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ABSTRACT

MicroRNAs (miRs) function primarily as post-tran-
scriptional negative regulators of gene expression
through binding to their mRNA targets. Reliable
prediction of a miR’s targets is a considerable
bioinformatic challenge of great importance for
inferring the miR’s function. Sequence-based pre-
diction algorithms have high false-positive rates,
are not in agreement, and are not biological context
specific. Here we introduce CoSMic (Context-
Specific MicroRNA analysis), an algorithm that com-
bines sequence-based prediction with miR and
mRNA expression data. CoSMic differs from
existing methods —it identifies miRs that play active
roles in the specific biological system of interest and
predicts with less false positives their functional
targets. We applied CoSMic to search for miRs that
regulate the migratory response of human mammary
cells to epidermal growth factor (EGF) stimulation.
Several such miRs, whose putative targets were sig-
nificantly enriched by migration processes were
identified. We tested three of these miRs experimen-
tally, and showed that they indeed affected the mi-
gratory phenotype; we also tested three negative
controls. In comparison to other algorithms CoSMic
indeed filters out false positives and allows improved
identification of context-specific targets. CoSMic
can greatly facilitate miR research in general and,
in particular, advance our understanding of individ-
ual miRs’ function in a specific context.

INTRODUCTION

Background: microRNAs (miRs) are short, single-
stranded non-coding RNA molecules which function as
post-transcriptional negative regulators of gene expres-
sion. miRs act by recognizing complementary target sites

in the 3-UTR of their target genes, and consequently
inducing transcript decay or translational arrest of their
targets (1,2). Complementarity is mediated mainly by nu-
cleotides 2-8 of the 5'-end of the miR, frequently referred
to as the ‘seed sequence’ (3). Each miR can regulate hun-
dreds of genes, and >30% of the mRNAs transcribed
from human genes are predicted to be regulated by
miRs (4). During the past 10 years the number of miRs
that has been identified expanded enormously, and they
were related to numerous biological processes, including
development, cell-cycle control, differentiation and apop-
tosis (5).

One of the major difficulties in miR research is to
unravel the function of a miR of interest and the pathways
it regulates. Since there is no simple and widely used
high-throughput experimental method for miR target
identification, the amount of available information re-
garding miRs’ function and their putative target genes is
limited. A key factor for inferring the function of a miR is
through its target genes. Therefore, several computational
algorithms have been developed in the last few years in
order to address this problem [such as PITA (6),
TargetScan (4), miRanda (7) etc.]. These algorithms are
based on a sequence similarity score, conservation and
overall stability and accessibility of the miR-mRNA
duplex. However, the current sequence-based available
target prediction algorithms predict hundreds to few thou-
sands of target genes for each miR, which makes it diffi-
cult to focus on a few likely targets of the miR of interest.
Moreover, they are known to have high false-positive
rates, and their predictions are not in agreement (8). A
common procedure to overcome this problem is to inter-
sect the results of several prediction algorithms in order to
obtain a limited number of target genes for each miR, with
less false-positive results. However, this procedure misses
many bona fide targets, and hence although it has higher
confidence it also has lower sensitivity (9—11). Although
much effort was invested in improving sequence-based
predictions [for most recent work see (12-19)], so far no
significant progress has reached consensus.
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An obvious problem with sequence-based methods is
their generality. These algorithms are not taking into
account biological context; for example, the top predicted
targets of a certain miR might not be expressed at all in
the specific tested model system. Thus, in spite of their
high scoring by the sequence-based algorithm, they are
not relevant to the specific model system (9). Our work
was designed to address this issue, of context-dependent
miR target prediction. It is fairly clear that in order to
predict accurately the targets of a miR of interest with
high sensitivity and specificity the sequence-based predic-
tions have to be integrated with other kind of information.
Since the problem is, on the one hand, unsolved, and on
the other it is highly relevant and important, dozens of
papers addressing the issue have been published in the
last year. Several studies generated miR databases which
contain sequence-based information along with lists of
validated targets, expression data, signaling pathway re-
sources and literature knowledge mining tools (20-28). A
different approach was based on network analysis to
identify signaling pathways associated with miRs (29,30).

Our approach is based on the belief that context-
dependent functional targeting of a miR will be reflected
in the expression data of its true mRNA targets (31,32).
Therefore, we integrated another factor into miR target
predictions: the correlation between the expression levels
of the miR and the mRNAs. Here we propose an algo-
rithm, Context Specific MicroRNA analysis (CoSMic),
that combines experimental data from expression of
mRNAs and miRs (measured in the same samples) with
available sequence-based predictions. Combining these
different kinds of information allows us to identify func-
tional targets of miRs that play important roles in a
specific experiment. As its output, CoSMic provides infor-
mation about the statistical significance of the predictions,
based on the enrichment of the high scoring sequence-
based target genes (4,6,7) by the group of genes whose
expression is highly correlated with the miR’s (33).
Hence CoSMic enables us to focus on the most significant
candidate miRs for further investigation. Moreover, the
number of predicted targets by the algorithm for each
miR is only few tens, which is a reasonable number for
further experimental validations and investigation. Last,
we provide experimental evidence for the efficiency of
CoSMic for finding functional miRs and their putative
functional targets in a particular system of interest: induc-
tion of motility in an EGF-stimulated human mammary
cell line. Our algorithm predicts the putative target genes
of a miR more accurately and with less false positives than
all other algorithms we tested, and allows the identifica-
tion of functional context-specific target genes.

Brief review of recently developed related methods

Several methods combining sequence-based information
with expression data have been developed in the past
few years. Here we only list briefly the relevant methods
(34-45)—see Supplementary Data for a detailed descrip-
tion of each. In 2006, Sood et al. developed a computa-
tional tool, miReduce (34), which correlates 3’-UTR
motifs with changes in mRNA levels, to improve the
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sensitivity of target predictions. A few years later
Dongen et al. introduced Sylamer (35), a method for de-
tecting targets of a miR from expression data by assessing
over or under representation of its seed region in the
3’-UTRs of a gene list, ranked by an expression-based
criterion. Next, two other algorithms which integrated
gene expression into their predictions were published—
Sigterms (36) and CORNA (37). Both use the set of dif-
ferentially expressed genes from a specific experiment, and
perform enrichment analysis to determine whether this set
of differentially expressed genes is enriched for targets of a
particular miR (according to one of three sequence-based
target prediction algorithms: TargetScan, PicTar or
MiRanda). In 2010, Ulitsky et al. introduced FAME
(38), a permutation-based statistical method that tests
for over or under representation of miR targets in a set
of co-expressed genes. All these algorithms (miReduce,
Sylamer, Sigterms, CORNA and FAME) utilize only
mRNA expression data and do not take into account
miR expression. The potentially important association
between the miR and mRNA expression levels is not
used, and hence they lose key information which
provides statistical evidence for a regulatory relationship
between the miR and its putative mRNA targets.
Moreover, Sigterms and CORNA use only the list of dif-
ferentially expressed genes and disregard the level of
change or profiles of gene expression.

The first algorithm that integrated both mRNA and
miR expression data into the sequence-based prediction
was GenMiR++ (39). GenMiR++ is a Bayesian model
and learning algorithm, designed to explore functional
miR targets. The algorithm outputs the posterior
probabilities of whether a given miR putatively targets a
given mRNA under the GenMiR++ model. Two other
algorithms that also exploit the full-expression matrices
of both the mRNA and miR expression data are MMIA
(40) and MAGIA (41). In general, both algorithms inter-
sect the group of predicted target genes of a specific miR
(using one of the available sequence-based algorithms:
TargetScan, PITA and PicTar) with the group of genes
with inverse expression (MMIA) or anti-correlation
(MAGIA) to the miR. Thus, both MMIA and MAGIA
use sharp cutoffs for the statistical analyses and intersect
the group of predicted target genes with the group of
anti-correlated genes. Using this rigid approach might
lose some putative targets, merely due to setting thresh-
olds at some arbitrarily selected value. In addition, MMIA
is suitable only for experiments with two conditions
(e.g. control versus treatment), and therefore it is not
applicable for datasets with more conditions (such as
time-course experiments). During the last year several
additional algorithms combining sequence-based target
prediction with expression data were developed.
Jayaswal et al. (2011) (42) proposed a two-step method
for the identification of miRs—mRNAs relationships; the
first step is the identification of miR and mRNA clusters
and the second step is the estimation of association
between the two types of clusters. Li et al. (2011) (43)
suggested a computational approach to construct associ-
ation networks between miRs and mRNAs, using partial
least square (PLS) regression, without respect to any
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sequence-based prediction information. Lu et al. (2011)
(44) proposed a linear regression model to investigate
one mRNA simultaneously regulated by multiple target-
ing miRs, with respect to their potential competition in
binding sites. All these authors suggested approaches to
improve target prediction, but they did not implement
their methods and hence there is no tool readily available
for the biologist to explore his own experimental data.
Moreover, the results of these algorithms were not
validated experimentally. Another algorithm, developed
by Bang-Berthelsen et al. (2011) (45), is based on inde-
pendent component analysis (ICA) that incorporates
both seed matching and mRNA expression profiling.
Bang-Berthelsen ez al. do not consider miR expression
data and hence, as CORNA and Sigterms, lose key infor-
mation about the miR-mRNA regulation. In addition, no
implementation is available for the biologist user.

We have made explicit comparisons of the predictive
power of CoSMic with purely sequence-based predictions
and with the five algorithms that use also expression
data: GenMiR++, MAGIA, FAME, miReduce and
Sylamer.

The added value provided by CoSMic over the other
prediction algorithms that combine sequence-based infor-
mation with expression data is summarized as follows:

First, CoSMic differs from the other methods in that it
initially identifies miRs that play active roles in the specific
biological system of interest, in addition to the identifica-
tion of their functional and context-specific target genes.
This feature is important when no prior knowledge is
available about the miRs that play active and significant
roles in the system of interest, and CoSMic may direct the
biologist towards them.

Second, we provide experimental validation for CoSMic
results, both for the identification of the significant miRs
in a particular system (EGF-induced motility in a human
breast cell line) and for their functional targets.

Third, the thresholds used by our algorithm are
data driven; there is no sharp cutoff on the correlation
or intersection of predicted target genes with correlated
genes, instead we optimize a gene set enrichment
procedure to get the group of correlated genes that are
enriched in the sequence-based predictions. In addition,
as opposed to the other prediction tools that combine
sequence-based information with expression data,
CoSMic takes into consideration in the enrichment
analysis not only the identities of the genes identified as
targets of a miR, but also their corresponding sequence-
dependent scores.

Fourth, we implemented our algorithm as an easy-
to-use stand alone software to allow biologists to apply
it for analysis of their data.

Last, our algorithm considers not only negative correl-
ations, but also positive correlations as an indicator for
miR—-mRNA direct regulation.

Thus, we offer CoSMic and the corresponding experi-
mental design (Figure 1) as a global strategy for unveiling
the functional significance of miRs in a given biological
system. The CoSMic algorithm is freely available at
http://www.weizmann.ac.il/complex/compphys/software/
cosmic/ (27 August 2012, date last accessed).
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Figure 1. Flow chart of the experimental design. (A) Dataset of
coupled mRNA and miR expression measurements from the same
samples. Using predefined thresholds of expression across all samples
and fold change, we filter genes and miRs that are expressed and
changed in this specific model system. (B) Choosing one of the avail-
able sequence-based prediction algorithms (e.g. PITA, TargetScan or
MiRanda). (C) Application of the CoSMic algorithm to the coupled
mRNA and miR dataset. (D) Selection of candidate miRs based on the
P-values obtained by the algorithm and on enrichment of the group of
predicted target genes by specific pathways and processes that charac-
terize the specific model system. (E) Silencing a few candidate miRs,
and assessing their effect on the system, using a functional assay
relevant to this specific model system. (F) Silencing the functional can-
didate miRs (these miRs that were found to affect the system in the
previous step), and measuring the mRNA expression level after their
perturbation. By this step we will be able to identify the group of
putative target genes that mediate the effect on the system. (G) The
group of putative and context-specific target genes should (i) contain a
binding site for the miR, (ii) be differentially expressed due to the miR’s
manipulation and (iii) be differentially expressed in the original model
system [i.e. the dataset in (A)].
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MATERIALS AND METHODS
Expression data

CoSMic was applied on mRNA (46) and miR (47) expres-
sion data of human mammary (MCF10A) cells after EGF
stimulation. Expression level threshold (EL) and fold
change threshold (FC) were applied on the measured
mRNA and miR expression data in order to detect signifi-
cant changes above noise level, and to include in CoSMic
only miRs and genes that were expressed and modulated
due to EGF stimulation. For the mRNA data thresholds
of EL > 8 and minimal FC > 2 were used (46), and for the
miR data EL > 10 and minimal FC>1.4. Changing the
values of the miR thresholds by up to 50% does not sig-
nificantly alter the results.

The CoSMic algorithm

The main idea of CoSMic is to integrate two kinds of
gene-expression measurements—of mMRNAs and miRs,
with sequence-based miR target predictions. This proced-
ure generates biological context-specific target predictions
of improved reliability. The algorithm treats the miRs sep-
arately, one at a time, to predict the miR’s putative target
genes. The idea that underlies the algorithm is simple:
identify as targets of a miR those genes which have high
sequence-based scores and significant correlations of their
expression levels with those of the miR. The algorithm
defines this group of target genes and also calculates the
corresponding P-value. In addition, it also identifies miRs
that are functional in the specific biological context and
assigns a false discovery rate (FDR)-corrected P-value to
this identification.

As its first step, CoSMic extracts from the sequence-
based prediction algorithm of choice (PITA, TargetScan
or MiRanda) the predicted target genes of the miR, and
sorts them by their sequence-based score (Supplementary
Figure S1A). Next, it calculates the Spearman correlation
coefficients and corresponding P-values between the ex-
pression levels of the miR and every mRNA across all
samples, and sorts all mRNAs by their correlation to
the miR (Supplementary Figure S1B, this is done separ-
ately for the positively and negatively correlated genes).
Then CoSMic uses a strategy which is closely related
(but not similar) to that of the gene set enrichment
analysis (GSEA) (33) to calculate the enrichment of the
top ranked sequence-based predicted target genes by the
top ranked correlated genes (see ‘Supplementary
Methods’ section for more information). The optimal set
of high scoring and highly correlated genes is identified as
the miRs targets. Last, a P-value is calculated for each
miR using a random model, and then, using the FDR
procedure, we correct for multiple testing and assign a
g-value to each miR. This ¢-value represents the signifi-
cance of the target prediction as well as the significance of
this miR in the specific tested model system.

We used the CoSMic algorithm with Agilent micro-
arrays for the miR expression measurements and
Affymetrix exon arrays for the mRNA data, but any
type of microarrays can be used, and also any other type
of high-throughput expression data can be used by
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CoSMic [e.g. sequencing data and or qRT—polymerase
chain reaction (PCR) expression data].

The CoSMic algorithm is freely available at http://www
.weizmann.ac.il/complex/compphys/software/cosmic/ (27
August 2012, date last accessed).

Enrichment for migration gene ontology (GO)-terms

P-values for the enrichment of the group of predicted
target genes by migration processes were calculated
using a hyper-geometric test; all the expressed genes in
MCF10A cells were used as background. P-values <0.05
were defined as significant.

Cell culture

MCFI10A cells were grown in Dulbecco’s modified
Eagle’s medium-F12 (DMEM-F12) supplemented with
antibiotics, 10mg/ml insulin, 0.1 mg/ml cholera toxin,
0.5mg/ml hydrocortisone and heat-inactivated horse
serum [5% (vol/vol) and 10 ng/ml EGF].

Knockdown of selected microRNAs

MCF10A cells (1 x 10°) were plated in six-wells, and
allowed to adhere. The next day, cells were transfected
using Oligofectamine transfection reagent (Invitrogen),
with siRNA oligonucleotides directed at hsa-miR-20a,
hsa-miR-671-5p and hsa-miR-212 and a non-targeting
control (purchased from Dharmacon).

Transwell cell migration assay

Cells were plated in the upper compartment of a Transwell
tray (Corning, Corning, NY, USA) and allowed to
migrate through an intervening nitrocellulose membrane
for 24h at 37°C. The membrane was then removed and
fixed in paraformaldehyde (3%), followed by cell perme-
abilization in Triton X-100 and staining with methyl
violet. Cells growing on the upper side of the membrane
were scraped using a cotton swab, and cells growing on
the bottom side of the membrane were photographed, and
then disintegrated in 10% acetic acid for quantification.

RNA isolation and microarray hybridization

Total RNA was extracted from biological duplicates at
four time-points following EGF stimulation. RNA was
isolated using Qiagen’s microRNA isolation kit
(Valencia, CA, USA) and was hybridized to Affymetrix
GeneChip Human Gene 1.0 ST arrays. Microarray data
are deposited in Gene Expression Omnibus (GSE33538).

Microarray data analysis

Affymetrix Expression Console was used, followed by
normalization of all arrays together using a Lowess
multi-array algorithm and signal-dependent noise estima-
tion (48). The data were thresholded at 5 (log scale) and
duplicate samples were averaged.

Real-time quantitative PCR

mRNA analysis
Complementary DNA (cDNA) was generated by the use
of SSII reverse transcriptase (Invitrogen, Carlsbad, CA,
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USA). Real-time quantitative PCR (qPCR) analysis was
performed using SYBR Green I (Finnzymes, Invitrogen)
as a fluorescent dye. Primers were designed using
UniversalProbeLibrary, and B2 microglobulin (B2M)
served for normalization.

miR analysis

cDNA was generated by the use of the Qiagen miScript
kit, according to the manufacture instructions. Real time
qPCR analysis was performed using the Qiagen miScript
kit, with specific primers to miR-212, miR-671-5p and
miR-20a. U6 small RNA served for normalization.

Luciferase reporter assay

For 3-UTR reporter assays of EDNI, cells were trans-
fected with reporter plasmid encoding a wild-type EDNI
3-UTR and a pGL3-CMV containing Firefly luciferase
(Promega, Madison, WI, USA). Cells were co-transfected
with miRNA mimic oligomucleotides (Qiagen, Valencia,
CA, USA) of miR-671-5p or a control. Forty-eight hours
after transfection with the reporter plasmid, cells were har-
vested and Firefly and Renilla luciferase activities were
measured using the Promega dual-luciferase assay system.

RESULTS
The CoSMic algorithm

The main idea of CoSMic is to combine gene expression
measurements of mRNAs and miRs from the same
samples, with sequence-based miR target predictions, to
improve the reliability of the predictions. The algorithm
works on each miR separately, and searches for a group
of mRNAs with correlated expression to the miR, which
also have high sequence-based scores. Assuming that this
correlation implies regulation of the gene by the miR, we
repeat the process twice, separately for genes with positive
and negative correlations to the miR. Negative correlation
between a miR and its targets represents a classical repres-
sion relationship in which the miR is upregulated to inhibit
its target gene, or vice versa, downregulated to allow the
upregulation of its target gene. Positive correlation
between a miR and its target gene can be due to transcrip-
tional coregulation of the miR and its target, with the miR
fine-tuning its target’s expression (49).

Thus, CoSMic provides for each miR a group of genes
that were identified as its predicted targets in a particular
experiment or condition, and a corresponding P-value for
the significance of this prediction (related to the miR and
its group of predicted targets). Using the FDR procedure
to correct for multiple testing, a set of miRs with signifi-
cant P-values is declared. These miRs are predicted to be
relevant in the specific model system, and to regulate
the expression levels of their target genes, as identified
by the CoSMic algorithm. For more details about
CoSMic see the ‘Materials and Methods’ section.

Application of CoSMic to real data

We tested CoSMic algorithm with coupled mRNA and
miR time-course expression measurements performed
on mammary epithelial (MCF10A) cells after EGF

stimulation (46,47). The mRNA and miR expression
measurements were done in two independent experiments,
but since the system is highly reproducible, it is equivalent
to measuring the mRNA and miR simultaneously.
Applying the algorithm to the coupled dataset, we used
677 genes and 138 miRs that were differentially expressed
in a time-dependent manner (exceeding predefined thresh-
olds, see ‘Materials and Methods’ section). This step
ensures that all mRNAs and miRs inserted into the
algorithm are expressed and modulated, and hence are
potentially functional in this specific model system
(the expression data used here can be found in the
‘Supplementary Methods’ section). Using CoSMic with
PITA predictions, we found 50 miRs which were identified
as significant (FDR 20%) in this experiment; the results of
using CoSMic with other algorithms, such as TargetScan
(4) and miRanda (7) are described later in ‘Comparing the
results of CoSMic when used in conjunction with other
sequence-based predictors’ section. The number of target
genes, as identified by the algorithm for each miR, was few
tens; much less than the number of target genes predicted
when using the sequence-based predictions alone (see in
Table 1 the target groups associated with the top 10 sig-
nificant miRs obtained by CoSMic and Supplementary
Table S1 for all 70 miRs that passed FDR 20%). 37 out
of the 70 significant miRs had negative correlation with
their target mRNAs, 29 had positive correlation with their
target genes and four miRs had both positively and nega-
tively correlated target genes (miR-320a, miR-31,
miR-671-5p and miR-20a).

Selection of candidate miRs

Since the major phenotypic response of MCF10A cells to
EGF stimulation is migration, we searched among the
significant miRs obtained from the algorithm, those
miRs whose predicted target genes were enriched by mi-
gration processes. Specifically, for each significant miR,
we calculated the enrichment of its set of target genes

Table 1. Top 10 miRs identified as significant by the CoSMic algo-
rithm (used with PITA)

miR name Correlation g-value No. of No. of
targets by targets
CoSMic by PITA
hsa-miR-212 + 0.007 12 2749
hsa-miR-623 + 0.007 24 4849
hsa-miR-769-5p — 0.007 13 3582
hsa-miR-500 — 0.007 23 2923
hsa-miR-320a + 0.007 35 4901
hsa-miR-424 — 0.009 17 2901
hsa-miR-98 — 0.009 34 3514
hsa-miR-601 + 0.010 40 2810
hsa-miR-31 + 0.019 18 4906
hsa-miR-22 + 0.019 28 2316

For each miR we indicate whether it was identified as significant by the
positively (+) or negatively (—) correlated targets, the corresponding
g-value (see ‘Materials and Methods’ section), number of predicted
target genes obtained by the algorithm, and the number of target
genes obtained by the sequence-based predictions alone (PITA algo-
rithm, targets with negative scores).
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(as defined by CoSMic) in each one of the 33 migration
GO-terms. We counted for each significant miR, the
number of migration GO-terms, that its group of tar-
get genes was significantly enriched in (P-value <0.05,
Figure 2). The target genes of 35 miRs, out of the 70 sig-
nificant ones, were enriched for at least one migration
process. These 35 miRs are our candidates to regulate
migration in MCFI10A cells in response to EGF
stimulation.

Effect of manipulation of the candidate miRs on the
migration phenotype of the cells

After identifying our candidate miRs to regulate migra-
tion in MCF10A cells, we examined experimentally their
actual effect on the migration phenotype of the cells by
silencing few of them and performing a migration assay.
Three candidate miRs were selected for this purpose
(Figure 2, indicated by red): (i) miR-212 which had the
lowest g-value and its target genes were significantly
enriched by five migration gene ontology (GO)-terms,
(i) miR-20a, whose target genes were significantly
enriched by seven migration GO-terms, different from
those of miR-212 and (iii)) miR-671-5p which was found
to be significant by the algorithm also when using
TargetScan predictions instead of PITA predictions
(see ‘Comparing the results of CoSMic when used in con-
junction with other sequence-based predictors’ section).

In addition we selected a miR that was not identified
as significant by CoSMic (miR-27b; FDR > 20%) and two
miRs (let-7e and miR-20b, indicated by green in Figure 2),
that were significant (FDR < 10%) according to CoSMic,
but their target genes were not enriched for migration GO
terms. We tested experimentally whether these ‘true nega-
tive’ control miRs indeed did not affect the migratory
response of the cells.

We manipulated the cells by silencing the three candi-
date miRs and the three control miRs (each miR separ-
ately), and assessed, using a Transwell migration assay,
the effect of these perturbations on the migration pheno-
type of MCF10A cells. We compared the migration of
these cells to the migration of an empty si-oligo control
(si-control). As can be seen from Figure 3A, the three
candidate miRs were indeed functional and affected the
migration phenotype of the cells; silencing of miR-20a
reduced cell migration (P = 0.0005), whereas the silencing
of miR-671-5p and miR-212 enhanced the migration
phenotype of the cells (P =0.012 for miR-671-5p). As
expected, the three ‘true negative’ control miRs did not
affect the migration phenotype (Figure 3B). It is import-
ant to mention that we performed the enrichment analysis
for migration GO terms in order to narrow down the list
of significant miRs obtained by CoSMic to the most
promising candidates. Nevertheless, we cannot exclude
the possibility that a significant miR, whose targets were
not found to be enriched for migration GO terms, does
regulate migration (since enrichment for migration
depends also on the validity and completeness of the
GO). Still, we do believe that such a miR is less likely to
regulate migration relative to the significant miRs whose
target genes were enriched for migration.
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Estimate the validity of CoSMic

After showing that CoSMic indeed identified correctly func-
tional miRs in the system, we need to demonstrate that
these miRs mediated the effect on the cell through the
targets that were defined by the algorithm. For this
purpose we experimentally found the putative and
context-specific target genes of miR-20a and miR-671-5p
(see next section); using these as our ‘ground truth’ we
compared the performance of CoSMic to the
sequence-based predictions alone (see ‘Comparison of
CoSMic predictions and the sequence-based predictions’
section) and to algorithms combining sequence-based pre-
dictions with expression data (see ‘Comparison of CoSMic
performance relative to other algorithms combining
sequence-based predictions with expression data’ section).
Moreover we performed a Luciferase assay to prove direct
interactions between miR-671-5p and one of its putative
target genes (see ‘Experimental validation of CoSMic
results’ section).

Identification of the putative and context-specific target
genes of miR-20a and miR-671-5p, which mediated the
effect on migration

To find experimentally the group of putative and context-
specific target genes of the two functional miRs, miR-20a
and miR-671-5p, we silenced each miR in MCF10A cells
and measured the mRNA expression levels after EGF
stimulation (using microarrays). In addition, we measured
the mRNA levels of MCF10A cells transfected with si-oligo
control (si-control) after EGF stimulation. We identified
target genes which mediated the effect of a miR on migra-
tion, as the group of genes which fulfill the following three
criteria: (i) contain a binding site for the miR; (ii) are differ-
entially expressed due to the miR’s manipulation; the logic
behind this criterion is that silencing of a miR should allow
the upregulation of its target genes, and hence the target
gene should be expressed differently between si-control
and si-miR. This statement is relevant also for the positively
correlated targets since by silencing the miR we are no
longer in the regime in which the miR and its target are
transcriptionally coregulated; and (iii) are differentially ex-
pressed due to EGF stimulation (i.e. in the original experi-
ment); we are looking for targets that mediate the migration
process of MCF10A cells in response to EGF stimulation,
and therefore these targets should be modulated due to
EGF in order to mediate the migration process. Using
these criteria we found 15 target genes of miR-671-5p that
mediate migration, and 28 target genes of miR-20a (Figure 4
and Supplementary Table S2); we refer to these as ‘con-
firmed targets’. We measured by qRT-PCR the expression
levels of several of these confirmed target genes after EGF
stimulation, in order to validate the microarray results
(Figure 5). As can be seen these target genes were indeed
upregulated due to the miR’s silencing.

Comparison of CoSMic predictions and the
sequence-based predictions

After identifying the group of confirmed target genes of
miR-671-5p and miR-20a, which mediate the migration
phenotype, we can evaluate whether CoSMic improves
the identification of confirmed and context-specific
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Figure 2. Enrichment of the groups of predicted target genes by migration processes. For each miR that was identified as significant by CoSMic
algorithm (FDR 20%, 70 miRs), we calculated the enrichment of its predicted target genes (as identified by CoSMic) by migration processes. There
are 33 GO-terms related to migration, for each one of them we calculated the enrichment of the target genes of the significant miR by a
hyper-geometric test. Left panel: the y-axis lists the significant miRs obtained by the algorithm ordered by their g-values; the x-axis lists the 33
migration GO-terms; black squares represents significant enrichment (P-values <0.05). Right panel: the x-axis presents the number of migration
GO-terms that were significantly enriched by the predicted target genes of each indicated miR (y-axis). miRs indicated by red are our selected
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candidates for further investigation and the ‘true negative’ control miRs (see text for details) are marked in green.
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Figure 3. Quantification of Transwell migration assays of MCF10A cells treated with si-oligos for the indicated miRs, or controls. MCF10A cells
were transfected with indicated si-oligos or controls, and migration was assessed using a Transwell migration assay; Quantification was made 24 h
after stimulation with EGF. (A) The three candidate miRs that were found as significant by CoSMic and their target genes were significantly enriched
for migration processes. (B) “True negative’ control miRs, 2 of which (let-7e and miR-20b) were identified as significant by CoSMic but their target
genes were not enriched for migration processes, and miR-27b which was not found to be significant by the algorithm. Data is presented as mean
fold change from si-control £ SD (n = 3 or 4 replicates for each miR); P-values were calculated relative to the si-control by paired z-test, significant
results (P <0.05) are indicated by asterisk. For si-miR-212, due to technical problems, only one repeat is presented.
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Figure 4. Identification of ‘confirmed target genes’ of miR-671-5p and miR-20a. (A-B) Venn Diagrams showing the group of confirmed
context-specific target genes of miR-671-5p and miR-20a, respectively. We identified as confirmed target genes that mediate the effect of a miR
on migration as those genes which contain a binding site of the miR, are differentially expressed due to the miR’s manipulation and due to EGF

stimulation.

targets relative to the naive sequence-based algorithm (we
describe first the results for PITA, and treat other algo-
rithms in ‘Comparing the results of CoSMic when used in
conjunction with other sequence-based predictors’ sec-
tion). Practically, we assessed whether CoSMic performs
better than simply taking, for each miR, the top x predic-
tions of PITA, where x corresponds to the number of
targets identified by CoSMic. Our measure for the per-
formance of each algorithm is the positive predictive
value (ppv), which is also referred to as purity. The ppv
is the fraction of predicted target genes that were indeed
confirmed; it is calculated by the number of true positives
(i.e. the number of confirmed targets identified by the
algorithm) divided by the total number of targets pre-
dicted by the algorithm. As can be seen from Tables 2
and 3, CoSMic has better results than using only the
sequence-based predictions. CoSMic identified 69 target
genes for miR-671-5p (33 were negatively correlated and

36 were positively correlated with the miR). Among these
69 targets, 5 (three negatively and two positively cor-
related genes) were from the group of 15 confirmed and
context-specific targets (33% sensitivity, ppv = 0.0725), to
be compared with 0 among the top 69 predictions of
PITA. To be even more conservative, we doubled the
top list from PITA (i.e. instead of taking the top 69
targets, we took the top 138 targets); the results
remained the same—none of the confirmed targets were
found by PITA (0%). Regarding miR-20a, CoSMic found
13 out of its 28 confirmed targets (46% sensitivity,
ppv = 0.113) among its 115 identified target genes
(32 negatively correlated and 83 positively correlated),
whereas PITA’s top 115 predicted targets contained only
2 of the 28 confirmed targets (7% sensitivity,
ppv = 0.0174). Doubling the list to 230 top PITA targets
did not add any new confirmed target gene. Thus, CoSMic
algorithm indeed filters out many false-positive results,
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Figure 5. qRT-PCR expression levels of several putative target genes of miR-671-5p (A) and miR-20a (B). (A) SERPINBI3, EDNI and FOSB
expression levels by qRT-PCR in si-control (blue) and si-671-5p (green). (B) ADAMTSI, SOCS6 and NEDD9 expression levels by qRT-PCR in

si-control (blue) and si-20a (magenta).

and allows discovery of ‘real’ and context-specific target
genes.

Comparison of CoSMic performance relative to other
algorithms combining sequence-based predictions with
expression data

First, we compared CoSMic results with other algorithms
that integrate both mRNA and miR expression data with
sequence-based predictions (as is done by CoSMic). We
selected those algorithms that were implemented as a tool
and are available to the biologist to analyze his own ex-
perimental data (see Supplementary Data for more
details). Thus, we compared CoSMic results with
GenMiR++ and MAGIA algorithms. As can be seen
from Tables 2 and 3, CoSMic has better ppv’s than any
of the other tested algorithms, both for miR-671-5p and
miR-20a. Using MAGIA, with either Spearman or
Pearson correlation, none of the confirmed target genes
of miR-671-5p and miR-20a were identified. Using
GenMiR++, nine confirmed target genes of miR-671-5p
were identified among its 198 predicted targets, but the
ppv (0.045) was lower than that of CoSMic (0.0725). We
compared CoSMic’s results also to the top 69 predictions
of GenMiR++ (the same number of target genes as
identified by CoSMic for this miR). Among the top 69
predictions of GenMiR++ there were only three con-
firmed target genes of miR-671-5p, to be compared with
five putative target genes identified by CoSMic. Regarding
miR-20a, GenMiR++ identified 89 genes as its targets;

among them 6 were confirmed target genes, representing
a ppv of 0.0674, relative to 0.113 of CoSMic. When
comparing CoSMic results with the top 115 prediction
of GenMiR++, GeneMiR++ identified six confirmed
targets, whereas CoSMic identified 13 confirmed target
genes among its 115 predicted targets. Thus, predictions
obtained by CoSMic for miR20a have higher ppv’s than
both MAGIA and GenMiR++ algorithms. Furthermore,
it should be noted that GenMiR++ was not designed to
identify the functional miRs that play an active role in the
specific model system of interest.

Next, we applied FAME, miReduce and Sylamer (three
algorithms that consider mRNA expression data along
with the sequence-based information, but not miR expres-
sion) on our mRNA expression data. miReduce did
not find any motif of size 6-8 nt corresponding to a
miR, whose presence or absence was significantly
(P-value < 0.05) correlated with the fold changes of the
differentially expressed genes (see results in Supple-
mentary Tables S3 and S4 and ‘Supplementary Results’
section). Sylamer found three depleted and one enriched
motif (with Bonferroni corrected P-value <0.01), corres-
ponding to miR-151-3p (6-mer), miR-218 (7-mer),
miR-643 (8-mer) and miR-328 (8-mer), respectively
(Supplementary Figure S2). miR-218 and miR-643 are
not expressed in MCF10A cells according to the miR
array data, and hence are not functional; Regarding the
other two miRs, miR-151-3p obtained g¢-values of 0.34
(0.7) for the negatively (positively) correlated targets by
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Table 2. Comparison of CoSMic results for miR-671-5p (using
PITA) with other algorithms

Algorithm No. of  No. of Positive
predicted overlap  predictive
targets  with 15  value

confirmed
targets

CoSMic (FDR = 20%) 69 5 5/69 (0.0725)

PITA (top 69) 69 0 0/69 (0)

PITA (top 138) 138 0 0/138 (0)

MAGTIA-spearman (FDR = 30%) 2 0 0/2 (0)

MAGIA-pearson (FDR = 30%)) 0 0 0/0 (0)

GenMiR++ (75" percentile) 198 9 9/198 (0.0455)

GenMiR++ (top 69) 69 3 3/69 (0.0435)

Table 3. Comparison of CoSMic results for miR-20a (using PITA)
with other algorithms

Algorithm No. of  No. of Positive
predicted overlap  predictive
targets  with 28  value

confirmed
targets

CoSMic (FDR = 20%) 115 13 13/115 (0.113)

PITA (top 115) 115 2 2/115 (0.0174)

PITA (top 230) 230 2 2/230 (0.0087)

MAGIA-spearman (FDR = 30%) 1 0 0/1 (0)

MAGIA-pearson (FDR = 30%) 0 0 0/0 (0)

GenMiR++ (75" percentile) 89 6 6/89 (0.0674)

GenMiR++ (top 115) 115 6 6/115 (0.0522)

CoSMic, and miR-328 obtained ¢-values of 0.2 (0.46); the
overlap between the targets predicted by the two algo-
rithms for these miRs was not significant (Supplementary
Table S5). Thus, Sylamer did not identify miR-671-5p or
miR-20a as potential regulators of the differentially
expressed genes in MCF10A cells in response to EGF
stimulation. Regarding the miRs that were predicted as
regulators, we cannot assess the performance of this algo-
rithm since we do not know the confirmed targets of these
miRs. Moreover, two of these predicted miRs were not
expressed in our dataset, and the number of target genes
predicted by Sylamer for each miR was > 100 (see
‘Supplementary Results’ section). FAME predicted
miR-26ab/1297 to regulate eight of the differentially ex-
pressed genes (with corrected P-value of 0.001). miR-26a
was also found as significant by CoSMic algorithm
(g-value = 0.05), with a group of 19 target genes. Five
targets were shared between FAME and CoSMic predic-
tions (P-value = 3.6 x10~°), moreover, four out of the five
shared targets were the top four targets predicted by
CoSMic (see Supplementary Tables S6-S8 and ‘Supple-
mentary Results’ section). Thus, there is high agreement
between FAME and CoSMic predictions regarding this
miR, which give validation to the predictions. Never-
theless, CoSMic identified also other miRs (some of
which were experimentally validated), which FAME
missed (see the full results in the ‘Supplementary
Results’ section).
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Experimental validation of CoSMic results

EDNI was identified by CoSMic as a target gene of
miR-671-5p. Using a Luciferase assay we proved the
direct interaction between miR-671-5p and EDNI
(Figure 6). In this experiment the 3'-UTR of EDNI is
placed downstream to the Luciferase gene, and the effect
of over-expressing miR-671-5p on Luciferase expression
was measured directly. Interestingly, EDNI was found
to be commonly overexpressed in a broad range of
human tumors. In esophageal squamous cell carcinoma
its upregulation is associated with cellular migration,
tumor cell metastasis and invasion (50); in breast cancer
increased expression of EDNI enhanced tumor cell
invasion (51). These findings are compatible with our
results that upon silencing of miR-671-5p, EDNI was
upregulated, which, in turn, enhanced the migration
phenotype of MCF10A cells.

Comparing the results of CoSMic when used in
conjunction with other sequence-based predictors

Our algorithm can integrate the mRNA and miR expres-
sion data with sequence-based predictions from any one of
the available prediction algorithms (PITA, TargetScan,
MiRanda, etc.). Until now we explored CoSMic’s results
when using the sequence-based predictions of PITA. Next,
we examined the effect of implementing other sequence-
based prediction algorithms, e.g. TargetScan and
miRanda, on the results of CoSMic. We evaluated the
differences between the results obtained using PITA,
TargetScan and MiRanda at two levels: first, the signifi-
cant miRs obtained by the algorithm with each
sequence-based prediction algorithm; second, the target
genes predicted by our algorithm for each miR, using
the different sequence-based predictions. The predictions
of CoSMic used with TargetScan or miRanda can be
found in Supplementary Table S9. Briefly stated, using
TargetScan the algorithm identified 48 miRs as significant
(at FDR of 20%), 18 of which (~40%) were shared with
the miRs identified as significant by CoSMic with PITA’s
predictions. Using miRanda’s predictions, 10 miRs were
identified as significant (at FDR of 20%), among them 2
were shared with PITA’s significant miRs and 2 others
with TargetScan’s significant miRs. Thus, there is higher
agreement between the significant miRs obtained by
CoSMic when used with PITA and TargetScan predic-
tions, relative to using miRanda predictions.

Next, we evaluated whether CoSMic algorithm predicts
the same target genes for these shared significant miRs.
We compared the number of shared targets obtained when
CoSMic was used with PITA and TargetScan, to the
number of shared targets between the top predictions of
the same two algorithms. As before, the number of top
sequence-based predicted targets used was the same as the
number of targets identified by CoSMic for each miR; to
be even more conservative, we repeated the same compari-
son using twice the number of targets identified by
CoSMic (i.e. doubled the list of prediction from PITA
and from TargetScan). As can be seen from Figure 7,
the number of shared targets derived by using CoSMic
with PITA and with TargetScan is much larger than
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Figure 6. Evidence that the 3-UTR of EDNI is targeted by
miR-671-5p. (A) Schematic diagram of the Luciferase assay-reporter
construct with wild-type 3'-UTR of EDNI, containing a binding-site
for miR-671-5p. (B) HeLa cells were cotransfected with the luciferase
reporter construct and either mimic-miR-671-5p (OE-miR-671-5p) or
mimic-control (OE-CTRL). Luciferase activities were measured and
normalized to the level of control Renilla luciferase. Mean and SD
values of duplicates of six repeats are presented; P-value = 7.83x 1073,
indicated by asterisk as significant.

Shared targets

Shared targets by
top TS and PITA

what one gets by intersecting top PITA and TargetScan
predictions alone (or by intersecting top PITA and
TargetScan predictions of twice the number of CoSMic
targets tested). Moreover, the shared targets by top
PITA and TargetScan alone are not expressed or
changed in the original experiment, and hence, these
targets have low potential to be relevant in this model
system (for the results of all 22 shared miRs see
Supplementary Table S10). Thus, CoSMic indeed filters
out correctly false-positive predictions; thereby increasing
the agreement between targets lists obtained using differ-
ent sequence-based prediction algorithms.

One of the significant shared miRs obtained by using
both PITA and TargetScan was miR-671-5p, which was
shown above (see ‘Identification of the putative and
context-specific target genes of miR-20a and miR-
671-5p, which mediated the effect on migration’ section)
to affect migration in MCF10 cells through regulating 15
target genes. Hence we could use the previously described
experimental results to compare the performance of
CoSMic with TargetScan to the list produced by
TargetScan alone, as was done above for PITA (see
‘Comparison of CoSMic predictions and the sequence-
based predictions’ section and Table 2). As can be seen
from Table 4, again the results obtained using CoSMic
were better than using only TargetScan sequence-based
predictions. Our algorithm identified 17 target genes nega-
tively correlated with miR-671-5p and 20 targets positively
correlated with the miR expression. Among these 37

Shared targets by
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miR-31 o
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Figure 7. Number of shared targets obtained by CoSMic and by intersecting top PITA and TargetScan (TS) predictions alone. We presented 4 out
of the 18 shared significant miRs obtained when CoSMic is used with PITA and with TS predictions. For each miR the numbers of targets identified
as significant by CoSMic, and the number of shared targets, are indicated in column 1 (light blue circles for using CoSMic with TS predictions and
pink circles for using CoSMic with PITA predictions). The intersection of top x and top 2x predictions of TS and PITA, obtained using sequence
information alone, are presented in columns 2 and 3, respectively (blue circles for TS and purple circles for PITA). For both PITA and TS we
used x that corresponds to the number of significant targets predicted by CoSMic, when used in conjunction with the corresponding sequence-based
method. The P-values for the number of shared targets were calculated using the hyper-geometric test.
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Table 4. Comparison of CoSMic results for miR-671-5p (using
TargetScan) with TargetScan predictions alone

Algorithm No. of No. of overlap True
predicted ~ with 15 confirmed  positive
targets targets rate

CoSMic 37 4 4/37 (0.108)

TargetScan (top 37) 37 0 0/37 (0)

TargetScan (top 74) 74 0 0/74 (0)

targets, 4 were from the group of 15 putative and context-
specific target genes of miR-671-5p (26%). However, none
of the putative and context-specific target genes were
either among TargetScan’s top 37 predictions, or
TargetScan’s top 74 predictions. This serves as additional
evidence demonstrating that CoSMic filters out correctly
false-positive results, and significantly improves identifica-
tion of ‘real’ and context-specific target genes.

DISCUSSION

The challenge of predicting the function and target genes
of a miR of interest is not yet solved. Currently there is no
simple and widely used high-throughput experimental
method for it, and the available computational
sequence-based prediction algorithms suffer from high
rate of false-positive results. We introduced the CoSMic
algorithm which deals with this problem by combining
mRNA and miR expression data with the sequence-based
predictions. The rationale behind our algorithm is that
functional targeting of a miR should be reflected in its
target mMRNA expression level, and therefore we
integrated to the predictions the correlation between the
miR and its target gene. Thus, CoSMic searches for a
group of genes that are correlated with the miR expression
and are enriched in its sequence-based predictions. By
integrating the expression measurements to the predic-
tions, CoSMic assures that the identified predicted target
genes are expressed in the specific model system, and
hence are context specific to this system of interest; an
aspect which is missing from the sequence-based predic-
tions alone. Moreover, CoSMic provides information
about the statistical significance of the predictions,
which enables the researcher to focus on the most
relevant candidate miRs in the specific model system.
Furthermore, the number of target genes predicted by
CoSMic algorithm for each miR is only few tens, much
less than by the sequence-based predictions alone, which
allows the researcher to focus on a few context-specific
target genes of the miR of interest for further
investigation.

We tested the CoSMic algorithm on experimental data
of coupled mRINA and miR expression measurements per-
formed on mammary epithelial cells (MCF10A) after
EGF stimulation. We showed experimentally that
CoSMic indeed identified correctly functional miRs in
this system using a migration assay, since the major
phenotypic response of MCF10A cells to EGF stimulation
is migration. Moreover, we demonstrated that CoSMic
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filters out many false-positive targets, relative to the
sequence-based predictions alone, and has higher ppvs
than the other tested algorithms that combine expression
data with sequence-based predictions. Last we showed
that using CoSMic algorithm we increase the overlap
between the predictions of different sequence-based algo-
rithms, relative to their agreement alone; additional
evidence that CoSMic filters out correctly false-positive
predictions.

We propose the CoSMic algorithm and experimental
design as a global strategy for unveiling the functional
significance of miRs in biological systems. The algorithm
allows the possibility to start with a biological system with
no prior knowledge about the functional miRs in this
system, and through several steps, identifying functional
miRs in the system of interest, and their context-specific
target genes.

Since CoSMic algorithm searches target genes that are
both positively and negatively correlated with the miR
expression, it’s opens additional question for further in-
vestigation: whether the direction of the correlation
between the miR and its target gene imply about the
mechanism of regulation by the miR; does negative cor-
relation implies about classical repression or degradation
of the mRNA target, and positive correlation about
fine-tuning or inhibition of the target at the level of
translation.

We believe that improvement of miR target prediction
will greatly facilitate miR research in general and, specif-
ically, the understanding of individual miRs’ function,
pathways they are regulate and mechanism of regulation.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online. Sup-
plementary Introduction, Supplementary Methods, Supple-
mentary Results, Supplementary Figures 1 and 2,
Supplementary Tables 1-10 and Supplementary References
[52,53].
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