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Abstract
Despite the importance of soil microorganisms for ecosystem services, long- term 
surveys of their communities are largely missing. Using metabarcoding, we assessed 
temporal dynamics of soil bacterial and fungal communities in three land- use types, 
i.e., arable land, permanent grassland, and forest, over five years. Soil microbial com-
munities remained relatively stable and differences over time were smaller than those 
among sites. Temporal variability was highest in arable soils. Indications for consistent 
shifts in community structure over five years were only detected at one site for bac-
teria and at two sites for fungi, which provided further support for long- term stability 
of soil microbial communities. A sliding window analysis was applied to assess the ef-
fect of OTU abundance on community structures. Partial communities with decreas-
ing OTU abundances revealed a gradually decreasing structural similarity with entire 
communities. This contrasted with the steep decline of OTU abundances, as subsets 
of rare OTUs (<0.01%) revealed correlations of up to 0.97 and 0.81 with the entire 
bacterial and fungal communities. Finally, 23.4% of bacterial and 19.8% of fungal 
OTUs were identified as scarce, i.e., neither belonging to site- cores nor correlating to 
environmental factors, while 67.3% of bacterial and 64.9% of fungal OTUs were iden-
tified as rare but not scarce. Our results demonstrate high stability of soil microbial 
communities in their abundant and rare fractions over five years. This provides a step 
towards defining site- specific normal operating ranges of soil microbial communities, 
which is a prerequisite for detecting community shifts that may occur due to changing 
environmental conditions or anthropogenic activities.
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1  |  INTRODUC TION

Soil bacterial and fungal communities impact ecosystem services 
such as crop production (Hu et al., 2018) or nutrient cycling (Regan 
et al., 2017), and therefore have a major influence on soil quality. 
Maintaining soil quality requires the maintenance of stable soil mi-
crobial communities, because changes in their structures may in-
duce disturbances in ecosystem processes. However, soil quality 
assessment and especially long- term soil monitoring rarely include 
high- throughput DNA sequencing of soil microbial communities in 
addition to soil physicochemical analyses (van Leeuwen et al., 2017). 
A major reason for this gap in soil quality assessments is the largely 
missing information on temporal dynamics of soil bacterial and fun-
gal communities over multiple years.

The temporal stability of microbial communities in soil has been 
shown to be higher as compared to the stability of microbial com-
munities living in water, air or host- associated environments (Shade 
et al., 2013). The first evidence showing temporal stability of soil 
bacterial communities over 1 year was obtained using fingerprint-
ing techniques (Gelsomino et al., 1999). Since then, high- throughput 
DNA sequencing has been developed enabling the assessment of 
entire soil bacterial and fungal communities to a depth that reflects 
their diversity. A 3- year survey using high- throughput sequencing 
revealed a stable fungal community until a heavy rainfall occurred 
in the last year and resulted in soil water saturation (Barnes et al., 
2018). Larger differences were also observed for soil bacterial com-
munities among sites as compared to temporal variability over 
6 months (Carini et al., 2020; Lauber et al., 2013). In general, soil 
bacterial and fungal communities appear to be relatively stable over 
several months to a few years, but empirical data are scarce.

Temporal stability of communities depends on the one hand on 
their resistance and resilience to environmental fluctuations, where 
resistance is defined as the insensitivity of a community to a distur-
bance, and resilience as the ability of a community to return to its 
initial, predisturbed state (Shade et al., 2012). Furthermore, tempo-
ral stability depends on ecological stochasticity including ecological 
drift and random dispersal (see Zhou & Ning, 2017 for a review), 
which may cause communities to shift over time. Monitoring pro-
grammes may allow to identify community shifts over longer time 
periods in natural habitats. Long- term community shifts continu-
ously drive a community away from its initial state (Figure S1), which 
can be assessed by linking community dissimilarities to the elapsed 
time between two sampling time points. This may be achieved by 
analysing time– decay relationships (e.g. Berg & Bengtsson, 2007; 
Chow et al., 2013; Shade et al., 2013), which are analogous to 
distance– decay relationships (Nekola & White, 1999). Time– decay 
analyses allow identification of steady shifts in microbial commu-
nities. However, they do not allow identifying specific time points 
when changes occur, because time lags rather than single time 
points are assessed in these analyses. The identification of time 
points when community shifts occur is of particular importance for 
long- term monitoring systems. Therefore, long- term biomonitoring 
of macro- organisms often relies on comparison to a reference point 

for identifying community shifts (Magurran et al., 2010). Due to the 
lack of long- term surveys of soil microbial organisms, it is currently 
unknown whether continuous shifts of soil microbial communities 
occur over extended time periods.

Assessment of temporal variability of soil microbial communities 
in ecosystems that are not subject to exceptional disturbances al-
lows definition of their normal operating ranges (NORs). An NOR 
describes the multivariate space in which the states of an undis-
turbed ecosystem occur (Kersting, 1984; van Straalen, 2002). For 
soils, Semenov et al. (2014) established NORs for sandy and clay 
soils based on 21 parameters including chemical (e.g., pH and nitro-
gen content) as well as biological (e.g., gene abundances and bacte-
rial diversity) parameters that were determined at eight agricultural 
sites over 3 years. In a second step, these authors applied weak and 
strong temperature and flooding stresses to these soils in micro-
cosms and compared the measured parameters against the NOR 
established based on undisturbed soils. While control microcosms 
remained within the NOR, the stressors caused increasing distances 
of soil parameters to the NOR. However, due to the lack of long- term 
surveys using high- throughput sequencing of soil microbial commu-
nities, NORs of soil microbial community structures are currently 
unknown. Along with Semenov et al. (2014), who showed different 
NORs for different soil types (i.e., clay and sandy soils), Lauber et al. 
(2013) have shown that arable soils harbour temporally less stable 
bacterial communities as compared to grassland, which suggests that 
the NOR of soil microbiomes depends on environmental settings 
and soil management. Furthermore, the NOR may be influenced to 
different degrees by abundant and rare operational taxonomic units 
(OTUs), as rare OTUs are hypothesized to over- proportionally affect 
temporal variability (Shade et al., 2014).

In changing environments rare microbial OTUs may become 
more abundant (Aanderud et al., 2015; Barnes et al., 2018), and thus 
temporal variability may be more strongly influenced by condition-
ally rare as compared to abundant OTUs (Shade et al., 2014). Among 
the rare taxa, some are present in a dormant state and build a seed 
bank from which components of a community can be recruited in 
case conditions would become favourable (Shade et al., 2014). Other 
rare microbial taxa can be continuously active despite their rarity 
(Campbell et al., 2011; Hausmann et al., 2019). These would there-
fore be stably detected at low abundances. Finally, parts of a commu-
nity appearing as rare OTUs may be due to analytical artefacts, such 
as polymerase chain reaction (PCR) amplification errors (Potapov & 
Ong, 2017). With the exception of sequence- dependent errors lead-
ing for instance to chimera formation during PCR (Haas et al., 2011), 
these will occur randomly and represent analytical background 
noise. Therefore, two groups of rare OTUs may conceptually be 
distinguished: (i) consistent, rare OTUs that include microorganisms 
living in rare microniches, and (ii) rare OTUs that occur randomly in 
highly fluctuating soil conditions (e.g., flooding) or very infrequently 
not yielding information to differentiate microbial systems. The sec-
ond group, termed scarce OTUs here, includes biological as well as 
erroneous sequences, which cannot be reliably distinguished due to 
their infrequent occurrence. To distinguish consistently rare OTUs 
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from scarce OTUs within a community, spatial and temporal repli-
cation is needed.

Here, we assessed the temporal dynamics of soil bacterial and 
fungal communities over 5 years at 30 different long- term monitor-
ing sites of the Swiss Soil Monitoring Network (NABO). The sites 
represented the three different land- use types arable land, perma-
nent grassland and forest, with 10 sites each. The overarching goal 
of this study was to identify NORs of soil bacterial and fungal com-
munities in these three land- use types and thus to provide the basis 
for the development of reference baselines for variations of soil 
microbial communities. We defined four main research objectives, 
which focused exclusively on the microbial community level, rather 
than on individual microbial taxa, their identities and their functions. 
Moreover, the analytical focus was on temporal shifts of microbial 
communities and differences among land- use types as well as sites 
rather than detailed effects of soil properties or soil textural classes. 
The objectives were: (i) to identify factors that influence the long- 
term dynamics of soil microbial communities, (ii) to screen micro-
bial communities for consistent community shifts over 5 years, (iii) 
to compare community structures and notably temporal stability of 
their abundant and rare fractions, and (iv) to differentiate rare from 
scarce OTUs.

2  |  MATERIAL AND METHODS

2.1  |  Sampling design and physicochemical soil 
analyses

Soils were sampled yearly in spring over 5 years at 30 long- term 
monitoring sites of the NABO and were located across Switzerland 
(Figure S2A). Ten sites were sampled for each of three land- use types 
(i.e., arable land, permanent grassland and forest), and which cov-
ered eight USDA soil textural classes (Table S1; Soil Science Division 
Staff, 2017). At each sampling, three composite samples consisting 
of 25 soil cores of 20 cm depth and 2.5 cm diameter were taken in a 
square area of 10 × 10 m (Figure S2B) resulting in a total of 450 sam-
ples (5 years × 30 sites × 3 replicates). The samples were taken fol-
lowing the standardized sampling protocol of the NABO (Gubler 
et al., 2019). The standardized sampling within the framework of the 
NABO, which was established in 1985 (Gubler et al., 2015), ensures 
methodological stability and robustness, and furthermore facilitated 
interpretation of the soil microbial data due to numerous associated 
data, which are available for these sites. The physicochemical prop-
erties determined for each sample were: soil pH, total and organic 
carbon, total nitrogen, C/N ratio and bulk density. For this purpose, 
soils were dried at 40°C for 48 h and sieved (2 mm). Soil pH was 
determined in 0.01 m CaCl2 using a pH- meter including an Expert 
Pro- ISM electrode (SevenMulti; Mettler- Toledo). Total carbon and 
nitrogen contents were measured with a TruSpec CN analyser (Leco) 
using 0.5 g soil. Organic carbon was determined by subtracting 12% 
of the total calcium carbonate from total carbon, where total cal-
cium carbonate was measured in soils with a pH higher than 6.3 as 

the CO2 production after the addition of hydrochloric acid (Harris 
et al., 2001). Bulk density was calculated by dividing the weight of 
the dried fine fraction (<2 mm) by the volume of the soil sample. 
Furthermore, mean annual precipitation and temperature, elevation, 
percentage of coarse soil fraction (>2 mm) and soil texture were 
obtained to characterize all sites. Mean annual precipitation and 
temperature were obtained based on the years from 1981 to 2015 
from MeteoSwiss (http://www.meteo swiss.admin.ch). Soil texture 
was determined by sedimentation after humus removal using H2O2 
(International Organization for Standardization [ISO], 2009). A sum-
mary of the environmental factors and how these differ between 
land- use types is given in Table S2.

2.2  |  Analyses of soil microbial communities

DNA extraction and the assessment of soil bacterial and fun-
gal communities using metabarcoding followed the description 
of Gschwend et al. (2020). Briefly, DNA of every sample of 0.5 g 
fresh and homogenized soil was extracted three times. Variable 
regions 3 and 4 of the bacterial 16S rRNA gene were amplified 
using primers 341F (5′- CCTAYGGGDBGCWSCAG- 3′) and 806R 
(5′- GGACTACNVGGGTHTCTAAT- 3′) developed by Frey et al. 
(2016), and the fungal internal transcribed spacer 2 (ITS2) was am-
plified using primers ITS3 (5′- CAHCGATGAAGAACGYRG- 3′) and 
ITS4 (5′- TCCTSCGCTTATTGATATGC- 3′) developed by Tedersoo 
et al. (2014). Sequence library preparation, which included indi-
vidual labelling samples using the Fluidigm Access Array technol-
ogy prior to pooling, as well as sequencing on the Illumina MiSeq 
platform was performed by the Génome Québec Innovation Center 
at McGill University (Montréal, Canada). Amplicon sequences were 
filtered based on a custom pipeline (Frey et al., 2016) mainly rely-
ing on usearch version 9 (Edgar, 2010). In brief, sequence analyses 
included removal of phiX contaminants, merging of paired- end 
sequences, trimming of primer sequences, where all sequences 
without detectable primers were discarded, quality filtering of se-
quences with a maximum expected error above 1, removal of sin-
gletons, de novo chimera detection, verification of their ribosomal 
origin using metaxa for bacterial (Bengtsson- Palme et al., 2015) and 
itsx for fungal sequences (Bengtsson- Palme et al., 2013), as well as 
comparison against taxonomic reference databases to ensure bacte-
rial and fungal origins. Furthermore, only sequences occurring with 
100% identity in at least two of the 450 samples were allowed to 
build OTU centroid sequences to avoid PCR or sequencing errors 
from inflating soil microbial diversity. High- quality sequences were 
clustered into OTUs at 97% sequence identity using usearch version 
9. Raw sequences have been archived in NCBI SRA with the project 
number PRJNA660320. In total, 9,020,192 quality filtered bacterial 
sequences were clustered into 18,140 OTUs, and 11,958,695 qual-
ity filtered fungal sequences into 8477 OTUs. This corresponds to 
a mean Good's coverage of 0.91 (±0.020), 0.91 (±0.016) and 0.93 
(±0.023) for bacteria in arable land, permanent grassland, and forest, 
respectively, and 0.99 (±0.003), 0.98 (±0.004) and 0.98 (±0.004) for 

http://www.meteoswiss.admin.ch
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fungi. Given the high sequencing coverage obtained for all samples, 
sequencing depth of each sample was standardized using relative 
abundances. This correlated highly to community structures based on 
subsampling to the minimum sequencing depth (Bacteria = 0.9996, 
Fungi = 1). Community structures were compared using Bray– Curtis 
dissimilarities. Since Bray– Curtis dissimilarity is based on differ-
ences in relative abundance and emphasizes dominant OTUs, two 
additional dissimilarity metrics were used to assess the structural 
similarities of community subsets. These were Jaccard dissimilar-
ity, which is based on presence– absence data and therefore equally 
weighs all OTUs, and Canberra dissimilarity, which is based on rela-
tive abundances, but which gives less weight to abundant OTUs as 
compared to Bray– Curtis dissimilarity (Locey et al., 2020).

2.3  |  Statistical analyses of soil microbial 
communities

All analyses, unless stated otherwise, were performed in r (R Core 
Team, 2016; RStudio, 2015). Centroids of communities from all 
15 samples from each site (site centroids), and centroids from the 
three samples from each site and year (replicate centroids) were 
obtained using the function “betadisper” of the r package “vegan” 
(Oksanen et al., 2018). This function implements the approach 
described by Anderson et al. (2006), in which non- Euclidean dis-
similarities are first transferred into the Euclidean space by prin-
cipal coordinate analysis (PCoA), then distances between samples 
and centroids are retrieved. Based on distances between replicate 
centroids (i.e., centroids of yearly triplicates), land- use-  and site- 
specificity of soil microbial communities were assessed by canonical 
analysis of principal coordinates (CAP) as implemented in the func-
tion “CAPdiscrim” of the r package “BiodiversityR” (Kindt & Coe, 
2005). Nonmetric multidimensional scaling (NMDS) was used for 
unconstrained ordination of soil microbial communities. To assess 
the variance of soil microbial communities explained by land- use 
type, site and time, we used permutational multivariate analysis of 
variance (PERMANOVA) implemented in the “PERMANOVA+ add-
 on” (Anderson et al., 2008) of the primer software version 7 (Clarke 
et al., 2014). Bray– Curtis dissimilarities used for PERMANOVA were 
based on mean relative abundances of the three samples collected 
at the same time point. To account for the repeated measurements, 
sites were nested within land- use types in the PERMANOVA design 
(Anderson et al., 2008). Square roots of components of variation 
(√CV), which are expressed as Bray– Curtis dissimilarities, were used 
to quantify effects of land- use types, sites and year.

The temporal dynamics of soil microbial communities was anal-
ysed in two steps (Concepts visualized in Figure S1). First, temporal 
variability of soil microbial communities was assessed for each site 
(Figure S1A), and, second, community shifts over time were deter-
mined (Figure S1B). Temporal variability was assessed as distance of 
yearly replicate centroids to site centroids in PCoA- ordination space 
taking into account all PCoA- axes (Figure S1A). A further indication 

of overall temporal variability was obtained by nested PERMANOVA. 
For comparison of the temporal variability of soil microbial commu-
nities in different land- use types or Spearman correlations of tem-
poral variability to environmental factors, median values were taken 
per site. Differences in temporal variability between land- use types 
were tested using Dunn's test, which is the pairwise post hoc test of 
the Kruskal– Wallis test, implemented in the r package "Fsa" (Ogle 
et al., 2018). Community shifts over time were assessed for each site 
based on the distances of each microbial community to the replicate 
centroid of the first year (Figure S1B). Indications for a consistent 
community shift at a site were obtained, if distances to the first year 
steadily increased over time, and if these distances of at least two 
consecutive years were significantly increased in comparison to the 
change between the first and second year. The significance was 
tested using Dunn's test.

Structural similarity between entire and partial communities 
was assessed using Mantel statistics implemented in the r package 
“vegan” (Oksanen et al., 2018) and based on the Spearman correla-
tion coefficient. Randomly selected microbial communities with pre-
defined numbers of OTUs (i.e., 10, 25, 50, 100, 150, 200, 500, 1000, 
2000, 5000) were taken to identify the number of OTUs needed 
to obtain representative community subsets. For each subset size, 
10,000 random subsets were generated without replacement from 
the OTU table containing relative abundances. Only those samples 
were used to determine structural similarities that contained OTUs 
present in the subsets. To identify the impact of OTU abundance 
on structural similarities of partial communities, a sliding window 
approach was chosen. For this, OTUs were ordered and numbered 
according to their abundance, and a subset of 500 consecutive OTUs 
(defined as a window) was taken starting with the most abundant 
OTUs. The window was then shifted throughout the community by 
steps of 100 OTUs from abundant to rare OTUs. Therefore, the first 
window corresponds to OTUs 1– 500, the second window to OTUs 
101– 600, and window 6 to OTUs 501– 1000. Window 6 is thus the 
first independent community subset in comparison to the 500 most 
abundant OTUs. In total, 177 windows were obtained for bacteria 
and 80 for fungi.

2.4  |  Indicative, core, abundant, rare and 
scarce OTUs

To assess community structures in greater detail, we partitioned 
OTUs into five groups: indicative, core, abundant, rare and scarce 
OTUs. An indicative OTU was defined as significantly correlating 
(|Spearman rho| > 0.4) with at least one of the environmental fac-
tors considered in this study. Bacterial and fungal indicative OTUs 
occurred in at least 27 and 28 samples, respectively. A core OTU 
was defined as occurring in at least 12 of the 15 samples from one 
site and therefore represents an OTU with a high occupancy at a 
site. Indicative and core OTUs have also been used and further 
characterized by Gschwend et al. (2021). A rare OTU was defined 
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as occurring in a window where all OTUs had a relative abundance 
below 0.01%. Consequently, all OTUs occurring in a window where 
at least one OTU had a relative abundance of 0.01% or more were 
defined as abundant. The threshold for scarce OTUs was defined at 
the abundance level, where windows contained neither indicative 
nor core OTUs. Indicative OTUs represent ecological signals that 
depend on the factors considered and core OTUs represent consist-
ently detected OTUs that depend on sequencing depth. Therefore, 
the partitioning of OTUs into the five groups is operationally and 
system- dependent. For the comparison of community structures 
we included in addition to the abundant (a), rare (r) and scarce (s) 
OTUs, the two combinations rare minus scarce OTUs (r- s), which cor-
responds to the rare OTUs excluding the scarce OTUs, as well as 
abundant plus rare minus scarce OTUs (a+r- s), which corresponds to 
all except the scarce OTUs.

3  |  RESULTS

3.1  |  Temporal stability of soil microbial 
communities

The greatest variation of soil bacterial and fungal communities was de-
tected between sites (Table 1, √CVBacteria = 0.39, √CVFungi = 0.51), and 
was followed by land- use type (√CVBacteria = 0.28, √CVFungi = 0.31). 
Overall, time had only a small effect (√CVBacteria = 0.05, 
√CVFungi = 0.06), indicating relatively stable soil microbial commu-
nities and no systematic artefacts among years. Nevertheless, the 
residuals of the PERMANOVA model show that temporal effects 
can be detected at the site level (√CVBacteria = 0.15, √CVFungi = 0.29). 
Reclassification success in a leave- one- out cross- validation to land- 
use type and site was 100% for bacterial and fungal communities. 
Consequently, differences of soil bacterial and fungal communities 
over time were smaller than those among land- use types or among 
sites.

To obtain a more profound understanding of the temporal dy-
namics of soil microbial communities, we first assessed the temporal 
variability as the Euclidean distances in the multidimensional or-
dination space from replicate centroids to the site centroids (con-
ceptually visualized in Figure S1A). In a two- dimensional ordination, 

this corresponds to the lengths of the lines shown in Figure 1. We 
subsequently screened the communities for community shifts over 
5 years (Figure S1B). Temporal variability of bacterial and fungal 
communities was highest in soils from arable land and no difference 
in this temporal variability was detected between forest and grass-
land soils (Figure 2, Dunn's test, p < .0001). The difference between 
temporal variability in arable land as compared to grassland and for-
est was lower for bacteria (+12%) than for fungi (+36%, Table S3). 
Arable soils are characterized by a more intense management, which 
includes site- adjusted crop rotations, tillage, fertilization and plant 
protection regimes, as well as by environmental factors that signifi-
cantly differed from forest and grassland soils. For instance, soil pH 
and bulk density were higher, while carbon content and elevation 
were lower in arable soils (Table S2). These environmental factors 
also correlated with the temporal variability of microbial communi-
ties (Table S4). The environmental factors with strongest correlation 
to temporal variability of bacterial communities were bulk density 
(rho = 0.68, p = .0005), pH (rho = 0.58, p = .0025), organic car-
bon (rho = −0.66, p = .0005), total carbon (rho = −0.63, p = .0008) 
and elevation (rho = −0.52, p = .0081). Temporal variability of fun-
gal communities was correlated to soil pH (rho = 0.64, p = .0017), 
bulk density (rho = 0.60, p = .0023), organic carbon (rho = −0.59, 
p = .0023), elevation (rho = −0.58, p = .0026) and total carbon 
(rho = −0.56, p = .0031). Separate analyses for each land- use type 
did not reveal any significant correlations of temporal variability of 
community structures and environmental factors.

Community shifts over time were determined for each site by 
comparing microbial communities of each year to the community de-
tected in the first year (2012). This was achieved by determining the 
distances of microbial communities to the replicate centroids from 
the first year (Figure S1B). These distances were then compared to 
the distance between the first (2012) and the second (2013) year. 
Significantly different distances were observed at 12 sites for bacte-
rial communities (Figure S3) and at four sites for fungal communities 
(Figure S4). However, indications for consistent community shifts 
(i.e., significantly increased distances to the first year of at least two 
consecutive years) were only observed in three cases: at site 77 for 
bacteria and at sites 25 and 68 for fungi. The absence of indications 
for consistent community shifts at 27 sites underlines the stability of 
soil microbial community structures over 5 years.

Factor

Bacteria Fungi

Pseudo- F p- value √CVa  Pseudo- F p- value √CVa 

LUT 6.1 .0001 0.28 4.4 .0001 0.31

Site 33.6 .0001 0.39 16.9 .0001 0.51

Time 4.2 .0001 0.05 2.2 .0001 0.06

LUT × time 1.6 .0001 0.04 1.3 .0001 0.05

Residuals 0.15 0.29

Abbreviation: LUT, land- use type.
a√CV: square root of components of variation expressed as Bray– Curtis dissimilarity.

TA B L E  1  Variation of soil bacterial 
and fungal communities by land- use 
type, site and time assessed using nested 
PERMANOVA
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3.2  |  Structural similarities of entire and partial 
communities

The high temporal stability of soil microbial communities and their 
distinctness among sites together raises the question of which frac-
tions of soil microbial communities are responsible for this. Therefore, 
identification of partial communities that are representative for the 
site- specificity of a community was approached. To determine the 
number of OTUs that is required to build such representative com-
munity subsets we prepared random subsets of different sizes (i.e., 
10 to 5000 OTUs) with 10,000 iterations and compared these to 

the entire original communities using the Mantel test. Correlations 
between entire and partial communities increased with increasing 
numbers of OTUs in the partial communities (Figure 3). For example, 
mean values of randomly assembled partial communities composed 
of 500 OTUs showed a correlation of .92 (±.026) and .84 (±.040) 
to entire bacterial and fungal communities, respectively, while ran-
dom sets of 10 OTUs yielded correlations of .41 (±.14) for bacteria 
and .42 (±.13), for fungi. In a few cases, even partial communities 
composed of 10 OTUs yielded correlations >.8 to entire communi-
ties. When, for example, the 10 most abundant OTUs were selected, 
their community structures were almost identical to the one of the 

F I G U R E  1  Bacterial (a) and fungal (b) communities of 30 sites from three land- use types: arable land (blue), permanent grassland (green) 
and forest (brown). Each site was sampled with yearly triplicates during 5 years. Centroids of yearly triplicates (replicate centroids) are shown 
resulting in five dots per site (N = 150), which are connected by lines to the centroid of the site. Unconstrained ordinations are based on 
nonmetric multidimensional scaling (NMDS) [Colour figure can be viewed at wileyonlinelibrary.com]

(a) (b)

F I G U R E  2  Temporal variability of soil 
bacterial (a) and fungal (b) communities in 
the three land- use types. Letters indicate 
significant differences among groups 
determined using Dunn's test (p < .01). 
Temporal variability was recorded as 
distances between the centroid of 
triplicates of each year and the centroid of 
the corresponding site (Figure S1A). Note 
the different scales of the y- axes [Colour 
figure can be viewed at wileyonlinelibrary.
com]

(a) (b)

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
www.wileyonlinelibrary.com


    |  4311GSCHWEND Et al.

entire communities with correlations of .99 (p < .0001) for bacteria, 
and 1.00 (p < .0001) for fungi.

For a more detailed understanding of the influence of relative 
OTU abundances on the structural similarity between entire and 
partial communities, a sliding window approach was used. For this 
approach, we first chose three dissimilarity indices (i.e., Bray– Curtis, 
Canberra and Jaccard), which differently weight rare and abundant 
OTUs, as well as different window sizes ranging from 100 to 1000 
OTUs (Figure S5). All revealed highly similar results correlating by 
at least .96. We used Bray– Curtis dissimilarities and a window size 
of 500 OTUs for more detailed analyses. Partial communities com-
posed of abundant OTUs revealed higher structural similarities with 
the entire communities. For example, community structures of the 
500 most abundant OTUs (i.e., window 1) almost perfectly matched 
the structures of entire communities with correlations of .99 for 
bacteria and of 1.00 for fungi (p < .0001, Table 2). These windows 
contained only 2.8% (total: 18,140) of bacterial and 5.9% (total: 
8477) of fungal OTUs but accounted for 58.5% of total bacterial and 
75.3% of total fungal relative abundances (Table 2). Land- use-  and 
site- specificity for window 1 also revealed high CAP reclassifica-
tions of at least 99.6% (Table 2). The structural similarity between 
partial and the entire community decreased with decreasing OTU 
abundances for bacteria and fungi (Figure 4a– d). Remarkably, the 
summed relative abundance of OTUs within the sliding windows 
dropped much faster than the correlations between entire and par-
tial communities. This is, for instance, illustrated by the windows at 
the border of abundant and rare OTUs (Figure 4, red line), that is 
windows 18 for bacteria and 14 for fungi. Bacterial window 18 had 
an overall relative abundance of 3.9% and revealed a correlation of 
.97 to the entire community (Table 2). For fungi, window 14 had an 
overall relative abundance of 3.5% while revealing a correlation of 
.81 to the entire community. Consequently, even windows exclu-
sively composed of rare OTUs may be highly representative of entire 
communities. For example, land- use-  and site- specificity remained 
very high, with 100% reclassification success rate for bacterial win-
dow 18 and at least 99.8% for fungal window 14 (Table 2). Further 

scanning through the communities by decreasing relative abundance 
decreased the correlation to the entire community, which eventually 
reached .13 for the bacterial and .17 for the fungal windows with the 
lowest abundances (Figure 4c,d).

3.3  |  Identification of scarce OTUs

Scarce OTUs were defined as OTUs that are not consistently de-
tected at a site and that do not respond to an environmental fac-
tor. Therefore, we identified windows that did not contain core 
(Figure 4e,f; orange line) or indicative OTUs (Figure 4e,f; green line). 
For bacteria and fungi, core OTUs were detected at lower abun-
dances as compared to indicative OTUs (Figure 4e,f). The thresh-
olds defining scarce bacterial and fungal OTUs were therefore based 
on the absence of core OTUs. Modifying this threshold by defining 
scarce OTUs based on indicative OTUs (Figure 4e,f, green line) did 
not affect the community structures revealed by rare and scarce 
OTUs (Table S5). Therefore, our analysis was robust to modifications 
of the criteria selected to define rare and scarce OTUs. The deter-
mined thresholds of relative abundances of scarce OTUs in the pre-
sent study (Figure 4e,f; orange line) were at 0.00016% for bacteria 
and 0.00015% for fungi (Table 2) and thus about 60 times lower than 
the 0.01% thresholds to separate abundant from rare OTUs. This 
revealed that rare OTUs can be robustly detected using a metabar-
coding approach. Scarce OTUs, which accounted for 4240 (23.4%) 
of bacterial and 1677 (19.8%) of fungal OTUs, were individually lit-
tle informative, but in combination still explained differences among 
land- use types and sites (Table 3).

3.4  |  Temporal stability of abundant and rare 
community fractions

Removing the scarce OTUs from the communities resulted in 
community structures that were perfectly correlated to entire 

F I G U R E  3  Structural similarity of 
entire and partial communities composed 
of 10 to 5000 randomly selected bacterial 
(a) and fungal (b) OTUs assessed using the 
Mantel test with Spearman correlations. 
For each subset size, 10,000 random 
partial communities were generated. The 
entire data set included 450 samples with 
18,140 bacterial and 8477 fungal OTUs

(a) (b)
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communities (rho = 1, Table 3). Therefore, the removal of 23.4% 
bacterial and 19.8% fungal OTUs did not affect discrimination power 
of microbial community structures, supporting the robustness of 
structure- based analyses of soil microbial communities. Community 
structures of the rare OTUs excluding scarce OTUs were highly 
correlated to the structures of the entire communities with corre-
lations of .97 for bacteria and .83 for fungi. Furthermore, land- use 

as well as site specificities of communities composed of abundant 
or rare OTUs without scarce OTUs were also high with reclassifi-
cation successes of at least 99.8% (Table 3). Dissimilarities among 
sites were higher than dissimilarities among years, which again in-
dicated the high temporal stability of rare OTUs (excluding scarce 
OTUs). However, PERMANOVA revealed a higher temporal variabil-
ity within sites for communities composed of rare excluding scarce 

F I G U R E  4  Sliding window analysis to scan soil bacterial (left panels) and fungal (right panels) communities for relative abundance (a,b), 
structural similarity (c,d), indicative and core OTUs (e,f), and land- use-  and site specificity (g,h). Sliding windows were composed of 500 
OTUs of decreasing relative abundance and shifted by 100 OTUs. Panels (a) and (b) show the summed relative abundances of windows. 
Structural similarity, shown in panels (c) and (d) is defined as the Spearman correlation between windows and entire communities. Panels 
(e) and (f) show the percentage of indicative (green) and core (orange) OTUs within the windows; indicative OTUs were defined as OTUs 
correlated with an environmental factor (|rho| > 0.4), and core OTUs (orange) as OTUs that occur in at least 12 of the 15 samples from a 
site. The specificity to land- use type (LUT, light blue) and site (blue), shown in panels (g) and (h) were determined as the reclassification 
success in leave- one- out cross- validations based on canonical analysis of principal coordinates (CAP). Coloured lines indicate thresholds to 
differentiate abundant from rare OTUs at 0.01% relative abundance (red), and thresholds to delimit scarce OTUs as determined based on the 
absence of indicative (green) and core OTUs (orange). A summary of the characteristics of the first window below these thresholds, as well 
as for the most abundant window, is given in Table 2. The entire data set included 450 samples with 18,140 bacterial and 8477 fungal OTUs 
[Colour figure can be viewed at wileyonlinelibrary.com]

(a) (b)

(c) (d)

(e) (f)

(g) (h)

www.wileyonlinelibrary.com
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OTUs (√CVBacteria = 0.31, √CVFungi = 0.44) as compared to abundant 
OTUs (√CVBacteria = 0.12, √CVFungi = 0.27) (Table 3). Consequently, 
while major community characteristics were maintained throughout 
the majority of taxa as well as from abundant to rare OTUs, tempo-
ral variability increased slightly from abundant to rare community 
fractions.

4  |  DISCUSSION

4.1  |  Temporal stability of soil bacterial and fungal 
communities

Our survey of 30 long- term monitoring sites over 5 years revealed a 
high land- use-  and site- specificity of soil bacterial and fungal com-
munity structures, along with comparatively small temporal vari-
ability (Figure 1; Table 1). A higher spatial variability relative to the 
temporal variability was also reported by Carini et al. (2020), who 
analysed the development of soil bacterial and fungal communities 
at two mountain slopes over 6 months. Interestingly, consistent dif-
ferences not only between the two sites but also within sites at the 
metre scale were detected over time. To prevent spatial variabil-
ity at the metre scale from masking temporal effects in our study, 
we took advantage of the sampling design of the Swiss long- term 
soil monitoring network (NABO) and collected bulk samples of 25 
cores from exactly the same locations of the 100- m2 plots every 
year (Figure S2). Despite the stability and high site- specificity of 
soil microbial community structures, temporal variability was de-
tect at the site level, with arable sites showing significantly more 
temporal variability when compared to permanent grassland and 
forest sites (Figure 2). In agreement with our findings, Lauber et al. 
(2013) detected more variable bacterial communities in arable land 
as compared to a grassland plot at a single site over 6 months dur-
ing one growing season. The authors attributed the increased tem-
poral variability of bacterial communities in arable land to the land 
management and to the plant community, which developed over the 
growing season. All arable sites we assessed were managed with 
crop rotations, which included three to six different crops, and with 
one exception they were conventionally tilled. Land management 
of arable sites, such as crop rotations (Peralta et al., 2018), tillage 
(Degrune et al., 2017), fertilization (Hartmann et al., 2015) and plant 
protection (Rivera- Becerril et al., 2017), has been shown to affect 
the structures of soil microbial communities, and may therefore re-
duce their temporal stability. Beside the influence of land manage-
ment, temporal variability of soil microbial communities may also be 
caused by environmental factors. Lauber et al. (2013) hypothesized, 
for example, that environmental selection of microorganisms with 
different life- strategies may lead to varying temporal stability of 
soil microbial communities. However, environmental factors that 
correlated with temporal stability of soil bacterial and fungal com-
munities in our survey were also significantly different between ar-
able sites and the other land- use types (Tables S2 and S4). Within 

land- use types no significant correlations were detected, and tem-
poral variability of soil bacterial and fungal communities was always 
highest in arable soils regardless of the soil texture class (Figure S6). 
Together, this indicates that the increased temporal variability of 
bacterial and fungal communities at arable sites is likely explained 
by land management, and that environmental factors appear to have 
a minor effect on temporal stability of soil microbial communities. 
Interestingly, the increase in temporal variability at arable sites as 
compared to the other two land- use types was larger for fungal than 
for bacterial communities (Figure 2; Table S3). This may be due to a 
stronger dependence of certain fungal taxa on specific plant species 
(Ai et al., 2018; Fox et al., 2020) or a stronger disturbance of fungal 
communities in tilled systems (Schmidt et al., 2019).

4.2  |  Temporal community shifts

Communities may follow various trajectories over time. On the 
one hand, communities may be disturbed but return to their initial 
state due to a high resilience (Lamothe et al., 2019). If this trajec-
tory were to occur repeatedly, the community could be considered 
stable, although with a larger NOR. On the other hand, communities 
may shift to another state, which may occur rapidly or over longer 
time periods. Various mechanisms could cause community shifts, 
including deterministic processes such as short- term (pulse) or long- 
term (press) disturbances (Shade et al., 2012), and possibly stochas-
tic processes such as ecological drift or random dispersal (Zhou & 
Ning, 2017) . Notably, continuously changing environmental factors, 
for instance caused by land management- induced soil compaction 
(Hartmann et al., 2014), by climate change (Isobe et al., 2020) or 
by increasing atmospheric nitrogen depositions (Leff et al., 2015; 
Peñuelas et al., 2012), represent press disturbances (Shade et al., 
2012), which could alter the structures of soil microbial communi-
ties. Subsequently, ecosystem functions and services provided by 
soil microbial communities could also be altered (Allison & Martiny, 
2008) and might affect soil quality. To assess, whether indications 
for community shifts over 5 years were detectable in our system, we 
determined for each site the distance of the communities to the one 
of the first year (Figures S3 and S4). Only soil microbial communities 
from three arable sites showed indications for consistent commu-
nity shifts over at least 2 years. As shifts in a single year were more 
common (Figures S3 and S4), this may show the high resilience of 
soil bacterial and fungal community structures to pulse disturbances 
that may occur throughout the years (e.g., tillage at arable sites or 
meteorological changes). In agreement with the high temporal sta-
bility detected in our study, it has been demonstrated that experi-
mental warming of forest soils lead to shifts in bacterial communities 
only after 20 years, while no treatment effect was found for warm-
ing periods of 5 or 8 years (DeAngelis et al., 2015). Furthermore, 
by correlating past and present climate data to current soil micro-
bial diversity, Ladau et al. (2018) identified a lag of ~50 years be-
tween changes of climate variables and soil microbial diversity. This 
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indicates that shifts of soil microbial communities may occur over 
time periods in the order of decades rather than a few years, but par-
ticular taxa (populations) responsive to daily varying environmental 
conditions such as soil moisture, temperature or nutrient levels may 
be subject to more frequent changes. However, it becomes increas-
ingly evident that soil microbial communities show a high temporal 
stability, despite their sensitivity to changing environmental factors, 
and despite their short generation times, which may increase ran-
dom diversification (Zhou & Ning, 2017). Consequently, long- term 
experiments and monitoring are clearly needed to assess long- term 
effects of changing environmental and anthropogenic factors on soil 
microbial communities.

4.3  |  Normal operating ranges of soil microbial 
community structures

With the absence of lasting community shifts over 5 years, the 
temporal variability assessed for most sites can be considered as 
within the NOR of these soil microbial communities. The temporal 
variability differed between land- use types and sites (Figure 2), 
which indicated that the extent of NORs depend on land- use as 
well as on specific environmental factors. Therefore, a better un-
derstanding of these factors is necessary to reliably define NORs 
of microbial communities. In the present study, we used the first 
year as the reference to detect community shifts over time. The 
results could, therefore, be affected by unusually large differ-
ences between the first and the second year. Our analyses also 
showed that significant differences of a single year were rela-
tively common within 5 years (i.e., this was the case at eight of 
the 30 sites for bacteria and at two sites for fungi; Figures S3 and 
S4). Consequently, reference baselines or NORs based on longer 
time periods will provide more balanced and stable values and 
thereby enhance the ability to detect relevant community shifts 
over time. The number of years needed for the definition of a NOR 
or a significant community change will, however, depend on em-
pirical data of site characteristics. In arable land, it may be neces-
sary to consider entire crop rotations, while reference data sets 
with lower temporal resolution may be sufficient for permanent 
grassland or forest sites.

4.4  |  Similarities of entire communities with 
abundant and rare fractions

The high temporal stability of soil bacterial and fungal communities 
raises the question of whether all fractions throughout the commu-
nity from abundant to rare remain temporally stable over 5 years. 
Therefore, we first compared groups of 500 randomly selected 
OTUs with entire communities, which all revealed a high structural 
similarity (Mantel test, Figure 3). This suggested that subsets of a 
few hundred OTUs may be representative of entire soil microbial 

communities composed of several thousand OTUs. In agreement 
with our findings, 511 dominant bacterial OTUs from a global data-
set have been shown to be highly correlated (Mantel test, r = .92) 
to the rest of the bacterial community (Delgado- Baquerizo et al., 
2018) and, in an experimental warming experiment of forest soils, 
the 155 most abundant OTUs were highly correlated (Mantel test, 
r = .98) with the entire community structures and also represented 
the detected warming effects (DeAngelis et al., 2015). Furthermore, 
the removal of rare OTUs with increasing abundances had little ef-
fects on community structures of bacterial and fungal communities 
(Botnen et al., 2018, Zinger et al., 2014). These results suggest that 
community structures and their changes may already become evi-
dent based on the most dominant members of soil microbial com-
munities. In cases where coarse differences among land- use types 
and sites are analysed, soil bacterial and fungal community struc-
tures may be correctly assessed using earlier culture- independent 
techniques such as fingerprinting approaches that assess their 
dominant members. To assess whether rare OTUs were also repre-
sentative of entire communities we used a sliding window analysis. 
This revealed that structures of entire communities were best rep-
resented by abundant OTUs, but interestingly, relative abundance 
dropped much faster as compared to the structural similarity of par-
tial and entire communities (Figure 4). Thus, correlated community 
structures were consistently detected throughout the majority of 
the community ranging from abundant to rare OTUs. This suggests 
that similar processes were driving the assembly of abundant and 
rare community fractions at the surveyed sites. The high stability 
and the strong differences among sites and land- use types could 
indicate that environmental filtering (Yan et al., 2019) was a major 
determinant of the recovered community structures. The hetero-
geneity within a soil habitat with interconnected major and minor 
niches, where abundant and rare organisms thrive, may lead to con-
certed community structures of abundant and rare fractions of soil 
bacterial and fungal communities. This may indicate that rare OTUs 
inhabit small niches, which are specific to a given land- use type or 
site. As observed for the entire communities, temporal variability re-
mained lower than variability among sites or land- use types for com-
munities composed of rare OTUs (Table 3). Therefore, rare fractions 
of soil bacterial and fungal communities also remained generally sta-
ble over 5 years. This may reflect the stability of rare microniches 
within soils, which offer a habitat for specialized rare taxa. However, 
temporal variability was slightly higher in communities composed of 
rare as compared to abundant OTUs (Table 3), which may be due to 
OTUs that are occasionally more abundant but that are generally 
present in low numbers (Shade et al., 2014). Experimentally, this was 
demonstrated in microcosms, where an initially rare OTU thrived in 
response to hydrocarbon pollution (Fuentes et al., 2016). Rare OTUs 
may therefore be more sensitive to environmental changes, on the 
one hand because they may thrive due to environmental changes, 
or on the other hand because the microniches they inhabit may be 
more easily disturbed compared to larger niches, where abundant 
taxa live.
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4.5  |  Identification of scarce OTUs

Rare OTUs are distinguished from abundant OTUs by relative 
abundance thresholds (e.g., 0.01%), but no thresholds exist for the 
definition of scarce OTUs. Scarce OTUs are extremely rare and in-
frequently detected OTUs, which provide little information on a sys-
tem. These OTUs may include real biological sequences originating 
for instance from organisms that could not establish in a particular 
habitat, but also erroneous sequences that represent analytical fail-
ure. The continuous decrease of the structural similarity between 
entire and partial communities from the most to the least abundant 
taxa (Figure 4) impedes the definition of a threshold for scarce OTUs. 
Here, we defined indicative and core OTUs to empirically separate 
rare from scarce OTUs. This resulted in 23.4% and 19.8% of bacterial 
and fungal OTUs that were classified as scarce. Despite this relatively 
large number of scarce OTUs, analyses of community structures 
were only marginally affected by the inclusion or exclusion of scarce 
OTUs (Table 3). This is in agreement with analyses of marine and 
freshwater bacterial communities, where the exclusion of 45% of the 
OTUs with the lowest abundance showed correlations of at least .95 
to entire community structures (Gobet et al., 2010; Liu et al., 2015). 
Furthermore, our analysis revealed that bacterial communities were 
composed of 9.4% abundant and 67.3% rare OTUs (excluding scarce 
OTUs), while these numbers were 15.3% and 64.9% for fungi. Soil 
microbial communities are therefore mainly composed of rare and 
temporally stable OTUs (Table 3). The temporal stability of rare 
OTUs (excluding scarce OTUs) suggests that these can be robustly 
assessed using metabarcoding. Finally, our analysis revealed that a 
relative abundance of <0.0002% (Table 2) may represent a first con-
ceptual basis for an operational threshold to define scarce OTUs.

4.6  |  Consequences for soil quality monitoring

Metabarcoding of soil bacterial and fungal communities has been 
shown to sensitively detect responses to a multitude of factors such 
as heavy metal pollution (Frossard et al., 2018) or salinization (Rath 
et al., 2019). Metabarcoding also had a higher power to discriminate 
between different soils (i.e., subject to periodic waterlogging or dif-
ferent management), as compared to physicochemical soil analyses 
(Gschwend et al., 2020). The reproducible detection of soil micro-
bial communities in soils from defined environmental conditions and 
land- use is a major requirement for the implementation of metabar-
coding in long- term monitoring programmes. Therefore, the stabil-
ity of soil bacterial and fungal community structures over 5 years 
builds further support for metabarcoding- based soil quality moni-
toring. Experimental studies are needed to assess the extent of the 
NOR and its relationship to pulse and press disturbances. The high 
structural similarities between entire and partial communities also 
showed that defined partial communities can be used for surveys of 
effects on soil microbiota at the community level. This may facilitate 
long- term monitoring as it allows for a robust comparison among re-
curring sampling campaigns.

5  |  CONCLUSIONS

Soil bacterial and fungal community structures of 30 sites from three 
different land- use types (i.e., arable land, permanent grassland and 
forest) were land- use-  and site- specific and stable over 5 years. 
Consistent community shifts over time were largely absent, which 
further supports the high temporal stability of soil bacterial and fun-
gal communities. Normal operating ranges of bacterial and fungal 
community structures depend on site, land management and pos-
sibly soil properties. Partial communities composed of abundant or 
rare OTUs were highly correlated to entire communities, revealing 
that subsets of a few hundred OTUs can be highly representative of 
entire communities composed of several thousand OTUs. Focusing 
on a few hundred OTUs may facilitate the establishment of refer-
ences for soil identification and long- term soil quality monitoring. 
Finally, we showed that scarce OTUs, which account for about a 
third of all OTUs, have little impact on the assessment of community 
structures, but may be valuable scarce biota performing important 
soil functions in scarce habitats.
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