the number count of non-bonded pairwise contacts of

each of the
20z2{1

2

� �
~210 contact types [24] between the 20

types of amino acid residues in a protein structure. Once the

structural conformation of a protein s and its amino acid sequence

a is given, the contact definition f : (s,a).Rd fully determines the

contact vector c.

Inequality criterion
In protein design, the native amino acid sequence a of a protein

should have better fitness score on the native structure s of this

protein than any other competing sequences taken from proteins

of different fold. This leads to the requirement that the native

sequence aN mounted on its native structure sN should have the

best fitness score (lowest ‘‘energy’’) compared to a set of decoys

D~fDDcD~f (sN ,aD) for all aDg derived from mounting unre-

lated alternative sequences aD on the native protein structure sN :

H(cN )vH(cD) for all D[D, ð1Þ

where cD~f (sN ,aD) is the contact vector of a decoy sequence aD

mounted on its native protein structure sN , and cN~f (sN ,aN ) is

the contact vector of a native sequence aN from the set of native

training proteins N mounted on the native structure sN . Here D is

a set of sequence decoys mounted on native protein structures.

H(cN ) and H(cD) are the energy score for native sequence

structure pair and for non-native sequence structure pair,

respectively. Equivalently, the native sequence will have the

highest probability to fit into its native structure, and other

sequences will have lower probability. This is the same principle

described in [3–5].

A commonly used form for fitness function H(c) is the weighted

linear sum of pairwise contacts [24,26,36–38]:

H(c)~w:c, ð2Þ

here ‘‘:’’ represents inner product of two vectors. For such a linear

function, the basic requirement for protein fitness is then:

w:(cN{cD)v0: ð3Þ

We can further require that the difference in fitness must be

greater than a constant dw0:

w:(cN{cD)zdv0: ð4Þ

Geometric views of inequality requirement
There is a natural geometric view of the inequality requirement.

Each of the inequalities divides the space of Rd into two halves

separated by a hyperplane. The hyperplane is defined by the

normal vector (cN{cD) and its distance d=DDcN{cDDD from the

origin. The weight vector w must be located in the half-space

opposite to the direction of the normal vector (cN{cD). This half-

space can be written as w:(cN{cD)zdv0. When there are many

inequalities to be satisfied simultaneously, the intersection of the

half-spaces forms a convex polyhedron [39]. If the weight vector is

located in the interior of the polyhedron, all inequalities are

satisfied. Fitness function with such weight vector w can

discriminate a native protein from all decoys.

For each native protein i, there is one convex polyhedron Pi

formed by the set of inequalities associated with its decoys. If the

scoring function can discriminate simultaneously n native contact

vectors from a union of sets of decoys, the weight vector w must be

located in the interior of a smaller convex polyhedron P that is the

intersection of the n convex polyhedra: w[ IntP~Int
Tn

i~1 Pi:

There is another geometric view of the inequality requirements.

The relationship w:(cN{cD)zdv0 for all decoys and native

protein sequences can be regarded as a requirement that all points

fcN{cDg are located on one side of a hyperplane, which is

defined by its normal vector w and its distance d=DDwDD to the origin.

We can show that such a hyperplane exists if and only if the origin

is not contained within the convex hull of the set of points

fcN{cDg [32]. This second geometric view is dual to the first

geometric view.

Relation to support vector machines
There may exist multiple w0s if P is not empty. We can use the

formulation of a support vector machine to find a w. Let all vectors

cN[Rd form a native training set and all vectors cD[Rd form a

decoy training set. Each vector in the native training set is labeled

as {1 and each vector in the decoy training set is labeled as z1.

Then solving the following support vector machine problem will

provide an optimal solution to inequalities (3):

Minimize
1

2
EwE2

subject to w:cNzbƒ{1

w:cDzb§1:

ð5Þ
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Note that a solution of the above problem satisfies the system of

inequalities (3), since subtracting the second inequality from the

first inequality in the constraint conditions of (5) will give us

w:(cN{cD)ƒ{2v0.

Nonlinear fitness function
However, it is possible that no weight vector w exists, i.e., the

interior of the final convex polyhedron IntP~Int
Tn

i~1 Pi may

be an empty set. First, for a specific native protein i, there may be

severe restriction from some inequality constraints, which makes

Pi an empty set. Some decoys are very difficult to discriminate due

to perhaps deficiency in protein representation. In these cases, it is

impossible to adjust the weight vector so the native structure has a

better fitness score than the decoy. Second, even if a weight vector

w can be found for each native protein, i.e., w is contained in a

nonempty polyhedron, it is still possible that the intersection of the

interior of n nonempty polyhedra is an empty set, i.e., no weight

vector can be found that can make all native proteins simulta-

neously the fittest against decoys.

A fundamental reason for this failure is that the functional form

of linear sum of pairwise interaction is too simplistic. To resolve

this issue, we obtain nonlinear fitness function for sequence design

using an alternative functional form [32]:

H(c)~
X
D[D

aDK(c,cD){
X
N[N

aNK(c,cN )zb, ð6Þ

where aD§0 and aN§0 are coefficients to be determined. This

functional form is reminiscent of the linear fitness function

H(c)~w:c, which can be written alternatively as an expansion

around positive and negative contact vectors, as used in

perceptron learning: w~{
P

N[N aNcNz
P

D[D aDcD. A con-

venient kernel function K is:

K(ci,cj)~e{cDDci{cj DD
2

for any vectors ci and cj [N|D, ð7Þ

where c is a constant. The fitness function H(c) can be written

compactly as:

H(c)~
X
D[D

aDe{cjjc{cDjj2{
X
N[N

aNe{cjjc{cN jj2zb

~K(c,A)Ds zb,

ð8Þ

where A is the matrix of training data:

A~(cT
1 , � � � ,cT

DDD,c
T
DDDz1, � � � ,cT

DDDzDN D)
T , and the entry K(c,cj) of

K(c,A) is e
{cDDc{cj DD

2
. Ds is the diagonal matrix with z1 and {1

along its diagonal representing the membership class of each point

Ai~cT
i . Here a is the coefficient vector:

a~(a1, � � � ,aDDD,aDDDz1, � � � ,aDDDzN D)
T .

Intuitively, the fitness landscape has smooth Gaussian hills of

height aD centered on location cD of decoy contact vector D[D,

and has smooth Gaussian cones of depth aN centered on the

location cN of native contact vector N[N . Ideally, the value of the

fitness function will be {1 for contact vectors cN of native

proteins, and will be z1 for contact vectors cD of decoys.

Optimal nonlinear fitness function
To obtain such a nonlinear function, our goal is to find a set of

parameters faD,aNg such that H(c) has fitness value close to {1
for native proteins, and has fitness values close to z1 for decoys.

There are many different choices of faD,aNg. We use an

optimality criterion developed in statistical learning theory [40–

42]. First, we note that we have implicitly mapped each protein

and decoy from Rd ,d~210 to another high dimensional space

where the scalar product of a pair of mapped points can be

efficiently calculated by the kernel function K(:,:). Second, we find

the hyperplane of the largest margin distance separating proteins

and decoys in the space transformed by the nonlinear kernel [40–

43]. That is, we search for a hyperplane with equal and maximal

distance to the closest native protein sequence and the closest

decoys. Such a hyperplane has good performance in discrimina-

tion [40]. It can be found using support vector machine by

obtaining the parameters faDg and faNg from solving the

following primal form of quadratic programming problem:

min
a[Rm

z, b[R, j[Rm

C

2
e:jz

1

2
a:a

subject to Ds(K(A,A)Dsazbe)zj § e

j § 0,

ð9Þ

where m is the total number of training points: m~DDDzDN D, C is

a regularizing constant that limits the influence of each misclas-

sified conformation [40–43], and the m|m diagonal matrix of

signs Ds with z1 or {1 along its diagonal indicating the

membership of each point Ai in the classes z1 or {1; and e is an

m-vector with 1 at each entry. The variable ji is a measurement of

error for each input vector with respect to the solution:

ji~1zyiH(ci), where yi~{1 if i is a native protein, and

yi~z1 if i is a decoy.

Rectangle kernel and reduced support vector machine
(RSVM)

The use of nonlinear kernels on large datasets typically demands

a prohibiting size of the computer memory in solving the

potentially enormous unconstrained optimization problem. More-

over, the representation of the landscape surface using a large data

set requires costly storage and computing time for the evaluation

of a new unseen contact vector c. To overcome these difficulties,

the reduced support vector machines (RSVM) developed by Lee

and Mangasarian [44] use a very small random subset of the

training set to build a rectangular kernel matrix, instead of the use

of the conventional m|m kernel matrix K(A,A) in equation (9).

This model can achieve about 10% improvement on test accuracy

over conventional support vector machine with random data sets

of sizes between 1{5% of the original data [44]. The small subset

can be regarded as a basis set in our study. Suppose that the

number of contact vectors in our basis set is �mm, with �mm%m. We

denote �AA as an �mm|d matrix, and each contact vector from the

basis set is represented by a row vector of �AA. The resulting kernel

matrix K(A,�AA) from A and �AA has size m|�mm. Each entry of this

rectangular kernel matrix is calculated by K(ci,�ccj), where cT
i and

�ccT
j are rows from A and �AA respectively. The RSVM is formulated

as the following quadratic program:

min
�aa[R �mm

z, b[R, j[R �mm

C

2
j:jz

1

2
(�aa:�aazb2)

subject to Ds(K(A,�AA) �DDs�aazbe)zj § e

j § 0,

ð10Þ

where �DDs is the �mm|�mm diagonal matrix with z1 or {1 along its

diagonal, indicating the membership of each point �AAi in the classes

z1 or {1; and e is an m-vector with 1 at each entry. As shown in
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[44], the zero level set surface of the fitness function is given by

H(c)~K(c,�AA) �DDs�aazb

~
X
cD[�AA

�aaDe{cEc{cDE2
{
X

cN [�AA

�aaNe{cEc{cN E2
zb~0,

ð11Þ

where (�aa,b)[R�mmz1 is the unique solution to (10). This surface

discriminates native proteins against decoys. Besides the rectan-

gular kernel matrix, the use of 2-norm for the error j and an extra

term b2 in the objective function of (10) distinguish this

formulation from conventional support vector machine.

Smooth Newton method
In order to solve equation (10) efficiently, an equivalent

unconstrained nonlinear program based on the implicit Lagrang-

ian formulation of (10) was proposed in [45], which can be solved

using a fast Newton method. We modified the implicit Lagrangian

formulation and obtain the unconstrained nonlinear program for

the imbalance RSVM in equation (10). The Lagrangian dual of

(10) is now [46]:

min
�aa[R �mm

z

1

2
�aa:(Qz�DDs(K(A,�AA)T K(A,�AA)zeeT �DDs)�aa{e:�aa, ð12Þ

where Q~I=C[R�mm|�mm, and I[R�mm|�mm is unit matrix. Note that R�mm
z

is the set of nonnegative �mm-vectors. Following [45], an equivalent

unconstrained piecewise quadratic minimization problem of the

above positively constrained optimization can be derived as

follows:

min
�aa[R �mm

L(�aa)~ min
�aa[R �mm

1

2
�aa:Q�aa{e:�aaz

1

2
b(E({b�aazQ�aa{e)zE2{EQ�aa{eE2):

ð13Þ

Here, b is a sufficiently large but bounded positive parameter to

ensure that the matrix bI{Q is positive definite, where I[R�mm|�mm

is a unit matrix, and the plus function (:)z replaces negative

components of a vector by zeros. This unconstrained piecewise

quadratic problem can be solved by the Newton method in a finite

number of steps [45]. The Newton method requires the

information of the gradient vector +L(�aa)[R�mm and the generalized

Hessian L2L(�aa)[R�mm|�mm of L(�aa) at each iteration. They can be

calculated using the following formulae [45]:

+L(�aa)~(Q�aa{e)z
1

b
(Q{bI)((Q{bI){e)z{

1

b
Q(Q�aa{e)

~
(bI{Q)

b
((Q�aa{e){((Q{bI)�aa{e)z),

ð14Þ

and

L2L(�aa)~
bI{Q

b
(Qzdiag((Q{bI)�aa{e)�(bI{Q)), ð15Þ

where diag(:) denotes a diagonal matrix and (a)� denotes the step

function, i.e., (ai)�~1 if aiw0; and (ai)�~0 if aiƒ0.

The main step of the Newton method is to solve iteratively the

system of linear equations

{+L(�aai)zL2L(�aai)(�aaiz1{�aai)~0, ð16Þ

for the unknown vector �aaiz1 with given �aai.

We present below the algorithm, whose convergence was

proved in [45]. We denote L2L(�aai){1 as the inverse of the Hessian

L2L(�aai).

Start with any �aa0[R�mm. For i~0,1::::

(i) Stop if +L(�aai{L2L(�aai){1+L(�aai))~0.

(ii) �aaiz1~�aai{liL2L(�aai){1+L(�aai)~�aaizlid i, w h e r e li~

maxf1,
1

2
,
1

4
, � � �g is the Armijo step size [47] such that

L(�aai){L(�aaizlid
i)§{dli+L(�aai):d i, ð17Þ

for some d[(0,
1

2
), and d i is the Newton direction

d i~�aaiz1{�aai~{L2L(�aai){1+L(�aai), ð18Þ

obtained by solving (16).

(iii) i~iz1. Go to (i).

Computational Experiments

Determination of count vector by alpha shape
Since protein molecules are formed by thousands of atoms, their

shapes are complex. In this study, we use the count vector c of

pairwise contact interactions derived from the edge simplexes of

the alpha shape of a protein structure, where only nearest

neighbor atoms in physical contacts are identified. The advantages

of this approach are elaborated in [48]. We refer to references

[49,50] for further theoretical and computational details.

Relationship between number of contacts and length of
protein

We found that there is a relationship between the number of

total contacts of a protein and the length of the protein. A linear

regression on the relationship between the number of total

contacts and the length of the protein gives the following equation,

Ncontacts~3:090:Lprotein{76:182, ð19Þ

where Ncontacts is the number of contacts for a protein, and Lprotein

is the number of the protein residues. To eliminate the influence of

the length of protein, we normalize the number of contacts for

each type of pair-wise contact of a protein using equation (19).

Generating sequence decoys by threading
We followed Maiorov and Crippen [51] and used gapless

threading to generate a large number of decoys for a simplified test

of protein design. We threaded the sequence of a larger protein

through the structure of a smaller protein, and obtained sequence

decoys by mounting a fragment of the native sequence from the

large protein to the full structure of the small protein. We therefore

had a set of sequence decoys (sN ,aD) for each native protein

(sN ,aN ) (Fig 1). Because all native contacts were retained, such

sequence decoys are quite challenging. This is unlike folding

decoys generated by gapless threading [32].

Global Nonlinear Fitness Function for Proteins
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Dataset
We used the list of 1,515 protein chains compiled from the

PISCES server [52]. Protein chains in this data set have pairwise

sequence identity v20%, With its structural resolution by

crystallography and has a resolution ƒ 1.6 Å, and the R-factor

ƒ 0.25. We removed incomplete proteins (i.e. those with missing

residues), and proteins with uncertain residues (those denoted as

ASX, GLX, XLE, and XAA). We further removed proteins with

less than 46 and more than 500 amino acids. In addition, we

removed protein chains with more than 30% extensive inter-chain

contacts. The remaining set of 1,228 proteins are then randomly

divided into two sets. One set includes 800 proteins and the other

one includes 428 proteins. Using the sequence threading method,

we generated 36,823,837 non-protein decoys, together with 800

native proteins as the training set, and 11,144,381 decoy non-

proteins with 428 native proteins as the test set.

Selection of matrix A for iterative training
We used only a subset of the 36 million decoys and native

structures so they could fit into the computer memory during

training. These structures formed the data matrix A, which was

used to construct the kernel matrix K(A,�AA). We used a heuristic

iterative approach to construct matrices A and �AA during each

iteration.

Initially, we randomly selected 10 decoys from the set of decoys

Dj for each of the j-th native protein. We have then m&8,000

decoys for the 800 native proteins. We further chose only 1 decoy

from the selected 10 decoys for each native protein j. These 800

decoys were combined with the 800 native proteins to form the

initial matrix A. The contact vectors of a subset of 480 native

proteins (60% of the original 800 proteins) and 320 decoys (40% of

the 800 selected decoys) were then randomly chosen to form �AA. An

initial fitness function H(c) was then obtained using A and �AA. The

fitness values of all 36 million decoys and the 800 native proteins

were then evaluated using H(c). We further used two iterative

strategies to improve upon the fitness function H(c).

[Strategy 1] In the i-th iteration, we selected the subset of

misclassified decoys from Dj associated with the j-th native protein

and sorted them by their fitness value in descending order, so the

misclassified decoys with least violation, namely, negative but

smallest absolute values in H(c), are on the top of the list. If there

is less than 10 misclassified decoys, we add top decoys that were

misclassified in the previous iteration for this native protein, if they

exist, such that each native protein has 10 decoys.

A new version of the matrix A was then constructed using these

8,000 decoys and the corresponding 800 native proteins. To

obtain the updated �AA, from these 8,800 contact vectors, we

randomly selected 480 native proteins (60%) and 3,200 unpaired

decoy non-proteins (40%) to form �AA.

The iterative training process was then repeated until there is no

improvement in the classification of the 36 million decoys and the

800 native proteins from the training set. Typically, the number of

iterations was about 10. In subsequent studies, we experimented

with different percentage of selected decoys, ranging from 10% to

100% to examine the effect of the size of �AA on the effectiveness of

the fitness function H(c).
[Strategy 2] In the i-th iteration, we selected the top 10

correctly classified decoys sorted by their fitness value in ascending

order for each native protein, namely, those correctly classified

decoy with positive but smallest absolute values are selected. These

contact vectors of 8,000 selected decoys are combined with the

800 native proteins to form the new data matrix A.

To construct �AA, we first selected the most challenging native

proteins by taking the top 80 correctly classified native proteins

(10%) sorted by their fitness value in descending order, namely,

those that are negative but with smallest absolute values in H(c).
We then randomly took 400 native proteins (50%) from the rest of

the native protein set, so altogether we have 480 native proteins

(60%). Similarly, we selected the top one decoy that is most

challenging from the 10 chosen decoys in A for each native

protein, namely, the top decoy that is correctly classified with

positive but smallest value of H(c). We then randomly selected 3

decoys for each native protein from the remaining decoys in A to

obtain 3,200 decoy non-proteins (40%). The matrix �AA is then

constructed from the selected 480 native proteins and 3,200 decoy

non-proteins. The iterative training process was repeated until

there was no improvement in classification of the 36 million decoys

and 800 native proteins in the training set. Typically, the number

of iteration was about 5.

In the subsequent studies, we evaluated our method with

different choices of challenging native proteins. The selection

ranges from the top 10% to 60% most challenging native proteins.

The choice of the challenging decoys was also varied, where we

experimented with choosing the top one to the top four most

challenging decoys for each native protein, while the number

randomly selected decoys varies from three to zero.

Learning parameters
There are two important parameters: the constant c in the

kernel function e{cDDci{cE2

, and the cost factors C, which is used

during training so errors on positive examples were adjusted to

outweigh errors on negative examples. Our experimentation

showed that c~5:0|10{5 and C~1:0|104 are reasonable

choices.

Running time
The algorithm was implemented in the C language. It called

LAPACK [53] and used LU decomposition to solve the system of

linear equations. It also called an SVD routine to determine the 2-

norm of a matrix for calculating b~1:1(1=CzDDDA{eDD22). Once

matrices A and �AA were specified, the fitness function H(c) can be

derived in about 2 hours and 10 minutes on a 2 Dual Core AMD

Opteron(tm) Processors of 1,800 MHz with 4 Gb memory for an

... ...... ...

... ...... ...

Figure 1. Decoy generation by gapless threading. Sequence
decoys can be generated by threading the sequence of a larger protein
to the structure of an unrelated smaller protein.
doi:10.1371/journal.pone.0104403.g001
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A of size 8,800|210 and an �AA of size 3,680|210. The evaluation

of the fitness of 14 million decoys took 2 hours and 10 minutes

using 144 CPUs of a Linux cluster (2 Dual Core AMD

Opteron(tm) Processors of 1.8 GHz with 2 Gb memory for each

node). Because of the large size of the data set, the bottleneck in

computation is disk IO.

Results

Performance in discrimination
We used the set of 428 natives proteins and 11,144,381 decoys

for testing the designed fitness function. We took the sequence a
for a protein such that c~f (sN ,a) has the best fitness value as the

predicted sequence. If it is not the native sequence aN , then the

design failed and the fitness function did not work for this protein.

Sequence decoys obtained by gapless threading were quite

challenging, since all native contacts of the protein structures were

maintained, and decoy sequences were from real proteins. In a

previous study, we showed that no linear fitness function can be

found that would succeed in the challenging task of identifying all

440 native sequences in the training set [32]. Because we are

unaware of any other development of design fitness functions

amenable for high-throughput tests, and frequently no distinctions

were made between protein folding potential and protein design

fitness function, we compared our fitness function with several

well-established scoring functions developed for protein folding.

We also use the Fb score to evaluate the performance of

predictions. Fb is defined as:

Fb~(1zb2)
Precision|Recall

b2|PrecisionzRecall
,

where TP is the number of true positives, FP the number of false

positives, FN the number of false negatives, Precision is calculated

as
TP

(TPzFP)
, and Recall is calculated as

TP

(TPzFN)
. When bw1,

recall is emphasized over precision. When bv1, precision is

emphasized over recall. Because of the imbalanced nature of the

data set with much more decoys than native proteins, we assign

more weight on the small set of native proteins, with b set to 10.

The Fb scores are than calculated accordingly.

Here we succeeded in obtaining a simplified nonlinear fitness

function for protein design that are capable of discriminating 796

of the 800 native sequences (Table 1). It also succeeded in

correctly identifying 95% (408 out of 428) of the native sequences

in the independent test set. Results for other methods were taken

from literature obtained using much smaller and less challenging

data set. Overall, the performance of our method is better than

results obtained using the optimal linear scoring function taken as

reported in [26] and in [28], which succeeded in identifying 78%

(157 out of 201) and 71% (143 out of 201) of the test set,

respectively. Our results are also better than the Miyazawa-

Jernigan statistical potential [34] (success rate 58%, 113 out of

201). This performance is also comparable with a more complex

nonlinear fitness function, with w5,000 terms reported in [32],

which succeeded with a correct rate of 91% (183 out of 201).

Effect of the size of the basis set �AA using Strategy 1

The matrix �AA contains both proteins and decoys from A and its

size is important in discrimination of native proteins from decoys.

In our fitness function, Gaussian kernels centered around these

selected contact vectors were used as basis set to interpolate the

global landscape of protein design.

We examined the effects of different sizes of �AA using Strategy 1.

For a data matrix A consisting of 800 native proteins and 8,000

sequence decoys derived following the procedure described earlier,

we tested different choice of �AA on the performance of discrimi-

nation. With the data matrix A, we fixed the selection of the 480

native proteins (60%), and experimented with random selection of

different number of decoys, ranging from 800 (10%) to 8,000

(100%) to form different �AAs.

The results of classifying both the training set of 800 native

proteins with 36 million decoys and the test set of 428 native

proteins with 11 million decoys are shown in Table 2. When 60%

(480) native proteins and 100% (8,000) decoys are included, there

are only 5 native proteins misclassified in the training set and 24

native proteins in the test set.

Effect of the size of the pre-selection of dataset using
Strategy 2

We examined the effects of different choices in constructing

matrix �AA using Strategy 2. We varied our selection of the most

challenging native proteins from the top 10% to 60%, and varied

selection of the most challenging decoys from the top one to the

top four decoys for each native protein, as describe earlier. Results

are shown in Table 3. We found that the performance of the

discrimination of both the training set and test set have little

changes when either native proteins selection rate is changed from

10% to 60%, or decoys selection rate is changed from the top 1 to

the top 4. Overall, these results suggest that for the blind test

developed here, a fitness function with good discrimination can be

achieved with about 480 native proteins and 3,200 decoys, along

Table 1. The number of misclassification compared with other methods.

Method Training set Training set Test set Test set

800 / 36 M 440 / 14 M 428 / 11 M 201 / 3 M

Nonlinear function 4 / 988 NA 20 / 218 NA

Tobi et. al. NA 192 / 39,583 NA 44 / 53,137

Bastolla et. al. NA 134 / 47,750 NA 58 / 29,309

Miyazawa & Jernigan NA 173 / 229,549 NA 87 / 80,716

The number of misclassification using simplified nonlinear fitness function, optimal linear scoring function taken as reported in [26,28], and Miyazawa-Jernigan statistical
potential [34] for both native proteins and decoys (separated by ‘‘/’’) in the test set and the training set. The simplified nonlinear function is formed using a basis set of
3,680 (480 native+3,200 decoy) contact vectors derived using Strategy 2.
doi:10.1371/journal.pone.0104403.t001
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with 400 pre-selected native proteins and 800 pre-selected top-1

decoys. Our final fitness function used in Table 1 is constructed

using a basis set of 3,680 contact vectors. We also observed that

the average number of iterations is about 5 using Strategy 2, which

is much faster than Strategy 1.

We found that using Strategy 2 (Table 3) leads to overall better

performance compare to using Strategy 1 (Table 2). Specifically,

the fitness function formed by pre-selecting the top 1 decoys and

top 50% native proteins using Strategy 2 works well to

discriminating native proteins from decoys.

Table 2. Effects of the size of basis set �AA on performance of discrimination using Strategy 1.

Training set Test set

Select decoys rate Iteration Native / Decoy Fb
Native / Decoy Fb

800 / 36 M 428 / 11 M

0% 4 21 / 1,374 0.958 26 / 387 0.931

2% 5 19 / 1,029 0.964 27 / 219 0.933

5% 5 17 / 1,303 0.963 21 / 317 0.944

8% 5 13 / 1,246 0.969 23 / 274 0.941

10% 5 14 / 922 0.972 24 / 216 0.940

20% 6 16 / 902 0.969 28 / 250 0.930

30% 6 10 / 1,037 0.975 29 / 304 0.926

40% 10 16 / 812 0.970 27 / 199 0.933

50% 10 13 / 1,112 0.971 25 / 269 0.936

60% 12 15 / 802 0.972 27 / 237 0.932

70% 9 13 / 947 0.973 24 / 256 0.939

80% 8 11 / 1,078 0.973 28 / 278 0.929

90% 9 12 / 690 0.977 27 / 170 0.934

100% 5 5 / 2,681 0.962 24 / 609 0.931

The number of misclassifications of both native proteins and decoys (separated by ‘‘/’’) with select native proteins rate 60% in both training set and test set are listed.
Misclassifications as well as the Fb scores in two tests using different number of native proteins and decoys are listed (see text for details).
doi:10.1371/journal.pone.0104403.t002

Table 3. Effect of the size of the pre-selection of dataset using Strategy 2.

Training Set Test set

Pre-select native
proteins top

Pre-select
decoys top Iteration Native / Decoy Fb

Native / Decoy Fb

800 / 36 M 428 / 11 M

0% 1 6 8 / 1,010 0.978 25 / 212 0.938

2% 1 5 5 / 1,079 0.981 24 / 266 0.939

5% 1 5 5 / 1,038 0.981 24 / 247 0.939

8% 1 5 5 / 1,093 0.981 24 / 249 0.939

10% 1 5 5 / 997 0.982 24 / 242 0.939

20% 1 6 9 / 625 0.981 26 / 174 0.936

30% 1 6 9 / 689 0.980 24 / 211 0.940

40% 1 6 8 / 869 0.980 25 / 218 0.937

50% 1 5 4 / 988 0.983 20 / 218 0.949

60% 1 5 6 / 1,039 0.980 24 / 280 0.938

10% 1 5 5 / 997 0.982 24 / 242 0.939

10% 2 5 6 / 1,270 0.977 22 / 372 0.941

10% 3 7 9 / 934 0.978 22 / 247 0.944

10% 4 5 5 / 1,071 0.981 24 / 210 0.944

Test results using Strategy 2 with different sizes of the pre-selected native proteins, which range from 0% to 60% while the pre-selected decoys are fixed as the top 1
level, and with different pre-selected decoys, which ranges from the top 1 s to the top 4 s while the pre-selected native proteins are fixed at 10%. Misclassifications as
well as the Fb scores in two tests using different number of native proteins and decoys are listed (see text for details).
doi:10.1371/journal.pone.0104403.t003
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Furthermore, our method is robust. The overall performance

using either Strategy 1 or Strategy 2 is stable when decoy selection

rate changes from 5% to 90%. Using the Fb score as the criterion,

we found that using Strategy 2 gives significantly more accurate

result than using Strategy 1.

Discrimination against a different decoy set
To further assess our fitness function, we examine how well

decoys generated by a different approach can be discriminated

using our nonlinear fitness function. We selected 799 training

proteins and 428 test proteins for this test. Figure 2A shows the

Figure 2. Discriminating a different decoy set using the nonlinear fitness function. Sequence decoys in this set are generated by swapping
residues at different positions. (A). The length distribution of the 1,227 native proteins in the set; (B). The relationship between the number of swaps
N and the percentage of misclassified decoys grouped by protein length binned with a width of 50 residues shown in different curves. (C). The
relationship between the sequence identity binned with width 0.1 and the percentage of misclassification grouped by protein length shown in
different curves. The fitness function was derived using strategy 2, with top 50% pre-selected native proteins, and top 1 pre-selected decoys. (D).
Misclassified sequence decoys have overall lower DFIRE energy values than correctly classified sequence decoys and therefore are more native-like.
The x-axis is the net DFIRE energy difference of decoys to native proteins, and the y-axis is the number count of decoys at different net DFIRE energy
differences. The solid black line represents decoys misclassified by our fitness function and the dashed red line represents decoys correctly classified
by our fitness function.
doi:10.1371/journal.pone.0104403.g002
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length distribution of these 1,227 proteins. To generate these new

decoys, we fixed the composition of each of these proteins and

permute its sequence by carrying out N swaps between random

residues, with N~1,2,4,8,16,32,64, and 128. The resulting decoys

all have the same amino acid composition as the original native

proteins, but have progressively more point mutations. We

generate 1,000 random sequence decoys at each swap N for each

protein. We call this Decoy Set 2.

Our results show that as expected, the number of misclassified

decoys decreases rapidly as the number of swaps increases. When

N increase from 1 to 32, The percentage of misclassified decoys

for protein of length ƒ250 is about 30% or less. Less than 30% of

the decoys of all lengths are misclassified when N~64, with the

rate of misclassification much smaller than 10% among those with

length v350 (Fig 2B). Only 62 decoys are misclassified among

1,227,000 decoys when N§128 (Fig 2B).

It is informative to examine the number of misclassified decoys

and the sequence identity of the decoys with their corresponding

native proteins at different protein lengths. Figure 2C shows that

the percentage of misclassified decoys decreases rapidly with the

sequence identity to the native proteins. When decoys have a

sequence identity of ƒ60% with the native protein, v 10% of the

decoys are misclassified, and all decoys can be discriminated

against at 40% identity for proteins of length §150. For proteins

of length ƒ150, most decoys with ƒ50% sequence identity can be

corrected discriminated against. These observations are consistent

with current understanding of protein structures, where most

proteins with §70% sequence identity belong to the same family

[54], and these with §30% sequence identity have similar

structure [55].

To examine whether misclassified decoy sequences are actually

more native-like and therefore more likely to potentially adopt the

correct structures than those correctly classified as non-natives, we

selected 5:5M misclassified decoys and 4:3M correctly classified

decoys from all decoys in Decoy Set 2, and examined their energy

values. We use the DFIRE energy function that was independently

developed in [56,57]. These decoys all have values of net DFIRE

energy difference of decoys to native proteins within the interval of

[0.0, 1.0] kcal/mol. Our results (Fig 2D) show that overall,

misclassified decoys have much lower average DFIRE energy

values, indicating that they are potentially more native-like than

those correctly classified as decoys.

Table 4. 20 native proteins in the test set are misclassified using Strategy 2.

Molecular name Classification Ligand(s) PDBID Chain Fitness value

Catalase 0 Oxidoreductase 1 HEM and 3 SO4 1gwe A 0.1085

Streptavidin 0 Biotin binding 1 BTN and 2 GOL 2f01 A 0.1407

Acutohaemonlysin 0 Toxin 2 IPA 1mc2 A 0.1728

Endonuclease I 0 Hydrolase 1 Mg and 2 Cl 2pu3 A 0.1900

cytochrome c, putative 0 Electron transport 2 SO4 , 1 Na and 2 HEM 2czs A 0.2664

Cytochrome F 0 Electron transport 1 HEME C 1e2w A 0.6023

Bowman-Birk type
trypsin inhibitor

% Hydrolase inhibitor None 2fj8 A 0.8463

Uncharacterized protein
with erredoxin-like fold

0 Structural genomics
Unknown function

1 Unkown ligand 3e8o A 1.1592

General secretion
pathway protein G

0 Protein transport 1 Zn 1t92 A 1.3175

ARF GTPase-activating
protein git1

D Signaling protein None 2w6a A 1.6581

Cystatin B D Protein binding None 2oct A 1.8043

SNAP-25A % Transport protein None 1n7s D 1.9074

Lin2189 protein 0 Structural genomics
Unknown function

2 GOL 3b49 A 2.0142

Fibritin % Chaperone None 2ibl A 2.1211

Oxalate oxidase 1 0 Oxidoreductase 1 Mn, 1 GLV 2et1 A 2.9975

Alpha-2-macroglobulin
receptor-associated
protein

0 Lipid transport
endocytosis
chaperone

2 Ca, 1 Na and 3 MPD 2fcw B 3.5660

Recombination
endonuclease VII

0 Plasma protein 1 Zn and 7 SO4 1e7l A 3.7397

Hypothetical protein 0 Isomerase 1 BEZ 1gyx A 4.2697

YDCE D

Syntaxin 1a D Transport protein None 1n7s B 5.0204

Bacteriophage t4
short tail fibre

0 Structural protein 1 CIT, 2 SO4 and 1 Zn 1ocy A 8.0264

The number of ligands bound to the protein are listed. The molecules are sorted by the fitness value. 14 of them (marked by ‘‘0’’) have ligand(s) bound to the protein. 4
of them (marked by ‘‘D’’) have w20% contacts due to inter chain interactions. The fitness function definitively failed for only 3 proteins (marked by ‘‘%’’). For the
remaining 17 proteins, the contacts between organic compounds and metal ions with the protein and inter chain interactions may provide additional stability beyond
the intra-residue interactions captured in the descriptors.
doi:10.1371/journal.pone.0104403.t004
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Discussion

In this study, we have developed a simplified nonlinear kernel

function for fitness landscape of protein design using a rectangular

kernel and a fast Newton method. The results in a blind test are

encouraging. They suggest that for a simplified task of designing

simultaneously 428 proteins from a set of 11 million decoys, the

search space of protein shape and sequence can be effectively

parametrized with just about 3,680 basis set of contact vectors. It is

likely that the choice of matrix A is important. We showed that

once A is carefully chosen, the overall design landscape is not

overly sensitive to the specific choice of the basis set contact vectors

for �AA.

The native protein list in both training and test sets come from

the PISCES server, which has the lowest pair-wise identity (20%),

finer resolution cutoff (1.6 Å), and lower R-factor cutoff (0.25).

This native dataset is better than previous study [32] dataset

derived from the WHATIF database, which has looser constraints:

pair-wise sequence identity v30%, resolution cutoff ,2.1 Å, and

R-factor cutoff v2:1. We compared our results with classic studies

of Tobi et. al. [26], Bastolla et. al. [28] and Miyazawa and

Jernigan [34]. Although the training set and test set are different,

we observed that our simplified nonlinear function detected 95%

(208) native proteins from 11 million decoys and only misclassified

218 decoys as native proteins, which outperformed Tobi et. al.
[26] (78% correct rate for native proteins, 53,137 misclassification

for decoys), Bastolla et al. [10] (71% correct rate for native

proteins, 29,309 misclassification for decoys), and Miyazawa and

Jernigan [34] methods (57% correct rate for native proteins,

80,716 misclassification for decoys) on much smaller blind test set

of 201 native proteins and 3 million decoys.

As protein length is linearly correlated with the total number of

contacts, we found that length corrections is important for

improving fitness function. For example, the rate of misclassifica-

tion is 7.2% in an earlier study without length correction (14 out

494 natives) [58], while this rate is now improved to 4.7% in the

current study with length correction (20 out of 428 misclassified).

We developed two strategies to search for improving fitness

landscape. Strategy 1 mostly uses misclassified decoys in the next

iteration of construction of matrix A. On average, 10 iterations is

necessary to arrive at a good fitness function, which has excellent

performance of only 5 misclassification for the training data set.

The misclassification rate in the test set is comparable to other

fitness function [26,28,34]. Strategy 2 selected the most challeng-

ing decoys by the fitness value landscape in the matrix A for the

next iteration. We pre-selected certain percentage of the number

of native proteins and certain number of decoys before generating

the basis set matrix �AA. Overall, Strategy 2 performs better than

Strategy 1, not only in reducing both native proteins and decoys

misclassifications in the blind test set, but also can speed up the

search process in deriving the final fitness function with the

number of iteration reduced from 10 to 5 iterations. With Strategy

2, the updated fitness landscape is only adjusted by challenging

decoys, it can identify the most challenging decoys and native

proteins, leading to improved the fitness landscape in the next

iteration.

Our final fitness landscape can correctly classify most of the

native proteins, except 4 proteins (1ft5 chain A, 1gk9 chain A, 2p0s

chain A, 2qud chain A) in the training set and 20 proteins in the

test set (Table. 4). Among misclassified proteins, 4 of which have

w20% contacts due to inter chain interactions. In addition, 14

misclassified proteins contain metal ions and organic compounds.

We note that the interactions between these organic compounds,

metal ions and rest of the protein are not reflected in the protein

description. It is likely that substantial unaccounted interactions

with other protein chains, DNA, or co-factors contributed to the

misclassifications. The conformations of these proteins may be

different upon removal of these contacts. Altogether, 21 of the 24

misclassified proteins have explanations, and the fitness function

truly failed only for 3 proteins.

In protein folding studies, it is well known that contact maps of

decoys formed by gapless threading have considerable higher

energy than the native contact map, and these protein folding

decoys are not as challenging as decoys generated by other

methods such as Monte Carlo simulation. Results showed in

Figure 2 demonstrated that these sequence decoys are challenging,

and our nonlinear fitness function works well.

The representation of protein structures will likely have

important effects on the success of protein design. The approach

of the reduced nonlinear function is general and applicable when

alternative representations of protein structures are used, e.g.,
adding solvation terms, including higher-order interactions.

Conclusions

We showed that a simplified nonlinear fitness function for

protein design can be can be obtained using a simplified nonlinear

kernel function via a finite Newton method. We used a rectangular

kernel with a basis set of native proteins and decoys chosen a
priori.

We succeeded in predicting 408 out of the 428 (95%) native

proteins and misclassified only 218 out of 11 million decoys in a

large blind test set. Although the test sets used is different, as other

method were based on relatively small (201 native proteins and 3

million decoys) blind test set. Our result outperforms statical linear

scoring function ( 87 out of the 201 misclassifications, 57% correct

rate) and optimized linear function (between 44 and 58

misclassifications out of the 201, 78% and 71% correct rate).

The performance is also comparable with results obtained from a

far more complex nonlinear fitness function with w5,000 terms

(18 misclassifications, 91% correct rate). Our results further

suggest that for the task of global sequence design of 428 selected

proteins, the search space of protein shape and sequence can be

effectively parametrized with just about 3,680 carefully chosen

basis set of native proteins and non-native protein decoys.

The rectangle kernel matrix with a finite Newton method works

well in constructing fitness landscape. In addition, we showed that

the overall landscape is not overly sensitive to the specific choice of

the dataset.

Overall, our strategy of reduced kernel can be generalized to

constructing other types of fitness function.
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