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In the last 20 years there has been an increased interest in estimating signals that
are sent between neurons and brain areas. During this time many new methods have
appeared for measuring those signals. Here we review a wide range of methods for
which connected neurons can be identified anatomically, by tracing axons that run
between the cells, or functionally, by detecting if the activity of two neurons are correlated
with a short lag. The signals that are sent between the neurons are represented by the
activity in the neurons that are connected to the target population or by the activity at
the corresponding synapses. The different methods not only differ in the accuracy of
the signal measurement but they also differ in the type of signal being measured. For
example, unselective recording of all neurons in the source population encompasses
more indirect pathways to the target population than if one selectively record from
the neurons that project to the target population. Infact, this degree of selectivity is
similar to that of optogenetic perturbations; one can perturb selectively or unselectively.
Thus it becomes possible to match a given signal measurement method with a signal
perturbation method, something that allows for an exact input control to any neuronal
population.
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INTRODUCTION

Ideally the neuroscientist ought to understand how all the inputs to a population affect its output
activity (Jonas and Kording, 2016). A pragmatic version of this goal is to compare the importance
of one specific input (S), to all remaining inputs (B) in generating the output activity in population
(T; Figure 1A). The background input (B) can potentially be estimated using optogenetic inhibition
(Eriksson, 2016). Here we will review methods for estimating the complementary specific input
signal which originates from the source population (S).

Since the specific signal governs the activity in the target population it might be tempting
to estimate the specific signal by inhibiting it and measuring how the target activity changes.
The resulting change may have very little to do with the specific signal (Lien and Scanziani, 2013).
To illustrate this one can imagine that the specific signal conveys a simple trigger that starts a
complex computation in the target population. When the specific signal is inhibited the activity in
the target population is radically simplified and one would falsely conclude that the specific signal
is a complex signal. To be able to detect such non-linear effects it is crucial to measure the specific
signal directly.
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FIGURE 1 | Continued
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FIGURE 1 | Inputs to population (T). (A) The complete input to a neuronal
population (T) can be divided into a background input and a specific input (S).
(B) Indirect to direct spectrum of inter-cellular signaling. The indirect route
goes via indirect neurons (I). Left: activity is recorded in neurons (S) that have a
polysynaptic path to the target (T). Middle: activity is recorded in neurons that
have a direct connection to (T). Some of those neurons may also send
collaterals elsewhere, hence contributing to the indirect activity. Right: synapse
specific recordings allows quantification of the direct input to the target neuron
exclusively while sparing indirect paths. (C) Functional connectivity between
(S) and (T) is crucially dependent on the type of neuronal activity to which the
connectivity measure is applied (rows). Correlated activity in terms of slow
wave sleep generates a strong spike incidence at zero lag (first row),
correlated activity in terms of high frequency gamma oscillation generates a
spike incidence with a periodicity (second row), decorrelated activity is more
likely to give a high spike incidence at the lag defined by the connection (third
row), and experimentally induced single pre synaptic spikes are more likely to
show a spike incidence only at the lag defined by the connection (fourth row).
Postsynaptic activity is either spikes (black) or membrane potential (gray).
(D) Hypothetical cross-correlations between (S) and (T) for the different spiking
activity types shown in (C). The delay of the connection is indicated by a blue
vertical line. (E) Hypothetical cross-correlations between (S) and (T) for the
different spike-membrane potential activity types shown in panel (C). (F) For
somatic phototagging the light should be small and directed towards the
electrode tip (top). The larger the emitter is the larger the population spike (red)
will be (bottom). (G) For axonal phototagging a small light source may miss the
axon of the recorded neuron. The recorded action potential will therefore be of
low amplitude (top). Instead the light source may be large and positioned
somewhere in the target area (bottom). Although many neurons will be
activated the axonal conduction velocity heterogeneity separates the spikes in
time.

In the first two sections we review mathematical and
anatomical approaches for identifying projecting neurons. Their
activity represent the specific signal. The first section deals with
mathematically oriented methods which typically identifies both
direct and indirectly connected neurons (Figure 1B left). In
the second section we review experimentally oriented methods
for identifying directly connected neurons primarily, although
some of the identified neurons will inevitably send collaterals to
indirect targets (Figure 1B middle). In the last section we review
imaging methods for measuring the specific signal directly at the
synapse (Figure 1B right).

UNSELECTIVE RECORDING

The experimentally least demanding method for approximating
the unspecific direct and indirect signal that is running from
the source to the target population is to insert one extracellular
electrode array in each population. Linear and non-linear
mapping methods can then be used to identify source units
that convey information about the activity of the target units
(Aggarwal et al., 2009; Graf et al., 2011; Aggarwal et al., 2013;
Haxby et al., 2014; Kaufman et al., 2014). A problem with
mapping methods is that although the source units convey
information about the target units, this may not be because
they send information to the target units, but because they
receive information from them. Therefore such methods are
suitable to apply for pathways with a large delay such that the
lag between source and target can be used to infer causality.
Granger causality partially solves this problem since it takes the
(causal) history into account. It requires relatively little data, and

is typically used for linear interactions. To deal with nonlinear
interactions, the more data intensive method called transfer
entropy is applied (Vicente et al., 2011). To control for the
influences of a third area (the common source problem) one
can condition the interaction estimation on recordings done in
additional areas (Bastos et al., 2015). Even non-simultaneous
recordings in overlapping areas can be ‘‘stitched’’ together to
provide a more complete description of the interaction (Soudry
et al., 2013; Turaga et al., 2013). Finally if one has the luxury to
choose from a few well defined and constrained models, one can
apply dynamic causal modeling to identify which of those models
best describe the interaction between the source and the target
population (Pinotsis et al., 2012; Friston et al., 2013; Kobayashi
and Kitano, 2013; Roudi et al., 2014).

For short range interactions the local field potential (LFP)
may be an additional unspecific factor that influences the
activity in the target population. The extracellular electric fields
generated by neuronal activity are strong enough to modulate
membrane potentials and spiking probabilities (Fröhlich and
McCormick, 2010; Anastassiou et al., 2011). To quantify the
relation between the spiking activity and the extracellular
electrical field one can average the LFP across the spikes
(Nauhaus et al., 2009; Rasch et al., 2009). A perfect match
between the spike and LFP is not expected, though, since the
LFP is the combined result of neurons and glia (Anastassiou
and Koch, 2014). Nevertheless, LFP frequencies below 15 Hz are
the easiest to predict (Nauhaus et al., 2009; Rasch et al., 2009).
This fits well with the fact that spike entrainment is particularly
effective for ephaptic field frequencies below 8 Hz (Anastassiou
et al., 2011). The predicted LFP components give information
about how the membrane potential and spiking probability is
modulated (Anastassiou et al., 2010; Okun et al., 2010; Haider
et al., 2016). Since the LFP changes across different cortical layers,
and since neurons are sensitive to those spatial changes, the
LFP should preferably be recorded using a laminar electrode
(Anastassiou et al., 2010; Linden et al., 2011). To summarize,
both individual neurons and ephaptic effects can contribute to
the unselective signaling between two neuronal populations. The
reviewed mathematical methods can be used to identify which
neurons are important, and/or whether ephaptic effects should
be taken into account, for understanding the target activity (see
Figures 2A1–5).

SELECTIVE SOMATIC RECORDING

Here we review functional and anatomical methods to find
neurons that directly connect to a certain population of neurons
(see Figures 2A6–10). Once those neurons have been identified,
their activity can be used to infer the inter-cellular signal.

Functional Techniques
We will focus on cross-correlations between the pre- and
postsynaptic neurons for estimating neuronal connectivity
(Perkel et al., 1967; Ts’o et al., 1986; Fujisawa et al., 2008; Berényi
et al., 2014). With the introduction of multi-channel extracellular
recordings those methods have been used to estimate short
and long range connectivity (Berényi et al., 2014), feedforward
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FIGURE 2 | Continued
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FIGURE 2 | Methods for finding direct and indirect pathways.
(A) Summary of 13 methods for estimating inter-cellular signals. To measure
the inter-cellular signals one needs to identify the projecting neuron (1–10), or
connecting synapse (11–13). (a) For the functional methods connected
neurons are found most reliable if the neuronal activity in both the source and
the target area is decorrelated (1–7). For the anatomical methods, such as
photo tagging and neurite reconstructions, the neuronal activity is not used
and, as such, is not a limiting factor (8–13). (b) The functional methods can be
divided into those that extract linear relationships between the source and the
target population, and those that extract non-linear relationships. (c) Transfer
entropy extracts non-linear relationships and is therefore data intensive.
(d) Dynamic causal modeling relies on modeling assumptions. (e) Methods
that identify projection neurons with mathematical means will typically result in
a large number of indirectly connected neurons. (f,g) The suitability for finding
short and/or long range connectivity. Somatic- and axonal photo tagging of
short range connections within 200–500 micro-meter is limited by virus
diffusion (∗). Anatomical reconstruction of long-range axons using
electronmicroscopy is extremely resource intensive (∗∗). (h) Decoding methods
can only give causal information if the connection between source and target
is directed and having a long delay. Anatomical based methods (8–10) and
those that extract the activity in the synapse (12–13) can most reliably identify
causal/projecting neurons. Calcium hot-spot derived post synaptic activity
may be influenced by back propagating action potentials and is therefore less
suited for identifying causal activity (∗∗∗). (B) The total input to a neuron from
fast and slow chemical synapses, astrocytes, vasculatures, extracellular ions,
ephaptic signals and gap junctions can be divided into a specific signal (blue,
top) and a background signal (green, bottom). In this review article, we have
focused on how to estimate the specific input from fast chemical synapses,
gap junctions and ephaptic effects. The background input can be addressed
by inhibiting the specific signal. Since optogenetic inhibition has a faster onset
than the feedback time of astrocytes, vasculature, slow chemical synapses,
and the responses of extracellular ions, optogenetic inhibition can be used to
estimate their input contribution (Eriksson, 2016). To cover all inputs to the
neuron a rough guideline is to inhibit and record the same signal. For example,
if selective synaptic/axonal inhibition is used for estimating the background
input, in which only direct pathways will be affected, it is preferable to estimate
signal (S) using the synaptic activity based methods (A11–A13). (C) If selective
somatic inhibition is used for estimating the background input, in which
relatively few indirect pathways will be affected, it is preferable to estimate
signal (S) using selective somatic recordings (A6–A10). (D) If unselective
somatic inhibition is used for estimating the background input, in which many
indirect pathways will be affected, it is preferable to estimate signal (S) such
that the effect of indirect pathways can be estimated (A1–A5).

connectivity from primary visual cortex to secondary visual
cortex (Zandvakili and Kohn, 2015) and local connectivity
(Isomura et al., 2009). Although general correlations in neuronal
data can be tested for significance using powerful mathematical
methods (Grun, 2009), we argue here that it is crucial to
acquire data that is suitable for applying cross-correlation
techniques. We will cover endogenous/spontaneous activity
caused by the brain itself, and exogenous activity caused by
the experimenter.

Cross-correlations have a limitation whereby detected
relationships may not correspond to real anatomical
connections. For example, a third brain area targeting the
neuronal pair of interest could generate spurious connections
(i.e., the common source problem). Importantly, the number of
spurious connections is dictated by the brain state (Figure 1C).
For slow wave sleep the activity of different neurons co-vary
with zero-lag (first row in Figures 1C–E). Close to 100% of
those apparent connections will be false positives because they
are not anatomically connected. For a more decorrelated (or

random) spontaneous activity, a more reasonable estimate
of the connection probability of 0.3%–0.5% is obtained for
spiking activity in vivo (Fujisawa et al., 2008; Zandvakili and
Kohn, 2015). Using in vitro patching a larger connectivity
probability of 2% is seen between pyramidal cells which may
be explained by the more sensitive post synaptic potential
(Nowak et al., 1999; Holmgren et al., 2003; Song et al., 2005;
Fujisawa et al., 2008). Even during the more decorrelated
state typically associated with sensory stimulation there are
detectable correlations between neurons that are not necessarily
connected in the anesthetized animal (Yu and Ferster, 2010),
and in the awake animal (Fries et al., 2001; Ray and Maunsell,
2010; second row in Figure 1C). Therefore, although the brain
automatically randomize/decorrelated activity by means of
heterogenous populations of neurons and inhibitory neurons
(Padmanabhan and Urban, 2010; Renart et al., 2010; Tetzlaff
et al., 2012; Bernacchia and Wang, 2013), in some cases it may
be advantageous to artificially decorrelate neurons (third row in
Figure 1C). Decorrelation has previously been accomplished by
optogenetically injecting a one-dimensional noise signal (Han
and Boyden, 2007). In the future, the degree of decorrelation
might be enhanced using various light-sculpting approaches
(Rickgauer and Tank, 2009; Dal Maschio et al., 2010; Zahid
et al., 2010; Katona et al., 2012; Quirin et al., 2013; Schrödel
et al., 2013; Rickgauer et al., 2014). Even single neurons can
be selectively activated by the experimenter (fourth row in
Figure 1C; Rickgauer et al., 2014; Szabo et al., 2014; Packer et al.,
2015).

For estimating connectivity, the background input to a
neuron is both beneficial and problematic. The background
input creates spurious connections and adds variability to the
connectivity estimation. On the other hand, this input may be
crucial for the generation of action potentials; thus, without
this input it would be impossible to detect a connection using
extracellular recordings or calcium imaging. One alternative
is to provide this additional input via artificial stimulation.
The firing threshold can be decreased using two-photon
stimulation of a single postsynaptic neuron (Prakash et al.,
2012). A small number of postsynaptic neurons can now
be activated, and even decorrelated, in similar ways using
light patterning methods (see references above). The sparse
activation practically eliminates the problem of common source
input. Also sparse activation of presynaptic neurons may be
beneficial when studying weak long range connections. To
this end, projection neurons may be selectively stimulated
through retrograde labeling (Wickersham et al., 2007a,b;
Reardon et al., 2016). Overall, it may be pragmatic to try
to measure connectivity in terms of postsynaptic spikes,
since spikes are reliably detected using two-photon imaging
of calcium indicators or with dense extracellular recordings,
something which is not yet established with voltage indicators
in vivo.

Ultimately, connectivity should be estimated in terms of the
postsynaptic potential (Figure 1E). Ongoing attempts combine
whole-cell recordings with selective two-photon stimulation of
potential presynaptic cells (Packer et al., 2012). The yield for
these whole-cell recordings may be increased through the use of
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patching robots, which may allow for the simultaneous patching
of multiple neurons (Kodandaramaiah et al., 2012). Furthermore,
fluorescent voltage markers might allow for the recording of
membrane potentials across multiple neurons via two-photon
imaging (Akemann et al., 2012; Knopfel, 2012; Flytzanis et al.,
2014; St-Pierre et al., 2014; Vogt, 2014; Yang and St-Pierre,
2016).

Anatomical Techniques
Neurons that project to a specific target area can be found
by anatomical means. To this end a retrogradely transported
virus expressing an excitatory opsin is injected in the target
area (Zhang et al., 2013; Figure 1F), or a specific cell type is
targeted using transgenic animals (Lima et al., 2009). A brief light
pulse will then evoke a spike in expressing neurons (Lima et al.,
2009). If a spontaneously evoked spike matches this light evoked
spike waveform then it is assumed that it was generated by
the expressing neuron. The problem is that multiple expressing
neurons will fire simultaneously to the brief light pulse such
that spike sorting becomes difficult. Even neurons far from
the electrode may show up in the population spike, since the
number of neurons increases with distance (Du et al., 2011).
Therefore one should use a small optical fiber to illuminate as
small a volume as possible (Stark et al., 2012, 2014; Pi et al.,
2013; Wu et al., 2015). Indeed, the required emitting light
power for evoking a spike can be reduced by several orders
of magnitude if the emitter is decreased in size, indicating a
large increase in selectivity (Buzsáki et al., 2015), and somatic
stimulation (Wu et al., 2015). Indirectly activated neurons can
be detected by means of the spike jitter since it will in general
be larger for an indirect activation than for a direct activation
(Zhang et al., 2013). Synaptic antagonists can be used to block
indirect activation (Lima et al., 2009; Zhang et al., 2013). To
avoid the population spike photo-tagging can be done with
inhibition instead of excitation (Courtin et al., 2014). Here
the latency until spike cancelation is indicative of an indirect
or direct inhibition. In addition the Becquerel effect can be
subtracted since it will not be time-locked to the spontaneous
spikes.

Projection neurons can also be found by infecting the source
area with an excitatory opsin and by evoking an anti-dromic
spike in the projecting neurons by illuminating the axonal
terminals (Sato et al., 2014; Li et al., 2015; Figure 1G). The
fundaments for this technique were laid out several decades ago
when researches started to use anti-dromic electric stimulation
of axons (Miller, 1975; Cleland et al., 1976; Lipski, 1981; Ferster
and Lindström, 1983). Although, electrical stimulation is simpler
than optogenetic stimulation it may require comparable higher
stimulation intensities since the electric field decays quicker
over space than the photon distribution. Indeed, in a beautiful
study of geniculo-cortical connectivity it was noted that the
electrical stimulation had to be so strong that it sometimes
leads to small lesions (Ferster and Lindström, 1983). Typical
light intensities may at worst cause reversible changes in
neuronal activity (Stujenske et al., 2015). In comparison to
the retrograde approach in which a virus is taken up by the
presynaptic terminals, the axonal stimulation approach may run

the risk of stimulating en passant axons. Furthermore, it may
be difficult to know where the emitter should be placed given
the location of the recorded neuron (in the retrograde approach
the emitter should be placed where the neuron/electrode is;
Figure 1G). Instead it might be advantageous if the emitter
is very large such that many axons are stimulated. Note that
the population-spike is weaker for axonal stimulation since
the relatively large heterogeneity of axonal conduction delays
separates the evoked spikes in time. Axonal phototagging also
has the advantage that the number of target structures is not
constrained by the number of opsins with non-overlapping
wavelengths (e.g., blue and red depolarizing opsins Yizhar et al.,
2011; Lin et al., 2013; Klapoetke et al., 2014; Emiliani et al.,
2015), as is the case for the retrogradely transported opsin
approach. To assure the identity of the sorted unit one can
do a collision test (Ciocchi et al., 2015; Li et al., 2015), and
to control for collaterals one can assure a low spike jitter,
and/or apply synaptic blockers (Sato et al., 2014). Although
the choice between somatic or axonal phototagging depends
on the question at hand, there is so far no study that has
systematically studied the advantages and disadvantages of those
two approaches.

It is possible to approximate neuronal connectivity based
on axonal and dendritic reconstructions (Stepanyants and
Chklovskii, 2005). Typically, the distance between neurites
indicates whether there is a synapse. Similarly to the functional
approaches discussed above, this anatomical approach may
produce both false negatives and spurious connectivity
(Stepanyants and Chklovskii, 2005). Dense extracellular
recordings may allow the position of a recorded cell group to
be estimated and matched to histology (Blanche et al., 2005;
Scholvin et al., 2016). Various tissue-clearing approaches may
increase the chance of finding a match between an extracellularly
recorded cell and a histologically-identified cell, since the brain
remains intact and therefore is minimally distorted (Chung
et al., 2013; Ke et al., 2013; Miyawaki, 2015). Finally, in one
intriguing study, electron microscopy was used to reveal
reconstructed connections in a 350 µm × 450 µm × 52 µm
block of tissue, combined with two-photon calcium imaging of
the corresponding tissue (Bock et al., 2011). If done properly
the electron microscopy reconstruction will generate a negligible
number of spurious or false negative connections (Denk and
Horstmann, 2004; Jurrus et al., 2009). Recent developments
could facilitate reconstruction within a larger volume, if not
the entire mouse brain (Hua et al., 2015; Mikula and Denk,
2015).

AXONAL/SYNAPTIC RECORDING

Since the projection signal can be seen as synaptic activity,
another approach is to measure the activity in and around
the synapse (see Figures 2A11–13). The post-synaptic activity
gives a localized activity in terms of a hot-spot (Jia et al.,
2010; Chen et al., 2011). Although this activity is related to
the synaptic activity it is also dependent on the postsynaptic
activity such as back propagating action potentials (Jia et al.,
2010). Calcium activity in the axonal terminal is much less
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influenced by the postsynaptic activity (Andermann et al.,
2013; Gunaydin et al., 2014). It is even possible to target
individual axon terminals with two-photon axonal calcium
imaging (Cruz-Martin et al., 2014). Finally, to address synaptic
depression and facilitation (Markram and Tsodyks, 1996;
Tsodyks and Markram, 1997), it might be optimal to measure
the neuro transmitter release (Schulze et al., 1999; Nguyen
et al., 2010). Recent, fluorescent markers for glutamate
showed both cellular (synaptic) and millisecond resolution
(Marvin et al., 2013). A future possibility is to measure the
neurotransmitter in identified synaptic clefts by means of
a genetically encoded presynaptic fluorescent marker and a
genetically encoded postsynaptic transmitter marker (Lin and
Schnitzer, 2016).

CONCLUSION

Here we have reviewed ways to estimate the signal that runs
from one neuronal population to another. Some of the methods
are suitable to estimate the combined contribution from mono-
and poly-synaptic signals that run along direct and indirect
pathways, whereas othermethods can be used to selectively target
the direct mono-synaptic signal between the two populations.
This wide range of methods allow the researcher to tailor
his/her experiment to the question at hand. In particular, if

one wants to inhibit and record a specific input, one can tailor
the input recording method to match the inhibition method
(Figures 2B–D). If we inhibit and record the same input
we will have an excellent control of the input to the target
population.
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