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Restoring the normal structure and function of injured tendons is one of the biggest
challenges in orthopedics and sports medicine department. The discovery of tendon-
derived stem cells (TDSCs) provides a novel perspective to treat tendon injuries, which is
expected to be an ideal seed cell to promote tendon repair and regeneration. Because
of the lack of specific markers, the identification of tenocytes and TDSCs has not been
conclusive in the in vitro study of tendons. In addition, the morphology of tendon derived
cells is similar, and the comparison and identification of tenocytes and TDSCs are
insufficient, which causes some obstacles to the in vitro study of tendon. In this review,
the characteristics of tenocytes and TDSCs are summarized and compared based on
some existing research results (mainly in terms of biomarkers), and a potential marker
selection for identification is suggested. It is of profound significance to further explore
the mechanism of biomarkers in vivo and to find more specific markers.
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INTRODUCTION

Tendons, the connective tissue that connects muscle to bone, improve stability and promote
movement, but are also particularly vulnerable to damage (Elliott, 1965). Tendons are generally
hypocellular, thus may lack of adequate cellularity for sufficient healing (Tang et al., 2016). The
healing of tendon injuries is very slow and scar tissue forms easily, which reduces the toughness of
the tendon, thus affecting the mechanical properties of the tendon (Evans, 2012). It is more likely for
injured tendons to be damaged again after repair (Longo et al., 2011). In addition, chronic injury can
result in many degenerative changes of the tendon, such as single or simultaneous lipid deposition,
proteoglycan accumulation and tissue calcification, and finally leads to tendinopathy (a chronic
tendon injury) (Kannus and Józsa, 1991). Moreover, tendon adhesion is a common complication
after tendon injury, which can seriously affect the patient’s limb function. Our understanding of the
mechanism of tendon adhesion is still limited (Wong and Peck, 2014), making tendon adhesion a
complex clinical problem.

Bi et al. (2007) reported to isolate a cell population termed tendon stem/progenitor cells (TSPCs)
(also regarded as tendon-derived stem cells (TDSCs)] from human and mouse in 2007, which shows
characteristics of stem cells such as multipotency, clonogenicity, and self-renewal capacity. Since
then, how to effectively activate the endogenous or transplanting TDSCs and promote the proper
differentiation has become a new way to treat tendon regeneration after injury (Leong and Sun,
2016). Although there are many studies on TDSCs, the identification of TDSCs is lack of specificity
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and consensus (Walia and Huang, 2019). Besides, the isolation of
tenocytes and TDSCs follows the similar cell extraction protocol.
However, in most of the literature, no distinction is made between
the two types of cells (Cao et al., 2002; Wang et al., 2008; Chen
et al., 2012). Some authors suggest the acquired cells are tenocytes
while others think of them as TDSCs, making a conflict about
what the cells really are. And there is a lack of comparison of
tendon derived cells, with only three studies directly comparing
tenocytes and TDSCs in the horse (Williamson et al., 2015),the
rabbit (Zhang and Wang, 2010), and the mouse (Lee et al., 2018).
This leads to a lack of accurate awareness between tenocytes and
TDSCs, which is not conducive to further research.

This article aims to discuss the marker expression,
morphology and application of tenocytes and TDSCs based
on current documents, and summarize the potential methods
for distinction and identification of tenocytes and TDSCs.
According to the limitation of existing research, the future
direction is proposed.

TENOCYTES

Tenocytes are tendon-specific fibroblasts and are considered
to be made up approximately 95% of tendon tissue (Kannus,
2000). How tenocytes are produced during embryo development
remains unclear (Ma et al., 2018). Tenocytes are transformed
from tenoblasts (Kannus, 2000). The tenoblasts are round cells
with large, oval nuclei (Luesma et al., 2020). Mature tenocytes are
spindle-shaped, 80–300 in diameter, and the processes are long
and thin (Franchi et al., 2007). The cellular processes extend away
from the body of the cell, making the tenocytes look like spiders
from transection view. Tenocytes are laid between collagen fibrils
and are in charge of the production of extracellular matrix (ECM)
as well as maintenance and restore of tendon tissue (Hess et al.,
1989). Tenogenic differentiation markers are commonly used for
the identification of tenocytes.

Scleraxis (Scx) and Tenomodulin (TNMD) are confirmed to
be relatively specific molecular markers of tendons and make
a central role in the development and maturation of tendons
(Aslan et al., 2008). Scx is a basic Helix-Loop-Helix (bHLH)
transcription factor, found by Cserjesi et al. (1995) using the yeast
two-hybrid system for cell-type-specific proteins in 1995. Brown
et al. (1999) used whole-mount in situ hybridization to show that
Scx could be detected in the blastocyst at 3.5 day at the earliest
and expressed in the mesoderm at 7.5 day, while after 11.5 day,
Scx was confined to the cartilaginous primordia of axial and limb
bones and the primordia of connective tissues such as tendon
and ligament. Scx is widely expressed in connective tissue cells
and is a marker of connective tissue (Muir et al., 2005; Levay
et al., 2008). Murchison et al. (2007) produced Scx−/− mice
using gene knockout techniques, which showed severe defects
in force-transmitting tendon of paws, backs and tails. Lessened
and disorganized tendon matrix and disorder at the cellular
level were also found with histological observation. Scott et al.
(2011) constructed a murine patellar tendon injury model, and
results of qPCR revealed that the expressions of Scx and TNMD
were significantly up-regulated, while the latter lagged behind the

former in time, indicating that Scx had effect on TNMD. Thus it
can be seen that Scx begins to be expressed at the early stage of
embryonic development and produces a regulatory effect on the
process of tendon maturation.

Tenomodulin is a kind of type II transmembrane
protein first reported by Shukunami et al. (2001). TNMD
and Chondromodulin-I (ChM-I) are similar in structural
configuration, sharing a homologous domain C-terminus (Hiraki
et al., 1997). Its name comes from tenocytes, because TNMD is
mainly expressed in tendons, as well as in ligaments, epimysium
and skeletal muscle (Brandau et al., 2001). As mentioned above,
TNMD is identified as a late tendon differentiation marker
compared to Scx for early tendon differentiation (Takimoto
et al., 2012). Oshima et al. (2004) used the adenovirus expression
system to force expression and the following secretion of 116
amino acids at the TNMD C-terminus in human umbilical vein
endothelial cells (HUVECs) and evaluate the anti-angiogenetic
properties of TNMD. The result showed that the angiogenetic
ability of HUVECs was dramatically impaired. Meanwhile,
in vitro studies have found that TNMD and ChM-I can
significantly reduce the vascular density in human melanoma.
Therefore, it is speculated that TNMD functions in inhibiting
angiogenesis in the highly expressed non-vascular tissues such
as ligaments and tendons. Docheva et al. (2005) bred TNMD-
defect mice by gene knockout technology, and found that the
proliferation of tenocytes in mice was observably reduced and
cell density was decreased. ECM, including collagen type I, II,
III, VI, and all sorts of proteoglycan content is not affected,
but the difference between collagen fiber diameter increased,
appearing fibers with an obviously large diameter. It can be seen
that TNMD can regulate the proliferation of tenocytes and the
maturation of collagen fibers.

Besides Scx, Mohawk (Mkx) is another important regulator of
TNMD, since a markedly decreased expression of TNMD could
be observed in Mkx(−/−) mutant mice (Liu et al., 2010). Mkx,
identified by Anderson et al. (2006), is a homobox gene that is
most closely related to IRX gene. The absence of Mkx can lead
to heterotopic ossification of the Achilles tendon within a month
after birth in mice, and the ossification gets worse with age (Liu
et al., 2019). Moreover, Mkx(−/−) mutant mice showed abnormal
tendon sheath and the defect of tendon collagen fibers, revealing
that Mkx is an important regulator of tendon development
(Liu et al., 2010).

Type I collagen (Col I) and type III collagen (Col III)
are other two matrix genes for tenogenic differentiation. Col
I is originally synthesized as procollagen, a precursor form,
consisting of two identical pro-α1(I) and one pro-α2(I) chains,
encoded by COL1A1 and COL1A2 gene, respectively (Lu et al.,
2019). Col III is made up of three identical pro-α1(III) encoded
by COL3A1 (Gelse et al., 2003). Tenocytes compound mainly
Col I and Col III (Hong et al., 1979) and the major problem
encountered during long-term tenocytes culture is the decrease
in the synthesis of Col I and Col III (Birk and Trelstad, 1986).
Güngörmüş and Kolankaya (2008) used immunofluorescence
staining technique to reveal that Col I mainly existed around
the nucleus and Col III was more dispersed in the cytoplasm.
Col I and Col III play a strong part in development and
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healing of tendons, however, an excessive amount of collagen
will lead to tendon adhesions (Wong et al., 2009). Tendons are
mainly composed of Col I and the fibers are arranged along
the tendon axis (Franchi et al., 2007). Col I and Col III are
co-distributed in the tendon bundle and the connective tissue
at 14 days of development in the immature tendon (Birk and
Mayne, 1997). During the fibroblastic phase (days 3–14) of
tendon healing, the initial deposition of Col III occurs in a
disorganized manner and then reassembles into a longitudinal
structure (Wong et al., 2009). Col III is subsequently replaced
by Col I in the remodeling phase (beyond day 10) (Myer and
Fowler, 2016). Sakabe et al. (2018) found that ECM deposition
reduced and disordered Col III failed to convert to ordered Col I
at the tendon injury site of Scx−/−mice, resulting in weak tendon
healing strength and an increased degree of tendon adhesion.
Riederer-Henderson et al. (1983) identified the type of collagen
synthesized by chicken embryo tendon cells and fibroblasts
of the synovium of sheathed tendons by isotope labeling
in vitro and immunohistochemistry. It was concluded that
tendon cells only synthesize Col I, while fibroblasts synthesize
Col I and Col III.

Thrombospondin-4 (TSP-4 or Thbs4) and cartilage
oligomeric matrix protein (COMP) are members of
thrombospondin gene family (Lawler et al., 1993). Hauser
et al. (1995) found that pentameric TSP-4 consisted in bovine
tendon ECM in 1995. It was shown by Södersten et al. (2006)
that both TSP-4 and COMP existed in equine tendon and were
unable to be parted under non-reducing conditions, indicating
hetero-oligomers formed via connection of disulfide bridges.
Frolova et al. (2014) found that larger tendon collagen fibrils were
over-represented in Thbs4−/− than wild-type mice. Thbs4−/−

mice had smaller soleus muscles and reduced grip strength
of their hind and forelimbs compared with wild-type mice. It
suggests that the deficiency of TSP-4 changed the regulation
of the composition of the ECM in tendons and muscles. The
function of COMP is unclear, but it is considered to provide
integrity to the structure of ECM (Södersten et al., 2005). In
addition, COMP and TSP-4 can be expressed as an answer to
mechanical load (Södersten et al., 2007).

Decorin (DCN) is a member of small leucine-rich
proteoglycans (SLRP) family, distributed in the connective
tissues. Samiric et al. (2004) found that DCN was the core
protein of about 80% proteoglycan in fresh tendons through
amino acid sequence analysis. Svensson et al. (1995) found
that DCN mainly interacted with Col I fibrils through 4 to 5
leucine-rich repeats to influence the diameter of fibrils and form
thinner fibers. Elliott et al. (2003) studied the tail tendon of
DCN knockout mice and found that the viscoelastic properties
showed greater and faster stress relaxation in DCN−/− mice
compared to the control group. DCN also antagonizes the
synthesis of pathological collagen and plays the neutralization by
down-regulating TGF-β1 (Abbah et al., 2016).

Tenascin C (TnC) is an ECM glycoprotein existing in mature
and growing tendons (Kardon, 1998). TnC binds to a variety of
surface receptors, for instance, integrins and other components
of ECM, and thus participates in the regulation of cell-matrix
interactions (Jones and Jones, 2000). It suggests that TnC is

instrumental in the correct localization and alignment of collagen
fibers in the tendon (Mackie and Ramsey, 1996).

The tenogenic differentiation markers mentioned above are
commonly used in previous studies for tenocytes. The markers
selected for the identification of tenocytes in several different
studies are listed in Table 1. However, the expression of these
genes is not limited to tendons, they also expressed in other
musculoskeletal tissues, including cartilage, fat, muscle and bone
(Jo et al., 2019). Therefore, the specific markers of tenocytes
remain unfound, which brings difficulties to find a concise
method to identify tenocytes.

TDSCS

As stem cells, TDSCs are self-renewing and can differentiate
into tenocytes and other types of cells (osteocytes, chondrocytes,
and adipocytes) under different conditions. In terms of
cell morphology, TDSCs isolated from different tissue and
species sources are different. Some are spindle-shaped with
an appearance of fibroblasts, while others are like enlarged
triangles (Lui and Chan, 2011). The ECM of TDSCs is mainly
composed of fibromodulin, biglycan, and other components,
and the microenvironment constituted by these is significant for
the proliferation and differentiation of TDSC (Rui et al., 2011).
However, the niche (both regulators and anatomical locations),
characteristics and the role of TDSCs in vivo are still unclear (Lui,
2013). Although TDSCs have been isolated from tendons and
cultured in vitro, the origin is still a controversial topic, and no
specific markers are found.

Mesenchymal stromal cells (MSCs) must express CD105,
CD73, and CD90, and lack the expression of CD45, CD34, CD14,
or CD11b, CD79alpha or CD19 and HLA-DR surface molecules
(Dominici et al., 2006). It is one of the minimal criteria proposed
by the Mesenchymal and Tissue Stem Cell Committee of the
International Society for Cellular Therapy. Therefore, TDSCs
meet the above labeling requirements (Lui, 2015). However,
TDSCs and other MSCs and certain differentiated cells cannot
be accurately distinguished by these markers (Alt et al., 2011).
Ruzzini et al. (2014) isolated tendon-derived CD44+ cells, which
were positive for the stem cell marker CD146 and STRO1, and
reported them to be TDSCs. The exact function of most CD
markers in stem cells is unclear, causing difficulties in identifying
specific markers of TDSCs. A better comprehension of the in vivo
function of MSC markers in TDSCs will help to select appropriate
markers to distinguish TDSCs from tenocytes.

In addition to this, TDSCs are reported to express
pluripotency markers, including Nanog, Oct-4, Sox2,
nucleostemin, and SSEA-4 (Zhang and Wang, 2010; Tan
et al., 2013). Nanog was reported and officially named by
Chambers et al. (2003). Nanog belongs to the NK-2 gene of the
ANTP superfamily, which is a transcription factor expressed
by inner cell mass, primitive germ cells and embryonic stem
cells (ESCs). Studies have shown that Nanog not only help
maintain the undifferentiated state of ESCs, but also promote
cell proliferation (Hyslop et al., 2005). Oct4 (Octamer-binding
transcription factor) is named for its ability to bind to DNA of
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TABLE 1 | Expression of positive and negative markers in tenocytes in different species.

References Scx TNMD Mkx Col I Col III Col IV TnC DCN a-
SMA

vimentin GDF-
8

FAP FSP1 Sox9 Runx
2

Cell
source

Species

Wagenhäuser et al., 2012 + − + + + + Biceps
tendons

Human

Kendal et al.,
2020

Tenocyte A + + + + Multiple
tendons

Human

Tenocyte B + + + +

Tenocyte C + + +

Tenocyte D + + + +

Tenocyte E + + + +

Xu et al., 2018 + + + + + + + + Achilles
tendons

Mouse

Chen et al., 2012 + + + + + + Digitorum
profundus
flexor
tendons and
Achilles
tendons

Mouse

Fleischhacker et al., 2020 + + + + + + Achilles
tendons

Mouse

Vermeulen et al., 2019 + + + + + + + + Achilles
tendons

Rat

Evrova et al., 2020 + + + + + + + Achilles
tendons

Rabbit

Riederer-Henderson et al., 1983 + − Flexor
tendons

Chicken

octamer modes. Currently, the prevailing view is that Oct4 plays a
nodal role in the transcription factors of somatic reprogramming,
and no other core or auxiliary transcription factors can replace
the function of Oct4 (Radzisheuskaya and Silva, 2014). Sex-
determining region Y-box 2 (SOX2) identifies and combines the
promoter of various target genes to transactivate or inhibit their
expression through transactivation domain to regulate various
physiological processes (Nowling et al., 2000). SOX2 makes
a critical difference in maintaining the stem cell phenotype
of ESCs during embryogenesis. What should be of concern is
that SOX2, as one of the Yamanaka factors, together with the
ectopic expressions of Oct4, Klf4, and C-MYC, transforms mouse
embryonic fibroblasts into induced pluripotent stem cells (iPSCs)
(Takahashi and Yamanaka, 2006). Nucleostemin was initially
identified as a gene enriched in human cancer cells and neural
stem cells (NSCs) (Tsai and McKay, 2002), and was later found to
be highly expressed in several kinds of other stem cells (Baddoo
et al., 2003). Nucleostemin, located in the cellular nucleolus, is
a guanosine triphosphate binding protein, which can sustain
the proliferation of stem cells and inhibit their differentiation
to mature cells, and is mainly involved in maintaining the
proliferation, differentiation, cell cycle process and renewal
of stem cells and tumor cells (Tsai, 2014). Stage-specific
embryonic antigen 4 (SSEA4), a core structure of globulin series
carbohydrates, has been reported to be a cell surface marker to
define a variety of human pluripotent stem cells, including ESCs
(Rao et al., 2007) and MSCs (Wakao et al., 2012). However, the
role of SSEA4 in the establishment and maintenance of ESCs
and iPSCs is unclear (Hamamura et al., 2020). At present, no

study has directly described the specific expression of these ESC
markers in TDSCs. There is also a lack of information on the
relational role of these ESC markers in the pluripotency and
self-renewal. Nucleostemin, OCT-4, Nanog, and Sox2, as nuclear
proteins, limit their application to be prospective isolation
markers in clinical trials or practices. Surface marker SSEA4,
may be more useful if proven to be effective.

In different studies, the marker expression of TDSCs are
discrepant, which are affected by the cell source, cell isolation
and separation procedures (Lui, 2015). Positive or negative
expressions of TDSCs markers in different species are listed
in Table 2.

Yin et al. (2016) found a subpopulation of nestin+ TS
by single-cell analysis in 2016. Nestin, a type of intermediate
filament protein specifically expressed in neuroepithelial stem
cells (Wiese et al., 2004),was found to be of significance to self-
renewal stem cells (Park et al., 2010). The study demonstrated
that the expression of nestin was related to tendon differentiation
and nestin+ cells were involved in endogenous tendon injury
repair. Nestin+ cells showed stronger self-renewal, tenogenesis
and colony formation abilities than cells treated by nestin
knockdown. The authors further verified that knockdown of
nestin did harm to tendon healing and regeneration in a patellar
tendon defect model in vivo. The cells arranged randomly and the
collagen fibril was misaligned. In summary, it is indicated that
nestin is a characteristic marker of TSCPs and new insights are
provided into the study of TSCPs.

Harvey et al. (2019) made great progress in the research
of cellular and molecular mechanisms of tendon regeneration
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References Pluripotent markers CD markers Tenogenic markers Cell
source

Species

nucleo
stemin

Nanog Oct-
4

Sox2 SSEA-
1

SSEA-

4

c-
Myc

Sca-
1

CD
18

CD
31

CD
34

CD
44

CD
45

CD
73

CD
90

CD
90.2

CD
105

CD
133

CD
146

CD
166

Stro-
1

Nestin Col
I

Col
II

Col
III

SCX TNMD TnC Comp Aggrecan αSMA

Tsai et al., 2013 − − + − + + + − + Shoulder
rotator cuff

Human

Kohler et al.,
2013

+ + + + + + + + + Achilles
tendons

Human

Yin et al., 2010 − − + + + + Achilles
tendons

Human

Zhang and
Wang, 2013a

+ + + + + + Patellar
tendons

Human

Lee et al., 2012 − + − + + + − − Patellar
tendons

Human

Rui et al., 2010 − − + + P0
P3−

− + + + + Flexor
tendons

Rat

Liu et al., 2013 + + + Flexor
tendons

Rat

Chen et al.,
2014

+ + Achilles
tendons

Rat

Tan et al., 2013 + + + + + + + Patellar
tendons

Rat

Holladay et al.,
2016

+ − + + + + + + Patellar
tendons

Rat

Alberton et al.,
2015

+ + + + + + + + + Tail
tendons

Mouse

Bi et al., 2007 + − + − + + + + Patellar
tendons

Mouse

Mienaltowski
et al., 2013

+ − − + + − Achilles
tendons

Mouse

Zhang and
Wang, 2013b

+ + + Patellar
and

Achilles
tendons

Mouse

Zhang and
Wang, 2010

+ + + Patellar
and

Achilles
tendons

Rabbit

Tao et al., 2015 + + + Patellar
tendons

Rabbit

Yang et al.,
2013

+ + + Patellar
tendons

Rabbit

Yang et al.,
2018

+ + + + + Achilles
tendons

Porcine

Lovati et al.,
2011

+ + + Superficial
digital
flexor

tendons

Horse

Yang et al.,
2016

+ + − + + Achilles
tendons

Fetal
bovine
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and suggested that the Tppp3+/pdgfra+ subpopulation possibly
indicated TDSC status. Tubulin polymerization-promoting
protein family member 3 (Tppp3), is reported to be a specific
marker of the differentiating synovial joints and tendon sheath
(Staverosky et al., 2009). Harvey et al. (2019) used single-
cell RNA sequencing to classify all the cells in the patella
tendon of adult mice and obtained eight clusters. One of
them, an unknown cluster was identified as TDSC, which was
enriched for Tppp3+. The authors used lineage tracing to
prove that Tppp3+ cells were activated after tendon injury
and were involved into tendon healing. Transcriptomic analysis
revealed the enrichment of PDGFR in the putative TDSCs.
PDGFRa, platelet-derived growth factor receptor alpha, and
other PDGF signaling components are confirmed to promote
the proliferation of TDSC and facilitates tendon fibrosis
and regeneration.

These are two studies that had identified a potential marker
of TDSCs and explored their effects in vivo. Although there
is still some left to further elucidate the complex role of the
microenvironment, the latest studies have made a significant
leap in the research of TDSCs and tendon regeneration
(Titan and Longaker, 2019).

COMPARISON OF CHARACTERISTICS
OF TENOCYTES AND TDSCS

Subpopulations
Kendal et al. (2020) performed scRNA-seq and CITE-seq
integrated analysis of cells from tendon samples, and eight
distinct transcriptomic clusters were found, including five
tenocyte clusters (initially labeled “Tenocyte A–E”), monocytes,
lymphocytes and a group of combined endothelial cells. Part of
phenotypes of Tenocyte A–E is shown in Table 1. The authors
failed to detect a stem cell population in human cells. Although
the up-regulation of PDGFRA, TPPP3, and other genes which are
expressed in TDSCs were displayed in Tenocyte D and Tenocyte
E clusters, the article raised some questions about the presence or
absence of TDSCs.

It has been reported that mouse TDSCs contained two
subpopulations, CD105-positive cells and CD105-negative cells
(Asai et al., 2014). Compared with CD105-positive cells, CD105-
negative cells showed greater cartilage potential in vitro and
induced greater cartilaginous degeneration in mice.

Factors Influencing Characteristics
In vivo and in vitro
As mentioned above, many achievements have been made in
the expression of tenogenic differentiation markers of tenocytes
in vivo and in vivo and their roles in vivo. However, in vivo
studies of MSC markers and ESC markers in TDSCs are lacking.
Immunohistochemical staining showed the absence of ESC
markers (nucleostemin, Nanog, Oct-4, and SOX2) in all intact
rat patella tendon cells (Tan et al., 2013). The existing in vitro
markers are not effective in vivo, suggesting the need for more
research on TDSCs.

Cell Passaging
Phenotypic drift of the cells leads to changes in common
cell markers over multiple passages. After two passages,
the expression levels of Col I and Col III in human
tenocytes were significantly decreased (Mazzocca et al.,
2012). DCN, Scx, and TnC gradually declined over six
passages. In addition, with progressive passage, tenocytes
became more rounded. Cells of the sixth passages did
not have the fibroblast characteristics any more showed
in the previous two passages. The cellular processes
were longer and thicker of early passage compared with
the sixth passage.

Similarly, the expression of Scx and TNMD decreased during
passage in TDSCs (Tan et al., 2012). Meanwhile, the ability
of chondrogenic, adipogenic, and tendinogenic differentiation
of TDSCs decreased, and the ability to differentiate into
osteogenic lineage increased. Moreover, the surface expression
of CD73 and CD90 in TDSCs was down-regulated with
passaging. It showed no difference with previous reports that
MSCs began to lose their stem cell properties with passaging
in vitro (Izadpanah et al., 2008) and markers distinguishing
MSCs from fibroblasts were down-regulated with passaging
(Halfon et al., 2011).

Culture Conditions
Phenotypes can be influenced by culture conditions. The
expression of markers can be induced or inhibited by growth
factors in fetal bovine serum, seeding densities, oxygen tension
and mechanical loading. For instance, human TDSCs cultured
in 5% oxygen had significantly greater cell proliferation and
expressed higher levels of nucleostemin, Nanog, and SSEA-4
(Zhang and Wang, 2013a).

Applications
The ability of TDSCs to self-renew and their potential to
differentiate into tenocytes are expected to help reconstruct the
function and structure of damaged tendons, and the application
in the cure of tendon injuries has already been explored. TDSCs
were first used to accelerate tendon repair in a rat patellar
tendon window defect model in 2011 (Ni et al., 2012). The
mechanical properties (elastic modulus and ultimate stress) of
tendon treated with stem cell therapy were significantly higher
than those without TDSCs. More research on TDSCs in tendon–
tendon healing (Komatsu et al., 2016), tendon–bone healing
(Shen et al., 2012; Lui et al., 2014b), and tendinopathy (Chen
et al., 2014; Durgam et al., 2016) has followed. Biologically
speaking, using autologous TDSCs to heal tendon injuries may
be the most ideal choice. However, due to the limited number of
TDSCs in normal tendon, it is hard to obtain a great quantity
of TDSCs from self (Rui et al., 2010). It has been shown that
allogeneic TDSCs can also facilitate tendon injury repair without
inducing intense immune response and anti-inflammatory effects
in mice (Lui et al., 2014a). However, the number of transplanted
TDSCs decreased gradually over time, indicating that the
role of allogeneic TDSCs was mainly through inducing cell
differentiation rather than directly differentiating by themselves.
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In contrast, the use of tenocytes in cell-based therapy has
been much less reported. Wang A. et al. (2013); Wang et al.
(2015) reported to utilize autologous tenocyte injection (ATI)
as a treatment for severe, chronic resistant lateral epicondylitis
and autologous tenocyte implantation for tendinopathy and
partial-thickness rotator cuff tear in an elite athlete (Wang A.W.
et al., 2013). Bucher et al. (2017) used ATI for the treatment of
chronic recalcitrant gluteal tendinopathy. All of the treatment
have had some effects.

The difference between the effects of the two types of cells in
cell therapy is still unclear and needs further study.

Direct Comparison
There is little literature that directly compares the two types of
cells. The comprehensiveness of the comparisons in the literature
varies and discrepancy exists between different species.

Zhang and Wang (2010) applied trypsin locally under
microscope and collected detached cells using micropipette
to separate TDSCs from tenocytes. They characterized the
properties of rabbit tenocytes and TDSCs. Tenocytes tend to
spread outward and are highly elongated, showing characteristic
shapes of fibroblasts under confluent conditions. The cell colonies
of TDSCs shape like pebbles, with smaller volume and larger
nucleoli compared with tenocytes. It was shown that TDSCs
proliferate faster than tenocytes. TDSCs expressed nucleostemin,
Oct-4, and SSEA-4 while these markers were expressed lowly
or barely in tenocytes. In addition, TDSCs had the ability of
tri-lineage differentiation in vivo and in vitro that tenocytes
essentially did not possess. It is a pity that the authors did not
compare from more markers.

Williamson et al. (2015) first seeded the cells digested from
equine tendon at different densities to isolate tenocytes (high
density) and TDSCs (low density). The results of the tri-
lineage differentiation assays suggested that this method might
not be suitable for equine TDSCs and the authors then used
differential adhesion of fibronectin to isolate TDSCs. However,
the proliferation rates between the tenocyte and the putative
TDSCs in 5% oxygen had no significant differences. In addition,
they compared the expression of tenocytes and TDSCs by
quantitative RT-PCR. Except for a higher expression of TSP-
4 in tenocytes, they did not find other significant differences.
Other markers included Nanog, Oct-4, CD90, CD73, CD34,
CD144, TnC, Scx, Mkx, EGR1, and TNMD. If species specificity
is excluded, the results suggested that this method may also not be
an ideal way to separate TDSCs from tenocytes. Lee et al. (2018)
made a comparison of characteristics of murine tenocytes and
TDSCs. They used cloning cylinders and applied trypsin topically
to isolate TDSCs. Tenocytes are large, tabular and fibroblastic,
while TDSCs are smaller and rounder (Lee et al., 2018). Tenocytes
formed large and sparse colonies, while the colony formation of
TDSCs were denser and more compact. When compared with
tenocytes, early tenogenic markers (Mkx and Scx) and stem
cell markers (CD73 and Nanog) were expressed more highly
in TDSCs, whereas TSP-4, TNMD, and TNC presented a lower
expression in TDSCs than in tenocytes. Stem cell antigen-1 (Sca-
1) and CD90 were expressed similarly in two cell types. The
hematopoietic stem cell marker CD45 showed low expression

in TDSCs, but evidently higher expression was observed in
tenocytes. However, the authors merely made simple comparison
and did not expound and further study the significance behind
the results. They also analyzed the capability of tenocytes
to differentiate into different cell lineages, and found that
osteogenic differentiation and chondrogenic differentiation were
observed in tenocytes, but tenocytes demonstrated no adipogenic
differentiation. This conclusion contradicts the common belief
that tenocytes are terminally differentiated cells (Viganò et al.,
2017). We suspect that the characterization of the tenocytes was
done with a mixture of tenocytes and TDSCs rather than “pure”
tenocytes, which might have an effect on the presented data.

To sum up, although there are some different views, the
mainstream opinion is as follows:

Markers commonly used for tenocytes are tenogenic
differentiation markers, which are expressed in different degrees
in both tenocytes and TDSCs. So the tenogenic markers are
not indicators that directly differentiate between tenocytes and
TDSCs. TDSCs have the potential of multi-differentiation and
self-renewal, which are not available in tenocytes. Therefore,
MSC and ESC markers and tri-lineage differentiation assays can
be used to distinguish between tenocytes and TDSCs. A rough
comparison of tenocytes and TDSCs is summarized in Table 3.

CONCLUSION AND PROSPECT

The research of tenocytes and TDSCs has been a hot topic
in recent years. The isolation and identification of tenocytes
and TDSCs have been a relatively neglected problem. In most
literature, cells are extracted from tendons following a similar
enzymatic digestion protocol and are monolayer-cell cultured in
almost the same environment. The resulting cells theoretically
contain both tenocytes and TDSCs. Some authors identify these
tendon cells as tenocytes by tendon-specific markers, while
others identify them to be TDSCs by stem cell markers. The
distinction and identification between both types of cells is
missing, which is appreciably rough and lacks of preciseness.
Furthermore, the lack of specificity of these markers leads to
no consensus on the identification of the two kinds of cells.
Therefore, the markers selected in different research articles
are not uniform and not fixed. For example, Rui et al. (2010)
used flow cytometric analysis to test that the tendon-derived
cells were positive for CD90 and CD44,and negative for the
endothelial cell marker CD31 and hematopoietic stem cell

TABLE 3 | Summary of general comparisons between tenocytes and TDSCs.

Tenocytes TDSCs

Morphology Large, tabular and
fibroblastic

Smaller and rounder

Markers Mainly tenogenic
markers

Mainly tenogenic
markers, MSC markers
and ESC markers

Multi-differentiation − +

Self-renewal − +

Applications The difference is still unknown
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marker CD34. These cells were considered as TDSCs. And for
identification of porcine TDSCs, Yang et al. (2018) chose some
other surface markers: CD105, CD90, Col I, Col III, and α-SMA.
New advances of specific markers have been made, but have not
been adopted widely in laboratory experiments. The discovery of
nestin+ and Tppp3+/pdgfra+ population revealed the cellular
and molecular role of TDSCs in tendon healing and regeneration,
providing a new enlightenment of biomarker research.

The frequently selected markers in tenocytes and TDSCs
can be seen in Tables 1, 2. Combined with the characteristics
of the markers and the frequency of selection, for now, we
recommend the use of Scx, TNMD, Col I for the identification of
tenocytes. Scx and TNMD are early and late tenogenic markers
of tenocytes, respectively. Col I is the principal constituent of
tendons. And for the identification of TDSCs, we recommend
to use CD90 [expressed in a subtype of fibroblasts (Ho et al.,
2019)] and CD44 [specific surface markers of MSCs (Yang et al.,
2016)] combined with the above markers. CD90 is a GPI-
anchored cell surface protein and regulates fibrosis (Saalbach
et al., 2000). CD44 is a complex transmembrane adhesion
glycoprotein that is basically related to the key component of
ECM and hyaluronic acid (Thorne et al., 2020). Since tenocytes
and TDSCs are both capable of tenogenic ability, it may not
be necessary for some research to separate the two types of
cells. In some necessary cases, high-throughput technologies
may be a better way to distinguish TDSCs from tenocytes,
although this is limited by conditions. Therefore, it is urgent to
further study the isolation method of tenocytes and TDSCs with
wide adaptability.

Many results and cues about functions and expression of
TDSCs are characterized and identified in vitro. However, the
role of MSC and ESC markers in TDSCs in vivo is unclear. To
better understand their in vivo function and expression, using

overexpression and knockdown methods or transplanting in
null animal models are crucial for better selection of markers
associated with multipotency and self-renewal of TDSCs. The
research on nestin and Tppp3/pdgfra provides a good model. At
present, although there are few reports about the subpopulations
of tenocytes and TDSCs, the expression of each marker may
be co-expressed by different subpopulations of cells, which
leads to the limitations of the current identification. Therefore,
co-expressed and hierarchical markers will also be a research
direction in the future.

There is still great need for specific markers of tendon cells
and reliable markers which can label TDSCs in vivo. With the
understanding of the expression, mechanism and influencing
factors of markers in vivo, researchers can better choose markers
with strong specificity. An accurate separation of tenocytes and
TDSCs from tendon cells is also necessary to study the role
of each cells in tendon healing, adhesions or degeneration.
Unknown fields still remain to be explored in the study of the
characteristics and markers expression of tenocytes and TDSCs,
which is of great significance for the eventual application in the
prevention and treatment of tendon related diseases.
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