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Abstract: Tumors of the lung, including primary cancer and metastases, are notoriously common
and difficult to treat. Although surgical resection of lung lesions is often indicated, many conditions
disqualify patients from being surgical candidates. Percutaneous image-guided lung ablation is
a relatively new set of techniques that offers a promising treatment option for a variety of lung
tumors. Although there have been no clinical trials to definitively compare its efficacy to those of tra-
ditional treatments, lung ablation is widely practiced and generally accepted to be safe and effective.
Especially encouraging results have recently emerged for cryoablation, one of the newer ablative
techniques. This article reviews the indications, techniques, contraindications, and complications of
percutaneous image-guided ablation of lung tumors with special attention to cryoablation and its
recent developments in protocol optimization.
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1. Introduction

Despite advances in therapy and prevention, lung cancer is persistently the leading
cause of cancer death around the world. In 2021 alone, an estimated 131,880 Americans will
die from lung cancer [1]. The lack of effective screening methods and delayed detection
contribute to poor overall prognosis and limitation of treatment options. Additionally,
metastases to the lungs, including those from primary breast and colorectal carcinomas,
cause significant morbidity and mortality [2].

Surgical resection of tumors is the standard treatment for early-stage non-small cell
lung cancer (NSCLC). Similarly, surgical resection of metastases to the lungs, or metas-
tasectomy, is a widely practiced procedure believed to confer survival and potentially
curative benefit [3]. Unfortunately, many contraindications to surgery exist and thus only
approximately one-third of stage I/II NSCLC patients qualify for surgical resection [4].
The traditional alternative therapy is radiation via either stereotactic body radiation ther-
apy (SBRT) or conventional fractionation, but these therapies have serious limitations,
including the potential for prolonged exposure to radiation [5,6]. In the past 20 years, per-
cutaneous image-guided lung ablation has emerged as an additional alternative treatment
with promising outcome data.

Percutaneous lung ablation was first described in 2000 when Dupuy et al. applied
computed tomography (CT)-guided radiofrequency ablation (RFA), which was already
used to treat liver malignancies, to induce necrosis of lung tumors [7]. Development
of other CT-guided techniques soon followed, including the advent of various thermal
ablative techniques (i.e., microwave ablation, laser ablation) and non-thermal techniques
such as irreversible electroporation, which are all still in use and under investigation today.
Recently, beneficial outcomes from the use of cryoablation have been emerging and it is
becoming more popular as a thermal ablative technique.
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2. Methods

This article will review the indications and techniques of percutaneous image-guided
ablation of lung tumors with special attention to cryoablation and its recent developments
in protocol optimization. Here, we performed a narrative review of studies on percutaneous
image-guided ablation of lung tumors. Thus, the literature search was conducted in a
non-systematic method. The databases used in the literature search included PubMed,
ScienceDirect, Scopus and Google Scholar. Specific keywords and phrases used during
the search included lung ablation, percutaneous ablation, cryoablation, and non-small
cell lung cancer. No specific inclusion or exclusion criteria of literature was used in this
study. Therefore, studies and articles of varying degrees of quality and bias are referenced
in this review. Additionally, examples of specific patient cases at the author’s institution
are included to support the use of percutaneous image-guided ablation of lung tumors.
Lastly, contraindications as well as complications of percutaneous image-guided ablation
will be discussed to provide readers with a comprehensive understanding of percutaneous
image-guided ablation of lung tumors.

3. Indications
3.1. Non-Small Cell Lung Cancer

In addition to SBRT and fractionated radiotherapy, percutaneous ablation is a treat-
ment option for stage I NSCLC patients who are not surgical candidates or refuse surgery
(Figures 1 and 2) [8]. Exclusion criteria for surgical resection include cardiorespiratory co-
morbidities, insufficient lung function, and age of 75 years or greater [9]. For such patients,
curative ablation is generally indicated for tumors measuring 3.5 cm or less in diameter
in stage IA or IB NSCLC [10]. As ablation provides only local control, meticulous nodal
staging is critical for developing a treatment plan that addresses all lesions. A study found
34% of 2.1–3.0 cm peripheral NSCLC tumors to have lymph node metastases [11]. Imaging
alone has limited efficacy for evaluating lymph nodes, leading to frequent under-staging of
primary lung cancer patients and potentially improper use of ablation [12].

Table 1 compares 5-year survival and local recurrence outcomes for stage I NSCLC
treated with surgical resection, radiofrequency ablation, cryoablation, and other surgical
alternatives. Surgical resection and node dissection patients are likely to be upstaged via
pathological evaluation, while SBRT and ablation patients are likely to be under-staged
due to undetected nodal involvement [13]. This discrepancy at therapy initiation may
skew study outcomes to favor resection. Furthermore, while radiation oncology literature
considers only the treated area for reporting local recurrence, surgical and radiological
literature considers lymph node involvement in the regional area as well. Hence it is
imperative to evaluate locoregional recurrence.

Table 1. Comparison of 5-year survival, local recurrence rates, and sample ages between resection,
traditional surgical alternatives, and lung ablations for stage I NSCLC. No reports of 5-year survival
for NSCLC treated by thermal ablation techniques other than those listed have been published.

Modality 5-Year Survival
Stage I NSCLC Local Recurrence Sample Age (Mean,

Median, Range)

Lobar resection [14] 60–80% 3–9% NA

Sub-lobar resection
[15,16] 60–74% 17% 67.3, 68, 20–101 [15]

76.9, NA, 72–85 [16]

SBRT [17–19] 42–55% 14% 74.2, NA, NA [18]

External beam
radiation [20] 10–27% 50–55% NA, 70, 34–90

Radiofrequency
ablation [21,22] 27–56% 22% 68.5, NA, 17–94 [21]

70, NA, 48–84 [22]

Cryoablation [23] 68% 36% (locoregional) 74.8, NA, 49–85
NA= Not Available.
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Figure 1. 78-year-old male with no significant comorbidities had biopsy-proven lepidic adenocarci-
noma consistent with stage 1 NSCLC. As his automatic implantable cardioverter defibrillator would 
have needed to be removed for SBRT treatment, he was referred to interventional radiology. (a) 
Supine axial pre-ablation CT with the white arrow indicating the lesion to be ablated; (b) supine 
sagittal pre-ablation CT with the white arrow indicating the lesion to be ablated; (c) supine axial 
follow-up CT at 3 years post-ablation; (d) supine sagittal follow-up CT at 3 years post-ablation; (e) 
prone axial CT shows the two probes (white arrows) bracketing the lesion during the tumor cryo-
ablation. 

 
Figure 2. 61-year-old male presenting with adenocarcinoma with invasive acinar growth. Endo-
bronchial ultrasound showed no lymph node involvement. (a) Supine axial pre-cryoablation CT 
with the white arrow indicating the lesion to be ablated; (b) supine axial follow-up CT at 1-year 
post-cryoablation. 

Table 1 compares 5-year survival and local recurrence outcomes for stage I NSCLC 
treated with surgical resection, radiofrequency ablation, cryoablation, and other surgical 
alternatives. Surgical resection and node dissection patients are likely to be upstaged via 
pathological evaluation, while SBRT and ablation patients are likely to be under-staged 
due to undetected nodal involvement [13]. This discrepancy at therapy initiation may 

Figure 1. 78-year-old male with no significant comorbidities had biopsy-proven lepidic adenocarcinoma consistent with
stage 1 NSCLC. As his automatic implantable cardioverter defibrillator would have needed to be removed for SBRT
treatment, he was referred to interventional radiology. (a) Supine axial pre-ablation CT with the white arrow indicating the
lesion to be ablated; (b) supine sagittal pre-ablation CT with the white arrow indicating the lesion to be ablated; (c) supine
axial follow-up CT at 3 years post-ablation; (d) supine sagittal follow-up CT at 3 years post-ablation; (e) prone axial CT
shows the two probes (white arrows) bracketing the lesion during the tumor cryoablation.
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Figure 2. 61-year-old male presenting with adenocarcinoma with invasive acinar growth. Endobronchial ultrasound
showed no lymph node involvement. (a) Supine axial pre-cryoablation CT with the white arrow indicating the lesion to be
ablated; (b) supine axial follow-up CT at 1-year post-cryoablation.
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Of note, the cryoablation study by Moore et al. reported the highest 5-year survival
rate of all non-surgical therapies in Table 1 at 68% [23]. Notable also is a study of 160
cryoablation-treated stage I NSCLC patients with an observation period ranging from
12–68 months (median 23 months) that reported only 1 (0.6%) local and 7 (4.3%) total
recurrences [24]. A meta-analysis on SBRT-treated stage I NSCLC reported a median sur-
vival of 28 months, and a multi-center study on fractionated radiotherapy reported overall
survival medians of 37.6 and 24.1 months for stage IA and IB NSCLC, respectively [18,25].
In comparison, single-center studies on stage I NSCLC patients reported overall survival
medians of 33, 33.8, and 68 months after RFA, microwave ablation, and cryoablation
respectively [24,26,27].

The primary advantage of lung ablation over traditional alternatives is sparing patients
of radiation exposure. Radiation-induced heart disease is a well-described adverse effect
with reported incidence rates as high as 33% among radiotherapy patients [28]. A study of
803 SBRT-treated early-stage NSCLC patients found that radiation doses to the left atrium
and superior vena cava were significantly associated with non-cancer death [29]. This is
especially concerning for patients with stage I NSCLC, as they typically live long enough
for non-cancer cardiac death to be a major risk. Such toxicity over time may partially
explain the higher 5-year survival rate of 68% for cryoablation compared to 42%–55% for
SBRT (Table 1). A retrospective comparison between RFA and SBRT for single lung tumors
found comparable outcomes for 3-year local tumor progression, overall survival rate, and
complication rates [30]. However, a retrospective comparison between various thermal
ablation techniques and SBRT for stage I NSCLC using data from the National Cancer
Database (NCDB) found no significant difference in overall survival rate but a higher
rate of adverse effects in thermal ablation patients [31]. Another study using the NCDB
reported a slightly lower overall survival rate for stage I NSCLC treated with various
thermal ablation techniques compared to SBRT (33.5 vs. 37.7 months) [32]. Because of how
ablations are coded in the NCDB, the studies could not determine outcomes for each of the
techniques individually, which may vary significantly (Table 1). There have been no studies
comparing specifically cryoablation to SBRT or fractionated radiotherapy. Importantly,
there have also been no clinical trials to definitively compare ablative techniques to each
other or to radiation therapy.

3.2. Metastases to the Lungs

The lungs are the second most frequent site of metastases, which commonly re-
sult from lymphatic and hematogenous spread of melanoma as well as primary breast,
colorectal, renal, head and neck, and uterine carcinomas, among others [33]. Local
treatment of lung metastases is widely practiced, as large retrospective analyses consis-
tently demonstrate the survival benefit of metastasectomy (Figures 3 and 4) [3,34,35].
The Society of Thoracic Surgeons endorses surgical metastasectomy for appropriately
selected patients and recognizes SBRT and thermal ablation as reasonable alternatives,
especially for patients with surgical contraindications [36]. Curative ablation of metas-
tases is generally indicated for patients with no more than three unilateral lung lesions
and five total lung lesions with a maximum tumor diameter of 3 cm for multiple lesions
and 5 cm for a single lesion [37].

Table 2 compares the survival rates of various treatment modalities for lung meta-
states. A prospective study on 1037 RFA-treated lung metastases in 566 patients found
that patients could be safely treated up to four times and reported a median overall
survival of 62 months, a 5-year overall survival rate of 51.5%, and a 4-year local efficacy
of 89% [38]. Prognoses varied based on lesion size, number of metastases, disease-free
interval, and primary cancer, in which colon cancer and sarcoma had the highest (56.0%)
and lowest (41.5%) 5-year overall survival rates, respectively. In comparison, a systematic
review reported 5-year overall survival rates from 27% to 68% for colorectal cancer treated
with lung metastasectomy [39]. The 1-year interim analysis of the ECLIPSE prognostic
study on cryoablation-treated lung metastases reported a local efficacy rate of 94.2% at
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12 months, with 18.8% of cases leading to pneumothorax requiring chest tube placement.
In comparison, the 1-year local efficacy reported in the RFA-treated lung metastases study
was 94.1%, with 38.9% of all cases leading to pneumothorax requiring chest tube placement.
The SOLSTICE phase II trial for cryoablation-treated lung metastases reported a 2-year
local efficacy rate and overall survival rate of 77.2% and 86.6%, respectively. The rate
of pneumothorax requiring chest tube placement was 26% [40]. In comparison, the RFA
study reported a 2-year local efficacy rate and overall survival rate of 84.5% and 79.4%,
respectively. The evidence thus far suggests that cryoablation may be just as effective and
safe as RFA for lung metastases.

Table 2. Comparison of survival rates between surgical metastasectomy, radiofrequency ablation,
and cryoablation for metastases to the lungs.

Modality Description 2-Year
Survival

5-Year
Survival

Median
Survival

Sample Age
(Mean,

Median,
Range)

Surgical metas-
tasectomy

[39]

The surgical removal
of visible and

palpable cancerous
tissue

NA 27–68% 18.5–72
months 55–65, NA, NA

Radiofrequency
ablation [38]

A probe delivers
high-energy radio

waves to the tumor,
heating the tumor

and destroying
cancerous cells

79.4% 51.5% 62 months 62.7, NA, 17–92

Cryoablation
[40]

A cryoprobe delivers
gas to the tumor,

freezing the tumor
and killing any
cancerous cells

77.2% NA NA NA, 65, 12–85

NA = Not Available.
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Figure 3. 58-year-old male presenting with colorectal metastases to the lung, biopsy proven post-radiation therapy
recurrence. (a) Supine axial pre-ablation CT with the white arrow indicating the lesion to be ablated; (b) supine axial CT of
the probe (white arrow) placement during the tumor cryoablation; (c) supine axial follow-up CT at 2 years post-ablation.
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Figure 4. 65-year-old male presents with a history of end-stage liver disease secondary to chronic
hepatitis C complicated by hepatocellular carcinoma. Patient underwent an orthotopic liver trans-
plantation. Four years after the transplant, the patient underwent a biopsy of a lung lesion, which
was positive for metastatic hepatocellular carcinoma. The patient then underwent cryoablation of
the left lung, followed by cryoablation of the right lung one month following initial ablation. When
treating bilateral lung lesions, the authors ablate one lung at a time to avoid the risk of bilateral
pneumothorax. (a) Supine axial pre-ablation CT of the right upper lobe nodule (white arrow indicates
the lesion to be ablated); (b) supine axial pre-ablation CT of the left upper lobe nodule (white arrow
indicates the lesion to be ablated); (c) supine axial follow-up CT of the right upper lobe at 18 months
post-ablation; (d) supine axial follow-up CT of the left upper lobe at 18 months post-ablation.

Thermal ablation offers several advantages over surgery and SBRT in treating lung
metastases. Because there is no difference in outcome for this indication between wedge
resection, lobar resection and pneumonectomy, the ideal treatment would destroy the tumor
with minimal parenchymal loss [40–42]. Image-guided ablation delivers precisely-placed
tumor destruction without being limited by the segmental anatomy of the lungs, thereby
enabling providers to spare tissue peripheral to the lesion [43–45]. Given the frequency
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of recurrence after local therapy for metastatic disease, the repeatability of lung ablation
is a significant asset [38]. In contrast, the accumulation of radiation with SBRT is of great
concern [29]. A systematic review of colorectal cancer metastases to the lungs limited by
variable reporting methods and lack of clinical trials reported overall survival medians and
5-year survival rates of 33–51 months and 34.9–45% for RFA compared to 27–72 months and
29–71.2% for metastasectomy [46]. Reported iatrogenic mortality and morbidity rates were
0% and 22–45% for RFA compared to 0–2.4% and 0–14.5% for metastasectomy. Thus, low
risk of death is another advantage. No such comparisons with SBRT have been reported.

3.3. Palliative

Lung tumors can cause respiratory symptoms and severe pain. A wide variety of
palliative treatments, including opioids, is available for the ultimate goal of improving
quality of life [47]. Patients who, according to the aforementioned guidelines, do not qualify
for curative ablation can still benefit from the palliative effects of lessening tumor burden
(Figure 5). As such, the indications for palliative ablation of lung lesions are broad and
patient selection is often at the discretion of the provider [48–50]. As lesions over curative
size limits are more difficult to completely ablate, larger tumors require more intense
treatment in the form of multiple applicators, multiple ablative sessions, or combination
with radiotherapy or surgery [37,51].
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Figure 5. 78-year-old female diagnosed with squamous cell carcinoma appearing as a left supraclavicular mass was treated
with palliative ablation. The patient presented with left upper extremity pain, weakness and hoarseness of voice, as well as
post radiation changes in the skin. (a) Supine axial FDG-PET scan demonstrating FGD-avid metastasis; (b) supine axial CT
used for treatment planning; (c) supine coronal CT shows the probe positioning for cryoablation; (d) supine axial follow-up
CT post-ablation.
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In a study on RFA-treated stage I-IV NSCLC, the 20 palliative-intent patients had
response rates of 80% (4 of 5) for hemoptysis, 36% (5 of 14) for chest pain, 36% (4 of 11)
for dyspnea and 25% (2 of 8) for cough. Their overall survival mean was 5.6 months,
compared to 21.2 months for the curative group [51]. Ablation in palliative settings may
nevertheless prolong life. In a study on RFA-treated unresectable renal cell carcinoma
metastases to the lungs, the 24 palliative patients had a 5-year overall survival rate of
52%, compared to 100% in the curative group [49]. Considering that the reported overall
survival rates for lung metastasectomy of renal cell carcinoma range from 35.5% to 54%,
the palliative ablation results are promising [52,53]. Furthermore, a study on stage IV
NSCLC found the 31 cryoablation patients to have a median overall survival of 14 months
compared to 7 months in the group treated with other palliative therapies (radiation and
chemotherapy) [54].

3.4. Pleural Lesions

Although the focus of this review is on ablation of pulmonary lesions, the intimate
relationship between lung and pleura warrants discussion on the recent developments in
image-guided percutaneous pleural ablation. Due to its comparatively limited discomfort
and moderate sedation necessity, cryoablation is the preferred ablative therapy for pleural
lesions [55].

The most common primary pleural malignancy, malignant pleural mesothelioma is
typically treated with a tri-modality therapy consisting of surgery, adjuvant chemother-
apy, and radiation [56]. However, recurrence rate is high at 4–41% locally and 27–84%
overall, contributing to the low overall survival median after tri-modality therapy of
14–33 months [57–60]. Traditionally, patients with recurrence are treated with second-line
chemotherapy, additional radiation, or palliative care. Abtin et al. reported on treatment of
24 patients with 110 pleural cryoablations for recurrent mesothelioma tumors, for which
the 3-year local control rate was 73.7% [61].

Thymoma is typically surgically resected, but 10–30% of cases recur with 90% appear-
ing in the pleura [62]. Further resection of pleural recurrence is challenging and dangerous,
while alternative treatments such as chemotherapy and radiation have significant adverse
effects [63,64]. Abtin et al. published a case series of 25 thymoma recurrence lesions in five
patients treated with cryoablation, in which 90% (18 of 20) of cases were recurrence-free
upon follow-up (median 331 days) [65]. These recent publications demonstrate the feasibil-
ity of adding cryoablation to the highly limited selection of therapies available for pleural
malignancies.

4. Techniques
4.1. Cryoablation

The Joule-Thomson effect describes how, at room temperature, all gases except hydro-
gen, helium, and neon cool when moving from an area of high pressure to an area of low
pressure through an orifice [66]. Exploiting this phenomenon, cryoablation systems freeze
tissue by delivering pressurized argon gas to the tip of a cryoprobe, where it is passed
through an orifice before entering a low-pressure section in a closed circuit. Helium ex-
hibits the opposite effect at room temperature and is used by cryoablation systems to thaw
tissue [67]. Approaching a target temperature of −40 ◦C, cryoablation initially forms ice
crystals in the extracellular space, which increases extracellular tonicity and causes osmotic
damage to surrounding cells [68,69]. Intracellular ice eventually forms, which ruptures
both the plasma and organelle membranes [70]. Indirect cell death occurs afterward, in
which damaged blood vessels thrombose, causing ischemia as well as inflammation [71].

Cryoablation is usually performed under moderate sedation for peripheral lesions and
general anesthesia for cases involving central lesions or high risk of bleeding. While the
treated lung is under continuous positive airway pressure, the other lung is mechanically
ventilated [72]. The number of cryoprobes to be inserted depends on lesion size, with
probes placed no more than 2 cm from each other and no more than 1 cm from the tumor
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margin [73]. Using CT-guidance, the cryoprobes are inserted percutaneously until the
tip is placed at or alongside the target lesion. As a lesion’s firmness may prevent direct
penetration, small lesions are bracketed with several cryoprobes rather than penetrated.
Different freeze–thaw cycle schemes have been developed in attempts to maximize tumor
destruction and safety. The authors prefer the modified triple-freeze protocol, which is
3 min of freezing, 3 min of passive (without helium) thawing, 7 min of freezing, 3 min of
passive thawing, and 10 min of freezing (Figure 6) [74]. The triple-freeze protocol, due
to lower continuous thaw time, has been shown to decrease hemorrhage and allow for
earlier ice ball detection compared to the older double-freeze protocol [75,76]. The modified
triple-freeze protocol further reduces thaw time to lower hemorrhage risk. Although the
area of lung necrosis is difficult to predict based on CT-visualization, ice balls are monitored
to ensure they do not encroach on vulnerable structures. After probe removal, the patient
is screened for complications by chest CT. Patients are typically then discharged home on
the same day unless complications warrant admission.
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Advantages of cryoablation over other thermal ablation techniques include the preser-
vation of the collagenous matrix of the lungs and other tissues, allowing for its safe usage
near the airways, pericardium, blood vessels, and bone [55,77]. Uniquely, cryoablation is
also safe to use in the pleura, while RFA and microwave ablation are known to cause bron-
chopleural fistulas [78,79]. Cryoablation is also associated with less post-procedural pain
compared to RFA and microwave ablation [80,81]. Ice ball visualization, though difficult
to correlate with ablative zone on lung CT, has some monitoring utility [82]. Limitations
include longer setup times than RFA and microwave ablation and longer procedure times,
which result in increased CT radiation exposure.

4.2. Radiofrequency Ablation

RFA delivers radiofrequency waves in the 375 to 500 kHz range to an area surrounding
an electrode, which is inserted in a similar manner as a cryoprobe. A radiofrequency
generator coupled to the electrode produces a voltage between the electrode (acting as
the cathode) and grounding pads (acting as the anode) placed on the patient’s thighs. As
an alternating current is generated, electric field lines are established with the highest
energy flux around the electrode tip due to its small cross-sectional area compared to the
pads [83]. The oscillating electric field generates frictional energy by colliding electrons
with surrounding molecules, generating heat sufficient for cell death (>60 ◦C) [84].

The main advantage of RFA is its well-documented efficacy and safety, as it is the most
widely used ablation technique for solid tumors and holds Food and Drug Administration
(FDA) approval for treating lung cancer [37,55]. However, tissue charring may impede
ablation. RFA relies on an electrically conductive path between the electrode and grounding
pads and thus may not function in areas of high electrical resistance [85]. Ventilation and
perfusion in areas with large airways or vessels may remove heat and limit ablation,
which is not an issue for cryoablation. There is also evidence of interference with cardiac
electrophysiology and pacemaker devices [86].
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4.3. Microwave Ablation

Unlike RFA, which operates through a current traveling from a cathode to an anode
placed on different parts of the body, microwave ablation directly applies an electromag-
netic field at 900–2500 MHz to surrounding tissue via a dielectric antenna placed in a
similar manner as a cryoprobe [87]. Water and other polar molecules continuously realign
with the electrical oscillations to produce kinetic energy and ablative heat.

Microwave ablation is more versatile than RFA because it does not depend on an
electrically conductive path. Furthermore, microwaves are not limited by tissue thermal
conductivity or charred tissue [51,88]. Capable of inducing higher temperatures at a faster
rate than RFA, it can better treat highly ventilated or perfused areas. However, the wide
variety of different device designs complicates training and reporting [89].

4.4. Laser Ablation

Laser ablation delivers ablative heat to tissues by positioning laser catheters around
the lesion of interest. The typical protocol involves introducing a 21-gauge Chiba needle
to the lesion, and using a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser
to deliver 1064 nm light via a fiberoptic cable [90]. Advantages of this technique include
the use of thin-caliber applicators and lower costs than other ablative methods [91]. The
relatively small areas of necrosis induced by laser ablation may allow for better control
and predictability [92]. Like RFA, tissue charring is a limitation to this technique. Laser
ablation of lung tumors is not widely practiced and literature on its effectiveness and safety
is extremely scarce.

4.5. Irreversible Electroporation

Irreversible electroporation (IRE), the only non-thermal ablation technology, uses
direct, microseconds to milliseconds-long electric pulses to generate brief electric fields
that irreversibly rupture cell membranes and cause necrosis [93]. Pulses are delivered via
electrodes or probes that are placed in a similar manner as cryoprobes. The mechanism
by which the electric fields rupture membranes is not completely understood as this
process often varies with application [94,95]. Notably, IRE differs from thermal ablation
technologies in that it establishes a specific demarcation area that only affects the cell
membrane and no other tissues of interest [94,95]. Theoretical advantages of IRE include
overcoming the heat sink of highly ventilated or perfused areas and safety in treating
lesions close to blood vessels [94,95]. However, investigation of this application has
largely been abandoned after a phase II trial of lung malignancies treated with irreversible
electroporation was stopped prematurely due to a high recurrence rate of 61% within 1 year
of treatment [96].

5. Contraindications and Complications

Image-guided percutaneous lung ablation is well-tolerated and has relatively few
contraindications. Thermal ablation should be avoided in patients with poorly controlled
infection, severe pulmonary fibrosis, severe hemorrhage tendency, severe organ dysfunc-
tion, severe anemia, severe metabolic disorders, extensive extrapulmonary metastases with
an expected survival of less than 3 months, or an Eastern Cooperative Oncology Group
(ECOG) score greater than 3. Additionally, patients with pacemakers should not receive
RFA [37].

According to a large retrospective study of 3344 lung tumor patients treated with
thermal ablation using data from the Nationwide Inpatient Sample database, the most
common complications are pneumothorax (38.4%), pneumonia (5.7%), effusion (4%), in-
hospital mortality (1.3%), and conversion to thoracoscopy or thoracotomy (0.9%) [97]. The
study found that the risk of pneumothorax was not associated with increased mortality.
To decrease the risk of pneumothorax, the authors immediately flip the patient to the
opposite side after probe removal (Figure 6). Even when a chest tube is necessary for
pneumothorax, patients are typically discharged the day after ablation [43]. Although the
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possibility of pneumothorax appears to be a disadvantage compared to SBRT, radiation
therapy often requires biopsies or placement of fiducial markers, both of which carry risk
for pneumothorax. Moreover, ablation can be performed in conjunction with core-needle
biopsy through the same entry site, thereby yielding more patient benefit for virtually the
same amount of risk [98].

Another documented complication is hemorrhage, with reported incidences following
RFA ablation ranging from 6% to 18% [99,100]. The vast majority of ablation-induced
hemorrhages are self-limiting, although there have been reports of severe and fatal inci-
dents [101]. Practitioners should be mindful of avoiding intercostal artery injury during
probe placement by choosing to place probes away from the inferior margin of the rib. In
the case of arterial injury during initial probe placement, the authors highly recommend
removing the probe before penetrating the parietal pleura.

Systemic air embolism is a rare complication of lung ablation, mostly reported as
single cases [102–104]. In a review of complications, Okuma et al. reported one case of
air embolism out of 112 RFA procedures in 57 patients [105,106]. None of the reported
incidents were fatal. In the event of a systemic air embolism, 100% oxygen should be
administered immediately in order to oxygenize and promote resorption of the air [101].
Contraindications and complications are summarized in Table 3.

Table 3. Contraindications to and complications of lung ablation.

Contraindications Complications

Poorly controlled infection Pneumothorax

Severe pulmonary fibrosis Pneumonia

Severe hemorrhage tendency Effusion

Severe organ dysfunction In-hospital mortality

Severe anemia Conversion to thoracoscopy/thoracotomy

Severe metabolic disorders Hemorrhage

Extensive extrapulmonary metastases with an
expected survival of less than 3 months Systemic air embolism

Eastern Cooperative Oncology Group (ECOG)
score greater than 3

Pacemaker (radiofrequency ablation)

6. Conclusions

Percutaneous image-guided lung ablation presents a promising treatment option for
patients with a variety of lung tumors. Investigating potential applications to new indica-
tions is an exciting and active area of research. As impressive outcomes for cryoablation
emerge, there is a need for randomized controlled trials comparing 5-year survival between
lung tumor patients treated with SBRT and cryotherapy. The management of complex
patients should be undertaken by a multidisciplinary team in order to optimize early
detection and incorporate effective therapeutic options. Doing so would likely result in an
increased need for less invasive yet efficacious modalities, such as thermal ablation.
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