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SUMMARY

Tumours can harbour significant numbers of B cells and plasma cells, however, little is known 

about the antigen specificity of intra-tumoral B cells1–8. Here we show that human papillomavirus 

(HPV)-specific B cell responses are detectable in HPV-positive head and neck cancers, with 

active production of HPV-specific IgG antibodies in situ. HPV-specific antibody secreting cells 

(ASCs) were readily detectable (~0.7-25% of IgG+ ASCs) in the tumour microenvironment 

(TME) with minimal bystander recruitment of influenza-specific cells, suggesting a localised and 

antigen-specific ASC response. HPV-specific ASC responses, which correlated with plasma IgG 

titres, were directed against the HPV proteins E2, E6, and E7, with E2-specific responses tending 

to be the most dominant. Using intra-tumoral B cells and plasma cells, we generated several HPV-

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
*corresponding authors: Material requests and correspondence should be directed to Rafi Ahmed (rahmed@emory.edu) or Andreas 
Wieland (andreas.wieland@emory.edu).
Contributions A.W. conceived and designed the project. A.W. and R.A. designed experiments and wrote the manuscript. A.W. 
performed most of the experiments (including cell isolation, ELISPOT, serology, flow cytometry and mAb generation) and analysed 
the generated data. C.S.E. performed MBC assays and helped with flow cytometry experiments. M.A.C. and H.T.K analysed 
scRNAseq data. W.H.H. analysed bulk RNAseq data. R.C.O. performed and analysed mIHC experiments. M.R.P. collected and 
provided human specimens, and analysed patient data. C.C.G. and X.W. handled human specimens. N.F.S. and Z.G.C. initiated the 
clinical specimen protocol. All authors contributed to the revision of the manuscript.

Materials HPV-specific mAbs are available with a completed Material Transfer Agreement.

Competing interests A.W. and R.A. are inventors on a patent filed by Emory University relating to HPV-specific mAbs and HPV E2 
as potential immunological target in HPV-positive cancers. All other authors declare no competing interests.

Code availability
Custom code for RNA-seq and scRNA-seq are available from the corresponding authors upon reasonable request.

HHS Public Access
Author manuscript
Nature. Author manuscript; available in PMC 2022 September 09.

Published in final edited form as:
Nature. 2021 September ; 597(7875): 274–278. doi:10.1038/s41586-020-2931-3.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/authors/editorial_policies/license.html#terms


specific human monoclonal antibodies, which exhibited a high degree of somatic hypermutation, 

consistent with chronic antigen exposure. scRNAseq analyses revealed the presence of activated B 

cells, germinal centre B cells, and ASCs within the TME. ASCs and B cells were preferentially 

localised in the tumour stroma, with well-formed clusters of activated B cells indicating ongoing 

germinal centre reactions. Overall, we show that antigen-specific activated and germinal centre B 

cells as well as plasma cells can be found in the TME. Our findings provide a better understanding 

of humoral immune responses in human cancer and suggest that tumour-infiltrating B cells could 

be harnessed for the development of novel therapeutic agents.

INTRODUCTION

Tumours can harbour significant infiltrations of B cells and plasma cells, however, the role 

of tumour-infiltrating B cells lineage is not well defined1–8. Little is known about the antigen 

specificity of B cells and antibody-secreting cells (ASCs) in the tumour microenvironment 

(TME), which could partially explain the controversial findings regarding the role of B cells 

in several studies. Here we investigated the humoral immune response in the TME of human 

papillomavirus (HPV)-positive head and neck squamous cell carcinoma (HNSCC) patients 

with regards to its antigen specificity.

HPV-specific ASCs are present in the TME

We obtained surgically resected HNSCC samples expressing p16, a widely-used surrogate 

marker for HPV status, especially in oropharyngeal squamous cell carcinoma9. We 

confirmed HPV status using genomic DNA isolated from FFPE sections of 32 p16+ 

HNSCC patients of our cohort (n=43). HPV DNA was detected in 31 out of 32 samples 

with the vast majority of cases (84.4%) testing positive for HPV type 16 (Extended 

Data Fig. 1a), in agreement with previous reports9–11. We next set out to quantify total 

ASCs in tumour-infiltrating lymphocytes of primary tumours (TIL), metastatic lymph nodes 

(metLN), and peripheral blood mononuclear cells (PBMC) isolated from p16+ HNSCC 

patients. Compared to PBMCs, metLN and TIL showed a marked enrichment of ASCs 

(Extended Data Fig. 1b–e). ASCs in metLN and TIL predominantly produced IgG followed 

by IgA and IgM, with IgG+ ASCs accounting for 0.11% to 3.8% of total lymphocytes. In 

contrast, ASCs in the peripheral blood of p16+ HNSCC patients were less frequent and 

showed a different isotype distribution (IgA≥IgG>IgM), comparable in terms of frequency 

and isotype distribution to peripheral blood ASCs of healthy individuals12.

We next sought to address the question whether ASCs in the TME produce antibodies 

specific for HPV antigens. Due to the high prevalence of IgG+ ASCs in the TME, we 

focused our efforts on antigen-specific IgG+ ASCs using the classical HPV oncogenes 

E6 and E7 as well as the regulatory protein E2. In contrast to cervical cancer, E2 is 

expressed in the majority of HPV-associated HNSCC due to episomal maintenance of the 

HPV genome10. IgG+ ASCs producing antibodies specific for E2, E6 and E7 were readily 

detectable in metLN and TIL with individual antigen responses accounting for up to 20% 

of total IgG+ ASCs (Fig. 1a–c and Extended Data Fig. 1f). E2-specific responses tended 

to be the most dominant among the tested antigens. The frequencies of HPV-specific IgG+ 

ASCs in 18 patient-matched metLN and TIL samples correlated (Extended Data Fig. 1g). Of 
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note, HPV-specific ASCs were undetectable in the peripheral blood suggesting a localised 

ASC response (Extended Data Fig. 1f). p16- HNSCC tumours, which, consistent with 

previous reports13, exhibited significantly reduced lymphocyte infiltration compared to p16+ 

tumours, showed comparable frequencies of total ASCs but lacked HPV-specific IgG+ ASCs 

(Extended Data Fig. 2a–c). In line with the absence of HPV-specific ASC responses in the 

TME, HPV-specific IgG+ memory B cells (MBCs) were absent in almost all analysed (8/9) 

p16- HNSCC patients but readily detectable in the circulation of p16+ HNSCC patients 

(n=27) (Fig. 1d, Extended Data Fig. 2d).

We next compared the frequency of influenza- and HPV-specific ASCs in the TME of 

14 p16+ HNSCC patients to exclude the possibility that the presence of HPV-specific 

IgG+ ASCs in the TME simply reflects inflammation-driven recruitment and differentiation 

of circulating MBCs. While influenza-specific MBCs were strikingly higher in peripheral 

blood (~1-2% vs. 0.2%), HPV-specific ASCs dominated in the TME (~2% vs. 0.2%) (Fig. 

1d,e). These data suggest that, while some level of bystander recruitment or activation of 

unrelated antigen specificities such as influenza might occur, HPV-specific ASC responses 

in the TME are mainly antigen-driven. Overall, we show that HPV-specific IgG antibodies 

are actively produced in the TME with the E2 protein being a major target of the humoral 

immune response.

Correlation between ASC and HPV antibody

The presence of HPV-specific IgG+ ASCs in the TME prompted us to investigate the 

serological response to HPV E2/6/7 in our cohort. In accordance with recent studies14–16, 

plasma IgG antibody titres against E2/6/7 could clearly distinguish p16+ (n=39) from p16- 

HNSCC patients (n=10) and healthy individuals (n=50) (Fig. 2a, Extended Data Fig. 3a–c). 

In contrast, IgA and IgM antibody titres against E2/6/7 were mostly absent or low (Extended 

Data Fig. 3d,e). Overall, IgG antibody titres to E2 tended to be highest, followed by E6- 

and E7-specific antibodies, with the majority of p16+ HNSCC patients having detectable 

antibody titres against all 3 antigens and the vast majority against at least 2 antigens 

(Extended Data Fig. 3f,g). The plasma IgG response to HPV E antigens predominantly 

consisted of IgG1, followed by highly variable levels of IgG3 in a subset of patients (Fig. 

2b). In contrast, antibodies of the IgG2 and IgG4 subclasses were undetectable in the vast 

majority of patients. Interestingly, HPV-specific IgG titres correlated with the frequencies of 

HPV-specific IgG+ ASCs in metLN (n=30) as well as TIL (n=18) (Fig. 2c, Extended Data 

Fig. 3h).

Generation of HPV-specific human mAbs

We have previously identified a subset of antigen-specific B cells termed ‘activated B 

cells’ (ABCs), which are proliferating cells distinct from ASCs, committed to the MBC 

lineage and present in the peripheral blood following vaccination or infection17. We next 

asked whether HPV-specific ABCs are present in the TME and could be harnessed for the 

generation of HPV-specific human monoclonal antibodies (mAbs). We used fluorescently-

labelled E2 protein to FACS-purify HPV-specific ABCs (CD19+IgD−CD20+CD71+) 

from a HPV+ metLN, followed by the generation of mAbs (Fig. 3a). 12 out of 14 

successfully generated mAbs (~86%) recognised E2 in an ELISA (Fig. 3b). Furthermore, 
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we obtained an additional E2-specific mAb (22-1B10) from single-cell sorted ASCs 

(CD19+IgD−CD20−CD71+). E2-specific mAbs exhibited a high degree of somatic 

hypermutation (SHM) in the variable region of heavy (VH) and light (VL) chain with 3 

clonal lineages being represented by 2 clones each (Fig. 3c). The VH of E2-specific mAbs 

harboured on average 28 SHMs, which is strikingly higher compared to mAbs generated 

in response to acute viral infections such as Ebola18, latent viral infections such as varicella-

zoster19, or repeated antigenic exposures such as influenza17,20. The high degree of SHM of 

E2-specific mAbs is comparable to HIV-specific mAbs, which carry on average up to ~30 

SHMs, although HIV-specific mAbs can harbour up to 70 SHMs21. The generated mAbs 

recognised several distinct non-overlapping epitopes of the E2 protein (Extended Data Fig. 

4a). In addition to E2-specific mAbs, we also cloned 3 E6-specific mAbs from single cell 

sorted ASCs from another metLN, which also displayed a high degree of SHM (Extended 

Data Fig. 4b,c). Our data clearly demonstrate the presence of ABCs and ASCs specific for 

tumour-associated viral antigens in the TME. Furthermore, the presence of ABCs and the 

high degree of SHM among HPV-specific mAbs suggest a prolonged and ongoing humoral 

immune response to these tumour-associated viral antigens.

scRNA-seq analysis of B cells in the TME

To interrogate the composition of activated cells of the B cell lineage (CD19+IgD−CD71+) 

in the TME in an unsupervised manner, we performed scRNA-seq on FACS-purified cells 

obtained from metLN and TIL of 3 HPV+ HNSCC patients (Fig. 4a). In addition, we 

also isolated activated cells from the peripheral blood of an influenza vaccinee 7 days 

post vaccination. The analysis of a total of 8,271 single cells identified 4 clusters (Fig. 

4b,c). Based on gene expression profiles and gene set enrichment analyses, we termed the 

cell clusters ABC, ASC, germinal centre B cells (GCB), and transitory cells (TC), which 

displayed a hybrid phenotype with ASC, GCB and proliferation gene sets being enriched 

(Extended Data Fig. 5a,b). The ABC and GCB clusters were characterised by expression of 

MS4A1 (CD20) and ID3, with GPR183 (EBI2) being absent in GCB consistent with its role 

in mediating egress from GCs22 (Extended Data Fig. 5c). The ASC cluster was characterised 

by expression of CD38, MZB1, PRDM1 (BLIMP-1), and XBP1, whereas GCBs expressed 

TCL1A, AICDA, and MME (CD10). In general, activated cells derived from metLN and 

TILs were found in all cell clusters, although the distribution varied substantially between 

patients (Fig. 4d, Extended Data Fig. 5d). In contrast, activated cells derived from PBMCs 7 

days post seasonal influenza vaccination were not detected in the GCB cluster and virtually 

absent from the TC cluster. These data thus demonstrate that the TME encompasses several 

antigen-experienced B cell subsets, including ABCs, GCBs and ASCs.

Transcriptome of sorted B cell subsets

We next performed RNA-seq analyses to identify transcriptional differences between the 

3 major B cell subsets identified (ASCs, ABCs, and GCBs). We FACS-purified ASCs 

(CD19+CD20−IgD−CD38hiCD71+), ABCs (CD19+CD20+IgD−CD71+CD10−), and GCBs 

(CD10+ ABCs) from 2 metLNs and 2 TILs of HPV+ HNSCC patients (Fig. 5a). In addition, 

we also analysed ASCs and ABCs of an influenza vaccinee isolated from peripheral 

blood on day 7 post vaccination (Extended Data Fig. 6a,b). To broadly characterise 

the transcriptional landscape, we initially performed principal component analysis, which 
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identified two principal components (PC) that collectively explained ~60% of the observed 

transcriptional variance (Fig. 5b). PC1 accounted for 41% of transcriptional variance, clearly 

distinguished ASCs, ABCs and GCBs, and also separated tissue from blood ABCs. Gene 

expression analysis of individual genes by k-means clustering identified 6 gene clusters, 

distinguishing the samples based on sorted subsets as well as the sample origin (blood 

versus tissue) (Fig. 5c, Supplementary Table 1). Independent of sample origin, ASCs 

were characterised by elevated expression of common ASC-associated genes such as 

XBP1, MZB1, CD27, and CD38, and low expression of B cell lineage genes such as 

MS4A1 (CD20), IRF8 and CD2417. Furthermore, tumour-derived ASCs showed increased 

expression of additional plasma cell-associated genes such as PRDM1, SDC1 (CD138), and 

CD923,24. Consistent with these data, the majority of ASCs in the TME (n=14) did not 

express Ki-67 (Extended Data Fig. 6c), suggesting a more plasma-cell like phenotype of 

tumour-associated ASCs. GCBs expressed high levels of BCL6, AICDA, MME, and S1PR2, 

which promotes confinement to GCs25. Of note, influenza-specific cells from peripheral 

blood differed from tumour-derived cells by high expression of genes involved in cell 

migration such CD52, S1PR4, and ITGA3.

B cells and plasma cells in the TME can inhibit anti-tumour immunity through various 

immunomodulatory proteins including, but not limited to, TGF-β, IL-10, and IL-354–6,26. Of 

note, with the exception of ASCs expressing low to intermediate levels of GZMB, IDO1, 
and TGFBI, the majority of previously described immunomodulatory genes were expressed 

at undetectable or low levels, and comparable to naïve B cells (Extended Data Fig. 6d).

Intratumoral localisation of B cells

We next set out to investigate the localisation of B cells and ASCs in the TME of 

HPV+ HNSCC tumours (n=7) using multiplex immunohistochemistry (Fig. 5d, Extended 

Data Fig. 7a). Total B cells (CD19+CD20+) and ASCs (CD19+CD20−IRF4+) were more 

prevalent in the stroma compared to the p16+ tumour parenchyma (Fig. 5e). Activated B 

cells (CD19+CD20+Ki-67+) tended to be present at higher densities in the stroma, with 

well-formed clusters of ABCs, indicating germinal centre reactions, being present in tumour 

stroma (Fig. 5e). ASCs in the TME were predominantly Ki-67− but varied substantially 

in their expression of CD138, suggesting various stages of plasma cell differentiation 

(Extended Data Fig. 7b). Similar trends were observed in 3 HPV- HNSCC tumours, 

although B cell infiltration was about 10-fold lower, which is in line with overall reduced 

lymphocyte infiltration in HPV- tumours (Extended Data Fig. 7c). Overall, our data show 

that several distinct antigen-specific B cell subsets are present in the TME, including ABCs, 

GCBs, recently generated plasmablasts as well as plasma cells at various differentiation 

stages.

Discussion

Previous studies assessing the contribution of B cells to tumour immunosurveillance and 

their prognostic value have yielded conflicting data1–8,27. The underlying reasons for 

these discordant data are probably multifaceted, including insufficient information about 

the phenotype of tumour-infiltrating B cells, their spatial organisation or their antigen 
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specificity. The importance of spatial organisation has recently been demonstrated by several 

studies linking the presence of B cells, especially in the context of tertiary lymphoid 

structures, with overall favourable outcomes and response to immunotherapy1–3,27. 

However, little is known about the antigen specificity of B cells and ASCs in the TME, with 

the majority of data being derived from intratumoral B cell repertoire analyses, precluding 

functional information of tumour-reactive B cells and whether the respective antibodies 

are being actively secreted26. Here we demonstrate that HPV-specific B cells are present 

in HPV+ HNSCC with HPV-specific IgG antibodies being actively secreted in situ. HPV-

specific antibodies showed a high degree of SHM, comparable to HIV-specific antibodies21, 

suggesting prolonged antigen exposure, which is further supported by the presence of GCBs. 

However, whether these mutations translate into increased affinity or rather represent an 

excessive, futile extent of SHM caused by chronic antigen exposure and/or a dysregulated 

cytokine milieu requires further investigation.

B cells and plasma cells in the TME can inhibit anti-tumour immunity through multiple 

mechanisms, with IL-10 being proposed as major immunoregulator4–6,26. In line with 

a previous report in HNSCC8, ASCs, ABCs and GCBs showed limited expression 

of immunoregulatory genes. Interestingly, class switching to IgA was shown to be a 

prerequisite for IL-10-producing plasma cells in a prostate cancer model6. whereas in our 

HNSCC cohort ~80-90% of ASCs produced IgG. However, functional assays are ultimately 

required to assess the overall immunoregulatory activity of distinct B cell subsets.

Immunotherapeutic approaches for HPV-associated cancers, including vaccination with 

peptides or viral vectors, mostly focus on eliciting responses against E6/7 due to the absence 

of E2 expression in the vast majority of HPV-associated cervical cancers10,28. However, 

based on the increasing incidence of HPV-associated HNSCC29 and our data demonstrating 

E2 being a major immunological target, it might prove advantageous to include E2 in future 

vaccination strategies, especially as E2 is large and harbours more potential T cell epitopes 

than E6 and E7 combined. Of note, a recent study identified several E2-derived CD8 T 

cell epitopes in HPV+ HNSCC patients30. Furthermore, we have also identified several 

E2-derived CD8 T cell epitopes and detected substantial numbers of E2-specific CD8 T cells 

in the TME of HPV+ HNSCC patients (Eberhardt et al., manuscript in preparation).

The role of HPV-specific antibodies in HPV-associated cancers is not well understood. 

However, two studies have suggested that increased HPV-specific antibody titres are 

associated with improved survival and reduced risk of recurrence in HPV+ HNSCC15,31. 

Our data show a clear correlation of HPV-specific antibody titres with ASCs in the TME. 

It is thus tempting to speculate that the presence of HPV-specific ASCs in the TME might 

also be associated with improved clinical outcome. However, additional studies are required 

to address whether increased HPV-specific antibody titres are merely markers of a more 

vigorous anti-tumoral immune response or whether HPV-specific antibodies play a role in 

anti-tumour immunity. While antibodies specific for intracellular antigens, such as HPV E 

proteins, are unlikely to exert direct anti-tumour effects through antibody-dependent cellular 

phagocytosis or cytotoxicity, they might contribute to anti-tumour immunity through indirect 

effects such as enhanced crosspresentation32. Antibodies against HPV antigens might thus 

contribute to the generation and maintenance of HPV-specific T cell responses. Overall, 
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these findings warrant the evaluation of antibodies targeting HPV E2/6/7, either in their 

native form or modified forms allowing increased access to intracellular compartments, as 

potential therapeutic treatment options for HPV-associated cancers.

Methods

Sample collection, preparation and storage

HNSCC patients undergoing surgery were recruited in accordance with an approved 

Emory University Institutional Review Board protocol (WINSHIP4008-17), with all patients 

providing informed consent. All patients had previously untreated locally advanced disease 

at the time of surgery, presented with a locally metastatic lymph node and were classified 

as Stage I by the AJCC 8th edition staging guide (Extended Data Table 1). Tumour samples 

(primary/metastatic) obtained from transoral robotic surgery and/or radical neck dissection 

were immediately collected and stored in Leibovitz’s L-15 medium. Tissue samples were 

minced into small pieces and digested using an enzymatic cocktail of collagenase I, II, 

and IV, elastase and DNAse (Worthington) as described previously33. Lymphocytes were 

isolated by using a 44%/67% Percoll gradient. Peripheral blood samples were collected 

in sodium citrate CPT cell preparation tubes (BD) at time of surgery and processed 

immediately to obtain peripheral blood mononuclear cells (PBMCs) and plasma. After lysis 

of red blood cells using ACK Lysing buffer, PBMCs were washed 4 times with Dulbecco’s 

phosphate buffered saline without calcium and magnesium (DPBS) plus 2% fetal calf serum 

(FCS). Tissue lymphocytes and PBMCs were used fresh for antibody-secreting cell (ASC) 

ELISPOTs or cryopreserved in 90% FCS with 10% DMSO, and eventually stored in liquid 

nitrogen. Plasma was stored at −20°C. Healthy control samples were used from healthy 

individuals, who provided informed consent and were enrolled in several Emory University 

Institutional Review Board approved protocols studying immune responses to influenza.

Flow cytometry

PBMCs and lymphocytes isolated from tumours were first stained in DPBS containing 

2% FCS with Live/Dead Fixable Aqua or Yellow Dead Cell Stain (Invitrogen), followed 

by addition of antibodies (1 test per 2x106 cells; Extended Data Table 2) in BD 

Horizon Brilliant Stain buffer. Intranuclear staining was performed after fixation and 

permeabilisation using the Foxp3 Transcription Factor Staining Buffer Set (eBioscience). 

Samples were acquired with a BD LSRII (FACSDiva v8.0.1) and analysed using FlowJo 

v9.9.5. Cell sorting was performed using a BD FACSAria II. Cell populations were 

identified based on the gating strategy outlined in Extended Data Fig. 8.

Antigens

Recombinant HPV antigens fused with maltose-binding protein (MBP) were expressed in E. 
coli. Briefly, DNA sequences encoding HPV16 E2 (Uniprot P03120), HPV16 E6 (Uniprot 

P03126) and HPV16 E7 (Uniprot P03129) were amplified from a synthetic E2-E6-E7 gene 

construct (Genscript), equipped with a 3’ HisTag-encoding sequence and cloned in-frame 

into the bacterial expression vector pMAL-c5X (NEB) using NdeI and EcoRI, resulting 

in fusion proteins with a N-terminal MBP moiety and C-terminal HisTag. MBP with a 

C-terminal HisTag was generated as a control. Protein expression was performed in NEB 
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Express competent cells induced overnight at 20°C with IPTG. Soluble MBP-fusion proteins 

were purified using HisPur Cobalt resin (Thermo) and stored in DPBS with 50% glycerol 

and 5mM β-ME at −20°C. HPV E2 protein was fluorescently-labelled using the Lightning 

Link Rapid Alexa Fluor 488 kit (Expedeon). Quadrivalent, inactivated seasonal influenza 

vaccine Fluarix (GSK) of the 2018/2019 or 2019/2020 season was used to assess influenza-

specific responses.

ELISA and ELISPOT

For ELISAs, 100ng of recombinant MBP-fusion protein or MBP alone per well was coated 

on Nunc Maxisorp ELISA plates overnight at 4°C in 100μl of sodium bicarbonate pH9.6. 

After coating, unbound protein was removed by washing with DPBS plus 0.05% Tween-20 

(DPBS-T) and plates were blocked for 90 min at room temperature with DPBS-T plus 10% 

FCS (blocking buffer). Plates were washed with DPBS-T and incubated with three-fold 

serial dilutions of plasma or monoclonal antibodies (mAbs) in blocking buffer for 90 

min at room temperature. After washing with DPBS-T, plates were incubated for 90 min 

with horseradish peroxidase (HRP)-conjugated detection antibodies (1:5000 dilution of anti-

human IgG, IgA, IgM; 1:1000 dilution of anti-human IgG1/IgG2/IgG3/IgG4). After washing 

with DPBS-T and DPBS, plates were developed with the SIGMAFAST OPD tablet set for 

5 min (IgG/A/M) or 10 min (IgG1/2/3/4) and stopped by addition of 1M HCl. The optical 

density (OD) was determined at 490nm. OD of MBP-coated control wells was subtracted 

from MBP-fusion proteins to account for serum Ig reactivity to MBP. Ig ELISA titres are 

represented as interpolated plasma dilution required to obtain an OD of 0.5.

For mAb competition ELISAs, MBP-E2 coated plates were incubated with 5μg human 

mAb per well for 2 hours prior to adding 5ng of mouse IgG2c mAb, an amount resulting 

in a OD between 1 and 2 in the absence of competing antibody, followed by a 90 min 

incubation. ELISA was performed as described above using a HRP-conjugated anti-mouse 

IgG detection antibody (1:2500). Competition is represented as % signal reduction. Binding 

patterns were clustered using Euclidean distance and average linkage with ClustVis (https://

biit.cs.ut.ee/clustvis/).

ELISPOT plates were coated with 1μg of anti-human IgG, 1μg of anti-human IgG/A/M, 

1μg MBP-fusion protein, or 0.6μg of Fluarix per well overnight at 4°C to detect total IgG-

secreting, total IgA/M or antigen-specific IgG-secreting cells, respectively. After coating, 

plates were washed with DPBS plus 0.05% Tween-20 (DPBS-T) and DPBS, and blocked for 

90 min at 37°C and 5% CO2 with RPMI supplemented with 1% Penicillin/Streptomycin, L-

glutamine, 55μM β-ME and 10% FCS (R10). Three-fold serial dilutions of freshly isolated 

PBMCs or lymphocytes in R10 were plated and incubated for 6-16 h at 37°C and 5% 

CO2. In general, at the lowest dilution 210,000 cells were plated to detect total IgG/A/M- 

or antigen-specific IgG-secreting ASCs with the exception of 70,000 cells tissue-derived 

lymphocytes being plated for total IgG/A/M detection, due to the high ASC frequency 

and to conserve sample material. The number of plated cells was adjusted in case of 

insufficient cellularity. After washing with DPBS-T and DPBS, plates were incubated with 

biotinylated anti-human isotype-specific detection antibodies (1:1000) for 2 h. After washing 

with DPBS-T, plates were incubated with HRP-conjugated avidin D for 1 h. After washing 
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with DPBS-T and DPBS, plates were developed with 3-Amino-9-ethylcarbazole (AEC) 

substrate, dried and acquired (Immunospot CTL ELISPOT Reader) followed by manual spot 

assessment. For memory B cell assays, cryopreserved PBMCs were thawed, resuspended in 

R10 and stimulated for 4-5 days with 10ng/ml IL-2 (Peprotech) and 1μg/ml R848 (Sigma) 

at 37°C and 5% CO2. Stimulated PBMCs were extensively washed and ELISPOT assay was 

performed for 5 h as described above.

Western blot

10ng of purified MBP-E2 protein per lane was separated in reducing SDS-PAGE followed 

by transfer to PVDF membranes. After blocking with tris-buffered saline with 0.1% 

Tween-20 (TBS-T) containing 3% non-fat dry milk (Biorad), membranes were incubated 

with 1 μg/ml recombinant E2-specific mAbs (hIgG1 backbone) in blocking buffer for 

60 min. Membranes were washed with TBS-T and subsequently incubated with a HRP-

conjugated anti-human IgG antibody (1:5000) for 60 minutes. After washing with TBS-T 

and DPBS, bound HRP was detected using the SuperSignal WestPico Chemiluminescent 

Substrate (Thermo).

HPV genotyping

DNA was isolated from formalin-fixed, paraffin-embedded (FFPE) tissue curls using the 

QIAamp DNA FFPE Tissue Kit. Initially, DNA integrity was confirmed by amplification 

of a 408bp β-globin PCR product using the GH20/21 primer set. HPV amplification 

was performed using a nested PCR approach employing the degenerate MY09/11 and 

consensus GP5+/GP6+ primers as described previously34 with minor modifications such 

as the use of the high-fidelity DNA polymerase Q5 (NEB) and optimized annealing 

temperatures. PCR products were purified, sequenced and analysed using BLAST (https://

blast.ncbi.nlm.nih.gov/Blast.cgi).

mAb generation

Total live ASCs (CD3/14/16−CD19+CD20−IgD−CD38hiCD71+) or E2-specific activated 

B cells (CD3/14/16−CD19+CD20+IgD−CD71+MBP-E2+) were single cell sorted into 96-

well plates containing cell lysis buffer. Cloning of IgG heavy and light chain genes was 

performed as described previously35 with minor modifications. Analysis of V(D)J usage and 

somatic hypermutation of cloned mAb sequences was performed using IgBLAST (https://

www.ncbi.nlm.nih.gov/igblast/). Recombinant mAbs were produced using the Expi293 

expression system (Thermo). The Expi293F cell line was not authenticated after purchase 

and not tested for mycoplasma contamination. Recombinant mAbs were expressed as human 

IgG1 as well as mouse IgG2c, in order to enable competition ELISAs. Antibodies were 

purified from cell culture supernatants using protein A agarose (Genscript).

Multiplex immunohistochemistry and image analysis

7-color multiplex immunohistochemistry was performed with the OPAL Polaris system 

(Akoya Biosciences). Four to five-micron sections of FFPE tumours from HNSCC patients 

were deparaffinised, hydrated, and stained manually with anti-CD19 (1:400), anti-CD20 

(1:1000), anti-CD138 (1:200), anti-Ki67 (1:200), anti-IRF4 (1:1000), and anti-P16 (1:100) 
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antibodies (Extended Data Table 2). Heat induced epitope retrieval in EDTA (pH9) or citrate 

(pH6) buffer was performed prior to blocking non-specific binding and staining the tissues 

with the primary antibodies. The sections were sequentially stained with each primary, 

HRP-conjugated secondary antibody, tyramide signal amplification, and OPAL fluorophore 

according manufacturer’s instructions. OPAL 480 (CD19), 520 (IRF4), 570 (Ki67), 620 

(P16), 690 (CD20), and 780 (CD138) dyes were used. The sections were counterstained 

with spectral DAPI (Akoya Biosciences). The stained slides were imaged and scanned using 

the Vectra Polaris multispectral imaging system.

Random tumor areas (that included tumor parenchyma and stroma) of high-resolution whole 

slide scanned images were first annotated in PhenoChart 1.0.12 (Akoya Biosciences) and 

then analyzed with the inForm2.4.8 software (Akoya Biosciences). Tumour parenchyma 

and stroma areas were identified using DAPI and P16 as a marker for the tumour. For 

HPV-negative tumors, CD138 was used as a surrogate marker for tumour. Adaptive cell 

segmentation was accomplished based on nuclear DAPI and membranous CD20. At least 25 

cells from the phenotypes of the immune cells of interest were manually selected and used to 

train the software for automated analysis. Six representative regions per tumour sample were 

analysed for a total area of 3.8 mm2 per tumour. The data were processed in R studio using 

phenoptr (v0.2.5) phenoptrReports (v0.2.6) (Akoya Biosciences).

scRNA-seq analysis

Activated cells of the B cell lineage (live CD3/14/16−CD19+IgD−CD71+) from PBMCs of a 

healthy donor receiving Fluarix 7 days prior and from lymphocytes from metastatic lymph 

nodes and primary tumours of 3 HPV+ HNSCC patients were isolated by FACS. Single-

cell suspensions of FACS-purified cells were loaded onto the 10X Genomics Chromium 

Controller. Library construction was performed using the Chromium Single Cell 5’ Library 

Construction Kit followed by sequencing on a HiSeq3000 or NovaSeq6000. Alignment, 

filtering, barcode counting, and unique molecular identifier counting were performed using 

Cell Ranger v3.1. Data were further analysed using Seurat v.3.1.436. All single cell analysis 

was performed using R v.3.6.2. Briefly, cells with a percentage of mitochondrial genes 

below 0.07% were included. Cells with more than 6000 or fewer than 1000 detected genes 

were considered as outliers and excluded from the downstream analyses. Samples from 

different patients were merged using the Seurat function FindIntegrationMarkers, which 

identifies and calculates anchors between pairs of datasets to reduce the sample batch 

effect37. As immunoglobulin gene transcripts constitute the majority of the transcriptome 

of the ASC/GC clusters, immunoglobulin genes were excluded from the analysis, unless 

stated otherwise. Raw unique molecular identifier counts were normalised to unique 

molecular identifier count per million total counts and log-transformed. Variable genes 

were selected based on average expression and dispersion. Principal component analysis 

was performed, and the top 6 most statistically significant principal components were 

used for UMAP analysis. Clusters and UMAP plots were generated based on principal 

component analysis dimensions. Marker genes that were differentially expressed within 

each cluster were identified by the Seurat function FindAllMarkers with average log fold 

change cutoffs of 0.5. Scaled expression data of the top 10 marker genes were used to 

create the heatmap. Normalised data are shown in the form of feature plots or violin 

Wieland et al. Page 10

Nature. Author manuscript; available in PMC 2022 September 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



plots. Gene set scoring was performed using the VISION R package v.2.1.0, following 

the scoring algorithm as previously described38. Briefly, expression of signature genes 

is weighted based on predicted dropout probability calculated from nearest neighbors, 

and the normalised expression summed for all genes in the gene set. ABC and ASC 

gene sets were derived from Ellebedy et al. 201617. The dark zone GCB signature was 

derived from Milpied et al. 201839, while the proliferation signatures were taken from the 

Seurat proliferating gene set for S and G2M phases of the cell cycle. Signature scores 

calculated for each population with the VISION package were transformed into a binary 

numeric vector and a Pearson’s Chi-squared test for binary variables with Yates continuity 

correction was performed to determine statistical significance. Bonferroni correction for p 

value adjustments was employed and significance was accepted at p<0.05.

Bulk RNA-seq analysis

Naïve B cells (live CD3/14/16−CD19+CD20+IgD+CD27−), antibody-secreting 

cells (live CD3/14/16−CD19+CD20−IgD−CD38hi CD71+), activated B cells (live 

CD3/14/16−CD19+CD20+IgD−CD71+CD10−) and germinal centre B cells (live 

CD3/14/16−CD19+CD20+IgD−CD71+CD10+) were directly sorted into RLT buffer followed 

by isolation of RNA using the QIAGEN Allprep DNA/RNA Micro Kit. Library preparation 

and sequencing was performed by the Yerkes Nonhuman Primate Genomics Core at Emory 

University. RNA-seq analysis was performed as described previously40. Briefly, reads 

were aligned to the human genome (GRCh38; accessed via Ensembl41) with HISAT242. 

Alignments were sorted and indexed with samtools43, and aligned reads assigned to 

the Ensembl reference transcriptome release 90 with featureCounts44. Normalization for 

library size, log transformation, and differential expression analysis were performed with 

DESeq245.

Principal component analysis (PCA) was performed with log-transformed data using the 

FactoMinerR package46. k-means clustering was performed with the kmeans function in R, 

and number of clusters was determined by consensus clustering47. Data were visualised with 

ggplot248.

Statistical analysis

Data are presented either as mean ± s.e.m. or in case of violin plots median and quartiles are 

indicated. Friedman test with two-sided Dunn’s multiple comparisons test was performed 

when comparing multiple groups with *p<0.05, **p<0.01, ***p<0.001, and ****p<0.0001. 

Two-tailed Mann-Whitney was performed to compare HPV-specific IgG antibody titres in 

p16- and p16+ HNSCC patients with *p<0.05, **p<0.01, ***p<0.001, and ****p<0.0001. 

Paired two-tailed t-test was used to compare Ki-67 expression of ASCs in PBMCs and 

tissue with *p<0.05, **p<0.01, ***p<0.001, and ****p<0.0001. For correlative analyses 

Spearman correlation was performed and r and two-tailed p value being reported. Two-way 

repeated measures (RM) ANOVA with Sidak’s multiple comparisons test was used to 

compare the distribution of different B cell subsets in the TME with *p<0.05, **p<0.01, 

***p<0.001, and ****p<0.0001. All statistical analyses were performed using GraphPad 

Prism v8.3.
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Extended Data

Extended Data Figure 1. HPV-negative HNSCC patients exhibit reduced lymphocyte infiltration 
into the tumour and lack HPV-specific ASCs.
a, Sequencing-based HPV genotyping of p16+ HNSCC cases (n=32). b, Representative 

ELISPOT showing total antibody-secreting cells (ASCs) among lymphocytes from 

metastatic lymph node (metLN), primary tumour (TIL) and PBMC of a p16+ HNSCC 

patient. c-e, Summary graphs showing the frequency of ASCs producing IgG, IgA 

and IgM among lymphocytes from metLN (n=37) (c), TIL (n=22) (d) or PBMC 

(n=39) of p16+ HNSCC patients (e). Results with mean ± s.e.m. are shown. Friedman 

test with two-sided Dunn’s multiple comparisons test was performed for data in c-
e. (c) ***p=0.0001, ****p<0.0001; (d) **p=0.0021, ****p<0.0001; (e) ****p<0.0001, 

ns=0.1720. f, Representative ELISPOT of E2/6/7-specific IgG-secreting ASCs in PBMC, 

metLN and TIL of a p16+ HNSCC patient. MBP (maltose-binding protein) indicates 

negative control. g, Correlation (Spearman) of antigen-specific IgG-secreting ASCs in 

metLN and TIL (n=18 patients) with r=0.7536 and p<0.0001.
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Extended Data Figure 2. HPV-negative HNSCC patients exhibit reduced lymphocyte infiltration 
into the tumour and lack HPV-specific ASCs.
a, Number of isolated lymphocytes per gram primary tumour in p16+ (n=35) and p16- (n=9) 

HNSCC patients. Two-tailed Mann-Whitney with ***p=0.0007. b, Frequency of ASCs 

producing IgG, IgA and IgM among lymphocytes from metLN of p16+ (n=37) and p16- 

(n=6 for IgG, n=5 for IgA and IgM) HNSCC patients. c, Frequency of E2/6/7-specific 

IgG-secreting ASCs among total IgG-secreting ASCs in metLN (n=6) and TIL (n=1) of p16- 

HNSCC patients. d, Frequency of E2/6/7- and Influenza (Flu)-specific IgG+ memory B cells 

(MBCs) among total IgG+ MBCs in the peripheral blood of p16+ (n=27) and p16- (n=9) 

HNSCC patients. Numbers indicate detected responses among tested samples. Results with 

mean ± s.e.m. are shown.
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Extended Data Figure 3. Serological analyses.
a-c, IgG titres against E2 (a), E6 (b), and E7 (c) in plasma of healthy individuals (n=50) 

and p16+ HNSCC patients (n=39). Results with median and quartiles are shown. Two-tailed 

Mann-Whitney with ****p<0.0001. d,e, E2/6/7-specific IgA (d) and IgM (e) titres in plasma 

of p16+ patients (n=39). f, E2/6/7-specific IgG titres in plasma of p16+ patients and graph 

demonstrating an IgG response against at least 2 HPV proteins in the vast majority of 

patients (n=39). Results with median and quartiles are shown. Friedman test with two-sided 

Dunn’s multiple comparisons test with ***p=0.0006, ns=0.1852. g, Heatmap showing 

E2/6/7-specific IgG antibody titres in p16+ HNSCC patients (n=39) with each column 

representing a patient. h, Correlation (Spearman) between E2/6/7-specific IgG+ ASCs in 

primary tumour and E2/6/7-specific IgG titres in plasma (n=18 patients) with r=0.7343 and 

p<0.0001.
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Extended Data Figure 4. Human monoclonal antibodies against HPV E antigens.
a, Clustered binding pattern of E2-specific mAbs performed by competition ELISA. 

Recognition of linear epitopes was determined by Western blot. b, ELISA of E6-specific 

mAbs (21E2, 21E11, 21H3) generated from single cell sorted ASCs from metLN of a HPV+ 

HNSCC patient. An E2-specific mAb (22B10) is shown as negative control. arbitrary units 

(a.u.). c, Number of somatic hypermutations (SHM) in the VH and VL chain of E6-specific 

mAbs (n=3) with indicated mean.
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Extended Data Figure 5. Activated cells of the B cell lineage from the tumour microenvironment 
are present in distinct clusters.
a, UMAP plots showing enrichment for activated B cell (ABC), antibody-secreting cell 

(ASC), germinal centre B cells (GCB) and proliferation gene sets. b, Violin plots showing 

gene set enrichment scores among the 4 clusters identified by scRNAseq. Two-sided 

Pearson’s Chi-squared test for binary variables with Yates continuity correction was 

performed (sample estimates in red). p values are indicated for select comparisons. c, UMAP 

plots showing expression of selected genes. d, UMAP plots showing distribution of cells 
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of the indicated patient and tissue origin (in red) among the identified clusters. Bar graphs 

quantifying the composition of the respective sample in terms of frequency among the 

identified clusters: antibody-secreting cells (ASC), activated B cells (ABC), germinal centre 

B cells (GCB), and transitory cells (TC).

Extended Data Figure 6. Gene expression of cytokines and other immunomodulators by B cells 
and plasma cells in the TME.
a, Flow plots showing the presence of ASCs and ABCs but absence of germinal centre (GC) 

B cells in the peripheral blood of a healthy volunteer 7 days post vaccination with Fluarix. 

b, ASC ELISPOT showing total IgG/A/M-secreting cells (upper panel) and influenza (Flu)-

specific IgG/A/M-secreting cells (lower panel) in PBMCs 7 days post vaccination with 

Fluarix. c, Representative histogram of ASCs from peripheral blood (red) or metLN (blue) 

of HNSCC patients showing Ki-67 expression. Numbers indicate frequency of Ki-67+ cells 

among total ASCs. Summary graph showing paired frequencies of Ki-67-expressing ASCs 

in PBMCs and metLN/TIL (n=14). Paired two-tailed t-test with ****p<0.0001. d, Heatmap 

showing gene expression (normalised reads) of selected cytokines and immunomodulators 

as well as CD19 and CXCR5 as reference. Immunomodulators related to B cells and 

previously described as negative regulators in the TME are highlighted in red. An expression 

threshold was set to 50 normalised reads, with reads <50 displayed in white.
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Extended Data Figure 7. mIHC analysis of B cells and ASCs in the TME.
a, Representative mIHC section of HPV+ HNSCC tumour (n=7) with B cell infiltrates 

and associated germinal centres (white arrows) (see also main Fig.5e). 7-colour composite 

mIHC images of CD19, CD20, Ki-67, IRF4, CD138, P16, and DAPI (left panels), 

individual images of CD20, CD19, Ki-67, and IRF4 (middle panels), and high magnification 

(right panel) of a region of interest (white box). b, Frequency of Ki-67+ and CD138+ 

ASCs (CD19+CD20-IRF4+) in mIHC sections of 7 HPV+ HNSCC tumours. Results 

with mean ± s.e.m. are shown. c, Quantification of B cells (CD19+CD20+), ABCs 

(CD19+CD20+Ki-67+), and ASCs (CD19+CD20-IRF4+) in the stroma and tumour 

parenchyma of 3 HPV- HNSCC patients.
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Extended Data Figure 8. Gating strategy for isolation/analysis of B cell subsets.
Gating strategy for B cell subsets used for flow cytometric analyses, bulk RNAseq analyses, 

scRNAseq analyses, or the generation of E2-specific monoclonal antibodies (mAbs). B 

cell subsets used for bulk RNAseq analyses are highlighted in red: antibody-secreting cells 

(ASCs), activated B cells (ABCs), germinal centre B cells (GCBs).

Extended Data Table 1
Patient characteristics.

Pathological features include lymphovascular invasion (LVI), perineural invasion (PNI), and 

extranodal extension (ENE).

Demographic n = 43

     Male 36 (84 %)

     Female 7 (16%)

     Average Age 57 (Range 44 - 75)
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Demographic n = 43

Tobacco Exposure

     0 years 29 (67 %)

     < 10 years 5 (12 %)

     ≥ 10 years 9 (21 %)

Tumour Subsite

     Tonsil 30 (70 %)

     Base of Tongue 11 (25 %)

     Unknown 2 (5 %)

Stage 8th AJCC

     T0 2 (5 %)

     T1 16 (37 %)

     T2 23 (53 %)

     T3 2 (5 %)

     N0 3 (7 %)

     N1 37 (86 %)

     N2 3 (7 %)

     M0 43 (100 %)

Pathology Features

Margins

     positive 1 (2 %)

     negative 42 (98 %)

     LVI 22 (51 %)

     PNI 9 (21 %)

     ENE 16 (37 %)

Node Count 31 (Range 10-71)

# Positive Nodes

     0 3 (7%)

     1 25 (58 %)

     2 11 (25 %)

     3 2 (5 %)

     4 1 (2 %)

     >4 1 (2 %)

Extended Data Table 2

List of antibodies and reagents.

Reagent Source Identifier

Antibodies for flow cytometry

anti-CD10 Biolegend clone: HI10a; RRID: AB_2565878
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Reagent Source Identifier

anti-CD14 Biolegend clone: M5E2; RRID: AB_493747

anti-CD16 Biolegend clone: 3G8; RRID: AB_2278418

anti-CD19 Biolegend clone: HIB19; RRID: AB_314238, 
AB_2562015

anti-CD20 Biolegend clone: 2H7; RRID: AB_2572126

anti-CD27 Biolegend clone: 0323; RRID: AB_2563809

anti-CD3 Biolegend clone: SK7; RRID: AB_2563420

anti-CD38 Biolegend clone: HIT2; RRID: AB_2565893

anti-CD71 Biolegend clone: CY1G4; RRID: AB_10915138

anti-IgD Biolegend clone: IA6-2; RRID: AB_2561619

anti-Ki-67 BD clone: B56; RRID: AB_647087, 
AB_2738577

Antibodies/reagents for ELISPOT and 
ELISA

anti-human IgG (coating) JacksonlmmunoResearch polyclonal; RRID: AB_2337550

anti-human IgG/A/M (coating) JacksonlmmunoResearch polyclonal; RRID: AB_2337538

biotinylated anti-human IgG JacksonlmmunoResearch polyclonal; RRID: AB_2340506

biotinyiated anti-human IgA JacksonlmmunoResearch polyclonal; RRID: AB_2337624

biotinylated anti-human IgM Invitrogen polyclonal; RRID: AB_2536559

HRP-conjugated Avidin D Vector Laboratories RRID: AB_2336507

HRP-conjugated anti-human IgG JacksonlmmunoResearch polyclonal; RRID: AB_2337586

HRP-conjugated anti-human IgA JacksonImmunoResearch polyclonal; RRID: AB_2337592

HRP-conjugated anti-human IgM JacksonImmunoResearch polyclonal; RRID: AB_2337598

HRP-conjugated anti-human IgG1 Southern Biotech clone: HP6001; RRID: AB_2796627

HRP-conjugated anti-human IgG2 Southern Biotech clone: 31-7-4; RRID: AB_2796633

HRP-conjugated anti-human IgG3 Southern Biotech clone: HP6050; RRID: AB_2796699

HRP-conjugated anti-human IgG4 Southern Biotech clone: HP6025; RRID: AB_2796691

HRP-conjugated anti-mouse IgG Southern Biotech polyclonal; RRID: AB_2619742

Antibodies for IHC

anti-Ki67 BD Biosciences clone: B56; RRID: AB_396287

anti-p16 Enzo # ENZ-ABS377

anti-CD19 Cell Signaling Technologies clone: D4V4B; RRID: AB_2800152

anti-IRF4 Agilent clone: MUM1p; RRID: AB_2127157

anti-CD20 Invitrogen clone: L26; RRID: AB_10983209

anti-CD138 Biolegend clone: MI15; RRID: AB_2561790

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. HPV-specific antibody-secreting cells are present in the TME of HPV-positive HNSCC 
patients.
a, ELISPOT showing E2/6/7-specific IgG-secreting ASCs in tumour (TIL). b, c, Frequency 

of E2/6/7-specific IgG-secreting ASCs among total IgG-secreting ASCs in metastatic lymph 

node (metLN; n=38) (b) and TIL (n=23) (c). Patients without any responses in red. d, 
Frequency of E2/6/7- (n=27) and Influenza (Flu)-specific (n=24) IgG+ memory B cells 

(MBCs) among total IgG+ MBCs in blood. e, Frequency of E2/6/7- and Influenza (Flu)-

specific IgG+ ASCs among total IgG+ ASCs in metLN/TIL (n=14). Results with mean 

± s.e.m. Friedman test with two-sided Dunn’s multiple comparisons test with *p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001, ns not significant.
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Figure 2. HPV-specific IgG antibody titres correlate with HPV-specific IgG-secreting cells in the 
TME.
a, E2/6/7-specific IgG plasma titres of p16- (n=10) and p16+ (n=39) HNSCC patients. 

Results with median and quartiles. Two-tailed Mann-Whitney with ****p<0.0001. b, IgG 

subclass titres against E2 (n=26), E6 (n=24), and E7 (n=19). Friedman test with two-sided 

Dunn’s multiple comparisons test with ***p<0.001, and ****p<0.0001. c, Correlation 

(Spearman) between E2/6/7-specific IgG+ ASCs in metLN and E2/6/7-specific IgG plasma 

titres (n=30 patients).
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Figure 3. Generation of human monoclonal antibodies against HPV from HNSCC patients.
a, Flow plot showing E2-specific activated B cells 

(CD3/14/16−CD19+CD20+IgD−CD71+MBP-E2+) used for E2-specific mAb generation. b, 
ELISA of generated E2-specific mAbs (colours indicate clonally-related mAbs). arbitrary 

units (a.u.) c, Number of somatic hypermutations (SHM) in variable heavy (VH) and light 

(VL) chain of E2-specific mAbs (n=13) with indicated mean.
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Figure 4. The tumour microenvironment contains activated B cells, germinal centre B cells and 
ASCs.
Activated B cell populations from metLN and TIL of 3 HPV+ HNSCC patients as well as 

PBMCs of an Influenza vaccinee were subjected to scRNA-seq. a, Flow plot of CD19+ B 

cells from metLN showing activated CD71high cells (red gate). b, UMAP plot showing 4 

identified clusters with cells obtained from PBMC (Flu), metLNs, and TILs. c, Heatmap 

showing relative expression of the top differentially expressed genes of each cluster. d, 
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UMAP plots showing distribution of cells of the indicated patient and tissue origin (in red) 

among the identified clusters.
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Figure 5. Transcriptomic and spatial characterisation of B cells and plasma cells in the tumour 
microenvironment.
a, Flow plots of CD19+ B cells from metLN highlighting the gating strategy for naïve B 

cells, ASCs, ABCs and GCBs for subsequent RNA-seq. b, Principal component analysis. 

c, Heatmap showing relative expression of differentially expressed genes across groups. 

Selected genes with high expression in individual clusters are indicated. d, Representative 

multiplex immunohistochemistry of HPV+ HNSCC tumours (n=7) with B cell infiltrates and 

associated germinal centres (white arrows). e, Quantification of B cells, ABCs, and ASCs in 
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stroma and p16+ tumour parenchyma of 7 HPV+ HNSCC patients. Two-way RM ANOVA 

with Sidak’s multiple comparison with ***p<0.001, ****p<0.0001, ns not significant.

Wieland et al. Page 31

Nature. Author manuscript; available in PMC 2022 September 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	SUMMARY
	INTRODUCTION
	HPV-specific ASCs are present in the TME
	Correlation between ASC and HPV antibody
	Generation of HPV-specific human mAbs
	scRNA-seq analysis of B cells in the TME
	Transcriptome of sorted B cell subsets
	Intratumoral localisation of B cells

	Discussion
	Methods
	Sample collection, preparation and storage
	Flow cytometry
	Antigens
	ELISA and ELISPOT
	Western blot
	HPV genotyping
	mAb generation
	Multiplex immunohistochemistry and image analysis
	scRNA-seq analysis
	Bulk RNA-seq analysis
	Statistical analysis

	Extended Data
	Extended Data Figure 1
	Extended Data Figure 2
	Extended Data Figure 3
	Extended Data Figure 4
	Extended Data Figure 5
	Extended Data Figure 6
	Extended Data Figure 7
	Extended Data Figure 8
	Extended Data Table 1
	Extended Data Table 2
	References
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

