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Bullying incidences identification 
within an immersive environment 
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Bullying is an everlasting phenomenon and the first, yet difficult, step towards the solution is its 
detection. Conventional approaches for bullying incidence identification include questionnaires, 
conversations and psychological tests. Here, unlike the conventional approaches, two experiments 
are proposed that involve visual stimuli with cases of bullying- and non-bullying- related ones, set 
within a 2D (simple video preview) and a Virtual Reality (VR) (immersive video preview) context. 
In both experimental settings, brain activity is recorded using high density (HD) (256 channels) 
electroencephalogram (EEG), and analyzed to identify the bullying stimuli type (bullying/non-
bullying) and context (2D/VR). The proposed classification analysis uses a convolutional neural 
network (CNN), applying deep learning on the oscillatory modes (OCMs) embedded within the raw 
HD EEG data. The extraction of OCMs from the HD EEG data is achieved with swarm decomposition 
(SWD), which efficiently accounts for the non-stationarity and noise contamination of the raw 
HD EEG data. Experimental results from 17 subjects indicate that the new SWD/CNN approach 
achieves high discrimination accuracy (AUC = 0.987 between bullying/non-bullying stimuli type; 
AUC = 0.975, between bullying/non-bullying stimuli type and 2D/VR context), paving the way for better 
understanding of how brain’s responses could act as indicators of bullying experience within immersive 
environments.

Development of technology has enabled the connection between natural sciences and medicine with impressive 
results, creating the field of biotechnology1. A rather interesting field is the study of the human brain2 and par-
ticularly its electric activity3 during different tasks. In this field, the medical knowledge of the brain physiology is 
combined with the computational capabilities of modern computers and the appropriate mathematical and com-
putational tools, in order to provide a better understanding of the human brain. Such an example is the attempt 
to correlate the subject’s stimulus with their electroencephalogram (EEG) recordings. In this scenario, the subject 
is exposed to different kinds of stimuli, which are usually pictures4 or sounds5 or both of them6. At the same time, 
the subject’s EEG activity is being recorded with the purpose of identifying the stimulus that the subject was 
exposed to from the EEG recordings.

In line with the aforementioned, in this research work, bullying-related incidences are attempted to be iden-
tified, based on the analysis of EEG recordings from subjects that experience bullying- and non-bullying-related 
visual stimuli. Conventional identification of bullying by psychologists and experts includes the use of ques-
tionnaires, conversations and tests7,8 that are not so realistic, as they are not synchronized with the time that 
the bullying events are taking place, but are rather used at a posterior moment, in which the emotional effects 
of the incident have worn off. Consequently, these approaches fail to reproduce the environment in which the 
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event took place and, therefore, the results that occur from such research are not always so conclusive. With 
the development of technology, many different techniques of detecting school bullying have been developed, 
such as speech emotion recognition, mental stress recognition, and activity recognition9,10. Moreover, there is 
relative research around the study of EEG signals during relaxation and mental stress condition11, along with 
EEG-based emotion recognition12. However, our research work does not aim in emotion recognition, but in 
identifying which stimuli correspond to bullying-related incidences and which correspond to non-bullying ones 
in the human brain, using HD EEG signal analysis with advanced signal processing techniques. This approach is 
motivated by the fact that bullying is closely related with brain activity and many experts13 consider that the solu-
tion will come by studying the brain responses during the phenomenon. An important factor in this theory is the 
mirror neurons, which are a category of neurons that are activated when a person is executing an action or when 
they observe somebody else executing the same action14. Consequently, the neuron “mirrors” the behavior of the 
other, as thought it was acting itself. Mirror neurons have been associated with empathy, as multiple studies15,16 
have shown activation of the mirror neuron system in empathic experiments. The low levels of empathy, which is 
described as the ability of a person to understand what other people feel and to put themselves in their place, in 
teenagers and children are amongst the strongest predictors of the phenomenon of bullying17,18. Therefore, there 
seems to be a correlation between bullying and human brain activity. However, the stagnant techniques that are 
being used cannot activate the brain mirror neuron system. To our knowledge, this is the first study in which an 
immersive environment, comprised of two-dimensional (2D) visual stimuli and virtual reality (VR), was created 
with the purpose of recreating realistic scenes which will provoke brain activity that is very similar to the one 
appearing during an actual bullying incident. VR has even been described as an “empathy machine”19,20 because 
it puts the subjects right in the middle of the action and gives them the ability to interact with their environment, 
thus, creating a vivid experience that leads to an even stronger coupling of the subject with the stimulus than 
ordinary two-dimensional visual stimuli.

The main aim of the present work is the use of an innovative combination of methods for experiential stimula-
tion of the human brain, as well as the advanced analysis of the simultaneously recorded EEG signals, in order to 
efficiently identify which stimuli correspond to bullying-related incidences and which correspond to non-bullying 
ones. In addition to this, further distinction between 2D and VR stimuli in the bullying/non-bullying classes is 
addressed; moreover, gender analysis is also considered.

In order to capture the brain activity during the experiments, high-density (HD) (256 channels) EEG record-
ings were employed. This ensures that all of the underlying brain activity is recorded with great precision and 
information is not lost21,22. As far as the computational aspect of the work is concerned, the possibility of using 
deep learning algorithms23, and specifically convolutional neural networks (CNNs)24, instead of the usual 
machine learning algorithms25 was investigated for the targeted classification. Moreover, the swarm decompo-
sition (SWD)26, a newly innovative approach for the decomposition of non-stationary signals based on swarm 
intelligence (SI)27–29 was also employed, in order to decompose the EEG signals into oscillatory modes (OCMs) 
with characteristic oscillatory pattern. Clustering algorithms30, like k-means and agglomerative hierarchical clus-
tering, were used for the reformation of the channels, so to consider brain’s spatial information. The combination 
of SWD and clustering algorithms leads to the transformation of the HD EEG data to an image-like format that 
can be used as input to the CNN. This sequence of methods that is used here has not been applied again in the 
relevant literature. The procedure of the proposed analysis (all steps) is shown in the block diagram of Fig. 1.

Figure 1.  A block diagram of the proposed analysis that begins with the different kinds of stimulation (2D/VR) 
and the recording of the subject’s brain activity with HD EEG. The HD EEG data are then processed with SWD 
and the 256 HD EEG channels are spatially clustered into groups creating an image-like format. The latter are 
fed to a CNN, which performs a classification task in order to identify bullying (bul) and non-bullying (nobul) 
incidences and distinguish between the 2D and VR stimulation methods.
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Before arriving to the proposed analysis of Fig. 1, different combinations of the analysis steps were examined 
and evaluated via their classification outcome. This resulted in the following examined scenarios: {Scn1: Without 
SWD-Without channel clustering}, {Scn2: Without SWD-With channel clustering}, {Scn3: With SWD-Without 
channel clustering}, and {Scn4: With SWD-With channel clustering} (finally adopted). The CNN structures 
that were used included up to three times the following sequence of layers: convolutional, max-pooling, and 
fully-connected with logistic regression for classification. This rule was strictly followed, as more repetitions of 
this sequence of layers would significantly increase the CNN computational complexity and the time needed for 
its training. Initially, the sample was divided into 75% for training and validation set and 25% for test set. The 
training of the network was performed using 10-fold cross validation, where in each iteration 90% of the training 
sample was used for training set, and 10% for validation set. Then, the observations of the control sample were 
classified based on the model that occurred from the training sample.

Results
Gender analysis results.  Prior to any further analysis, a gender analysis took place. In this study, 17 healthy 
subjects participated, split into 10 male and seven female (see Participants in Methods section). Considering the 
number of the subjects, the Mann-Whitney U non-parametric test was selected to identify statistically significant 
differences due to gender. More specifically, gender-related differences of the average EEG spectral power over the 
channels that belong to each of the 19 groups derived after spatial clustering (see Supplementary Figure S2) were 
tested. This analysis did not deliver any statistically significant results (p > 0.05); hence, the HD EEG data were 
grouped without taking into account gender differences.

Scn1: Without SWD-Without channel clustering.  For the case of Scn1, the CNN training was not suc-
cessful and the predictions it made were equivalent of random selection. Specifically, the accuracy was 0.5043 
on the validation test and 0.5079 on the test set, while the area under curve (AUC) was 0.5. This problem could 
be possibly solved with the use of a more complex CNN, that would include more layers, which would be able 
to distinguish more elaborated patterns. However, this would render the training time and computational cost 
infeasible.

Scn2: Without SWD-With channel clustering.  In this case, the adopted clustering of channels into 
groups that have spatial proximity was not able to provide a successful training of the CNN. The accuracy that 
was achieved was 0.4453 on the validation test and 0.4882 on the test set, while the AUC remained at a level of 0.5. 
Therefore, the CNN predictions in Scn2 remain equivalent of a random selection.

Scn3: With SWD-Without channel clustering.  In the case of Scn3, the CNN was successfully trained 
and, actually, achieved a promising level of accuracy at 0.8 on the validation set. However, a drop on the classifi-
cation performance was observed on the test set, resulting in 0.5039 accuracy, 0.557 precision, 0.549 recall, and 
AUC equal to 0.5307. It is evident, hence, that in Scn3, over-fitting occurred and the network adapted well on the 
training set, yet failed to generalize so to make predictions for the instances that appear in the test set.

Scn4: With SWD-With channel clustering.  In this scenario, a significant performance was observed on 
all of the metrics. More specifically, the accuracy on the validation test was 0.9844 and the resulted accuracy on 
the test set was 0.937, the precision 0.9403, the recall 0.9395 and the AUC 0.9869. This efficient performance is 
also reflected in the confusion matrix31,32 tabulated in Table 1.

Four-class problem results.  As it was already shown from the two-class case, the Scn4 has resulted in 
the most accurate results amongst the four analysis scenarios; hence, it was also adopted in the further exam-
ined four-class problem. In the latter, there was a distinction in the HD EGG data that were produced from 
bullying-related stimuli (Bul) and no bullying-related ones (NoBul), as well as HD EEG data that were produced 
from 2D stimuli (experiment T1) and VR stimuli (experiment T2), accordingly. This resulted in four combina-
tions/classes, namely {Bul2D, NoBul2D, BulVR, NoBulVR}.

The resulted confusion matrix for the four-class problem is presented in Table 2, with corresponding test set 
classification metrics of 0.8858 accuracy, 0.8775 precision, 0.87475 recall and 0.975 AUC (the accuracy for the val-
idation set was 0.9398). In order to produce the AUC for the 4-class problem, it is treated as a binary classification 
problem that considers one vs all scenarios. The AUC is calculated for each class and then the 4 AUCs are aver-
aged, so that the 4-class AUC occurs. Similarly to the Scn4, high level metrics were derived, showing a very good 
performance even in the four-class problem. A slight drop in the classification metrics was noticed compared to 
the Scn4 ones, which, however, is expected, since the four-class problem adds complexity, when compared to the 

Predicted Class

TotalBul NoBul

Actual Class

Bul 47.2 5.9 53.1

NoBul 0.4 46.5 46.9

Total 47.6 52.4 100

Table 1.  Confusion matrix for the two-class problem. The classes are Bul and NoBul. The values presented 
are percentages (%) of the test set and the whole test set comprised of 254 instances, 121 of which belonging 
to Bul class and 133 belonging to NoBul class. The corresponding classification metrics for the test set are: 
accuracy = 0.937, precision = 0.9403, recall = 0.9395, AUC = 0.9869.
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two-class one. Nevertheless, an accuracy level of 0.8819 on the test set in a four-class problem is considered quite 
satisfactory. Furthermore, if we split the problem into two complementary 2-class problems, one for 2D and one 
for VR, we get classification accuracy levels of 0.8055 and 0.9452, respectively.

Discussion
This is the first research study that targets the very complex problem of bullying through a novel approach, 
regarding not only the types of stimuli but also the means that were used to monitor the subjects’ behavior and 
their reaction to the stimuli. The combination of advanced signal processing, through SWD, and data mining 
and deep learning, through clustering and CNNs, respectively, has been proved to be quite interesting, providing 
efficient classification performances, both for two- and four-class problems. This confirms the initial assumptions 
that there is useful and substantial behavioral information at raw HD EEG waveforms and their SWD-based 
OCMs representations and that the use of a CNN could be able to recognize the underlying patterns and reveal 
such information. The results indicate that the subjects exhibited different brain activity when they witnessed 
bullying-related scenes and no bullying-related ones, probably affected by the triggering of their mirror neuron 
system in the case of bullying stimuli, due to increased empathy level. This was reflected in the interviews of 
the participants, from where it was deduced that all subjects distinguished between bullying and non-bullying 
pre-verified stimuli, since all target stimuli were correctly verified by them during the interview. Apparently, a 
variation in the effective empathy level existed across the subjects; yet, this was accommodated by the power 
of the signal processing approach, by combining SWD with deep learning. Meanwhile, the hypothesis that the 
immersive environment would offer a much more realistic and vivid experience than the simple 2D video was 
validated. The latter was confirmed by all participants via a short interview that followed the experiment (see 
Experimental protocol in Methods section) and was reported to be increased when moving from the experience 
of 2D to VR stimuli. This was potentially reflected in the derived results, as, although there is a difference in 
the number of incidences involved, an increasing tendency is notable in the estimated classification accuracy 
for the case of VR, accompanied with a corresponding lower misclassification percentage, when compared to 
the 2D case. Apparently, the engagement of a VR environment can deliver far more promising results than the 
outdated solutions that are being used so far. In fact, the proposed approach could be the start of whole new set 
of possibilities in the attempts to tackle bullying and could revolutionize the way psychologists approach the 
problem. The AMANDA project (amandaproject.net) is a venture that is moving towards this goal, which pro-
poses a VR-based empathy museum, where the users encounter interactive bullying-related material, while their 
biometrics (heart-rate, RR-interval, Skin conductance) are being recorded and correlated with the stimuli. The 
implementation of EEG could further enhance the accuracy that the rest of the biometrics offer and could offer 
psychologists even better insight. This way, they could be able to provide much more targeted and specialized 
assistance to their bullying-affected patients.

As it has been shown from the results, the use of SWD for the decomposition of each electrode’s signal into 
OCMs was proved to be of crucial importance, as networks that used as an input non-decomposed data were not 
successfully trained. This could be attributed to the fact that the useful information was encoded in a complex 
way in the initial HD EEG waveforms. SWD produced simpler OCMs in a fast way, in which pattern recognition 
was much easier. This does not mean that there are no CNNs that could detect the existence of corresponding 
patterns in non-decomposed raw waveforms. However, this would require much complex networks with more 
levels and nodes, with a logical consequence of this being the higher demand on computing resources and longer 
training time.

Moreover, the use of clustering algorithms was also of equal importance for organizing HD EEG channels 
in groups based on topology 10–2033 and the distances between them. In particular, without the clustering of 
the channels, the problem of over-fitting emerged. In other words, the network trained very well in the data it 
received as an input for training but was unable to generalize its predictions for instances that differed from the 
training data. This may be due to the fact that convolutional filters on the network were applied to a number of 
channels that did not have spatial correlation with each other. However, the network practically searched for 
patterns in these channels considering the existence of this spatial information, so it resulted in finding patterns 
that were formed between non-adjacent channels, which did not record information of similar brain regions. 
Conversely, when the channels are grouped, the result of the convolutions with the filters includes encoded spa-
tial information and the patterns that appear now make sense. Among the algorithms used, k-means produced 

Predicted Class

TotalBuL2D NoBul2D BulVR NoBulVR

Actual Class

Bul2D 16.9 4.7 0 0 21.6

NoBul2D 3.5 17.3 0 0 20.8

BulVR 0 0 30.7 2 32.7

NoBulVR 0 0 1.2 23.6 24.8

Total 20.4 22 31.9 25.6 100

Table 2.  Confusion matrix for the four-class problem. The classes are Bul2D, NoBul2D, BulVR and NoBulVR. 
The values presented are percentages (%) of the test set and the whole test set comprised of 254 instances, 
52 of which belonging to Bul2D class, 56 belonging to NoBul2D class, 81 belonging to BulVR class and 65 
belonging to NoBulVR class. The corresponding classification metrics for the test set are: accuracy = 0.8858, 
precision = 0.8775, recall = 0.87475, AUC = 0.975.

http://amandaproject.net
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stronger and more consistent groupings compared to the hierarchical clustering algorithm, as the resulting groups 
have had stronger relationships between members and weaker among them, leading to better clustering results.

The results achieved in the case of the use of SWD and grouping of channels (Scn4) were particularly sat-
isfactory, both for the problem of the two and four classes. The high classification performance achieved is an 
indicator of the efficiency of the proposed approach in dealing with complex brain responses when experiencing 
bullying incidents within an immersive environment. To our knowledge, there is no other comparative approach, 
as the work described here is the first attempt that tackles such a problem, showing a good ability to identify 
bullying-related stimuli, shedding light upon the efficient use of brain responses for their identification.

A possible limitation of the proposed work refers to the subjects’ age, as they were University students of 21–24 
years old and not teenagers, an age group in which bullying incidents mostly occur. Hence, it would be interest-
ing to compare the findings from an experiment with subjects from this age group, with our current results and 
identify any differences and/or similarities due to group characteristics. Moreover, the limited number of subjects 
participated in the experiment sets an additional limitation; however, the breadth of the brain activity captured 
from each subject and the robustness of the novel approach proposed here, successfully balance such limitation. 
Furthermore, in this study, a regular computer screen was used for the 2D scenario and a mobile phone screen 
embedded within a VR headset for the VR one. Although these are distinct stimuli scenarios defined from the 
technical means involved in this study, some alternatives could also be explored, such as the use of wider 2D 
projection screens, 3D projection screens combined with 3D glasses, or mixed reality headsets (such as Microsoft 
Hololens). Probing further to the future, application of our approach to larger subject groups coming from dif-
ferent sociocultural backgrounds is foreseen, including not only controls, but pre-validated cases with different 
bullying experiences, combining the AMANDA concept of the gamified empathy museum with the simultaneous 
brain activity monitoring and psychologists’ evaluation.

Methods
HD EEG recording device.  In each of the experiments, the brain activity was recorded using the Clinical 
Geodesic EEG System 400 (http://www.egi.com/clinical-division/clinical-division-clinical-products/ges-400-se-
ries), which allows the simultaneous recording of 256 EEG channels (Supplementary Fig. S1) at a sampling fre-
quency of 250 Hz. The topology of the channels follows the 10–20 system33 and the Cz was used as the reference 
electrode.

Participants.  18 healthy subjects (11 male and 7 female) aged 21–24 years old participated in the experi-
mental process. For the case of subject #8, the signals that were recorded had either a value of zero or some other 
constant value for long time periods, which corresponded to artifacts from movement and channel mis-fitting of 
the HD EEG cap; hence, no significant part of the recordings contained any usable information. Therefore, this 
subject was removed from the continuation of the survey, and, as a result, the number of participants was reduced 
to 17. Their participation was voluntary and anonymous, while retaining the right to withdraw from the experi-
mental process at any time. Informed consent was obtained from all subjects involved in the study.

Experimental protocol.  In the context of the experimental protocol, two types of visual stimulation were 
used, namely 2D and VR. For 2D video visual stimulation (experiment T1), videos created by “The Smile of 
the Child” and by the 47 pupils of the High School in Pafos were used (https://www.youtube.com/watch?v=v-
F5OqFpp2Yw, https://www.youtube.com/watch?v=uMIdjgCE18o, https://www.youtube.com/watch?v=2LNLp-
gaHsWM, https://www.youtube.com/watch?v=YC61XD9LV3E). For the VR stimulation (experiment T2), videos 
designed and created at the Arsakeio Lyceum of Thessaloniki for the purpose of this experiment were used. The 
sound from all the visual stimulations was removed, with the aim that the emotional response of the subjects 
arises only from the visual content of the stimuli and not from a possible coupling to the music. The stimulations 
contained bullying-related stimuli (bul), as well as non bullying-related ones (nobul), with neutral emotional 
content, pre-verified by two expert psychologists. Moreover, the content of the videos used was based on guided 
scenarios that a priori were focused at the maximization of the emotional effect regarding bullying incidences. In 
particular, in the 2D case (experiment T1), the stimulus was displayed on a computer screen. In the first 20 sec-
onds the subjects focused their eyes on a black background. They then watched 14 bullying-related incidences, 
with scenes of neutral emotional content (nobul) coming in between them. In the case of VR (experiment T2), the 
stimulus was viewed on a mobile, using three-dimensional video viewing software and a VR headset (http://www.
homido.com). The first 20 seconds the subjects focused their eyes on a black background. Then they watched 15 
bullying-related incidences, with scenes of neutral emotional content (nobul) coming in between them. HD EEG 
recordings, automatically synchronized with the visual stimuli, were acquired during the whole session, in both 
cases of T1 and T2. All participants, after each experiment, were interviewed regarding the level of empathy they 
felt during T1 and T2, in order to secure the correct identification of the target stimulus, i.e., no bullying/bullying 
stimulus. All the experimental protocols were approved by the Ethical Committee of the Aristotle University 
of Thessaloniki, Greece. All the experiments and recruitment were carried out in accordance with the relevant 
institutional guidelines.

Data Preprocessing.  The initial preprocessing included filtering at 0.3–30 Hz, artifact detection, bad chan-
nel replacement, baseline correction and segmentation, which are standard steps in EEG data preprocessing. 
Afterwards, a second set of preprocessing steps, which are suitable for the particular research problem, were 
applied. Specifically, the HD EEG data were processed, in order to have a format suitable for SWD and then to 
be used as input to the CNN. The initial data had the following format: 256 × 256 × 14 × 17 (channels × sam-
ples × trials × subject) for the experiment T1 and 256 × 192 × 16 × 17 (channels × samples × trials × subject) for 
the experiment T2.

https://www.youtube.com/watch?v=vF5OqFpp2Yw
https://www.youtube.com/watch?v=vF5OqFpp2Yw
https://www.youtube.com/watch?v=uMIdjgCE18o
https://www.youtube.com/watch?v=2LNLpgaHsWM
https://www.youtube.com/watch?v=2LNLpgaHsWM
https://www.youtube.com/watch?v=YC61XD9LV3E
http://www.homido.com
http://www.homido.com
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To begin with, every signal was normalized by subtracting its mean value and dividing by its maximum value. 
A highpass filter at 7 Hz was then applied, so to avoid lower frequencies which could affect the speed of conver-
gence of SWD algorithm. Subsequently, the signals were downsampled at 128 samples, from 256 and 192 for 
experiments T1 and T2 respectively, with the purpose of a faster SWD implementation.

SWD.  After data preprocessing, each signal was decomposed with SWD. The following parameters were used 
for SWD: Pth = 0.2, StDth = 0.125, Welch_nfft = 64, Welch_window = 64, Welch_no_overlap = 32. For every sig-
nal, a number of OCMs were produced. The first three OCMs were kept, while the rest were discarded, as they did 
not convey useful information. This way, at this point, the data had the following format: 256 × 128 × 3 × i (chan-
nels × samples × OCMs × sequential index for data used as input to the CNN). An example of the application of 
SWD on an EEG signal, both in time and frequency domains, is pictured in Fig. 2. From the latter (Fig. 2(b)), the 
localization in the frequency domain of each OCM is obvious.

Channel Clustering.  CNNs are usually used for image classification tasks. Consequently, the attempt to 
not only transform the HD EEG Data in a format suitable for CNN input but also take advantage of CNNs ben-
efits sets a great challenge. The target was to extract useful information from both the temporal and the spatial 
dimension. Images include spatial information, since adjacent pixels represent areas of the real object which are 
in an equivalent distance apart. For each trial, a three dimensional matrix/image with dimensions C × τ × i was 
assumed, where C was the channels axis, τ was the samples axis and i was the OCMs axis. Therefore,the convolu-
tional filters, that have a size greater than 1 in the channels axis, would convolve with neighboring channels, thus 
taking into account the spatial information among the electrodes. This kind of spatial information could prove to 
be very useful, since a single channel may miss the activity of an underlying brain structure, which will be recog-
nized from the convolution with the neighboring channels.

Thus, arises the problem of representing the neighboring channels in such a way that the application of the 
convolutional filters is in line with the anatomical reality. Each electrode can be considered as a pixel positioned 
relatively to the other electrodes along the length and width of the skull. The large number of electrodes (256) 
covers the entire extent of the skull and there is no need for zero-padding or interpolation in the pixels that do 
not correspond to electrodes.

The method that is used, which is based on34, proposes a channel clustering according to the distances between 
them. The clustering applied is such a way that no electrode belongs to more than one group and the sum of the 
distances between the electrodes belonging to the same group is minimized. In this way, a convolutional layer can 
be defined that integrates the spatial information of electrodes located above similar brain regions. The k-means 
algorithm was used to group the electrodes into clusters. The Euclidean distance was used, as the electrodes 
have coordinates and form a geometric pattern. The number of groups was k = 19, according to the 19 areas 
defined by the 10–20 system. The coordinates of the electrodes that are considered representative for each of the 
regions defined by the system 10–20 were used as the initial centroids. The resulting clustering can be found in 
Supplementary Fig. S2.

CNN Structure.  The CNN structure35 that was used was a convolutional layer, followed by a pooling layer 
and then a fully connected layer and logistic regression for classification. More specifically, the convolutional layer 
is defined to have 30 8 × 8 filters. This means that each filter is applied along eight channels and eight time sam-
ples. This layer is followed by a max-pooling layer that involves a 3 × 3 matrix along the time and space axes. For 
instance, using a window of τ = 128 time samples, an input instance would be x ∈  ×256 128. A filter in the convo-
lutional layer transforms x into x ∈  ×249 121, where the time dimension has a size of (128 − 8) + 1 = 121 and the 
space dimension (256 − 8) + 1 = 249.

After the convolutional layer comes the max-pooling layer which is comprised of a 3 × 3 max-filter that shifts 
across the time and space axes with a stride of 2. Therefore, the output has (121 − 3)/2 + 1 = 60 time samples and 
(249 − 3)/2 + 1 = 124 space samples, thus leading to x ∈  ×124 60.

Figure 2.  The first waveform is the initial signal, while the next three are the OCMs that the initial signal was 
decomposed in and the fifth waveform is the residual.
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This layer is succeeded by a fully connected level of 2 or 4 nodes (depending on the problem). These nodes are 
used in an logistic regression (softmax) to classify the output. Every layer uses a ReLU activation function. The 
error function used for all outputs is defined as the cross entropy loss function. The CNN’s structure is displayed 
in Fig. 3.

Data Availability.  All data generated and analyzed during the current study are available from the corre-
sponding author on a reasonable request.
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