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Combining tubercidin and cordycepin scaffolds
results in highly active candidates to treat
late-stage sleeping sickness
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Isabel Roditi 4, Anders Hofer5, Harry P. de Koning 3,6, Guy Caljon 2,6 & Serge Van Calenbergh 1,6*

African trypanosomiasis is a disease caused by Trypanosoma brucei parasites with limited

treatment options. Trypanosoma is unable to synthesize purines de novo and relies solely on

their uptake and interconversion from the host, constituting purine nucleoside analogues a

potential source of antitrypanosomal agents. Here we combine structural elements from

known trypanocidal nucleoside analogues to develop a series of 3’-deoxy-7-deazaadenosine

nucleosides, and investigate their effects against African trypanosomes. 3’-Deoxytubercidin is

a highly potent trypanocide in vitro and displays curative activity in animal models of acute

and CNS-stage disease, even at low doses and oral administration. Whole-genome RNAi

screening reveals that the P2 nucleoside transporter and adenosine kinase are involved in the

uptake and activation, respectively, of this analogue. This is confirmed by P1 and P2 trans-

porter assays and nucleotide pool analysis. 3’-Deoxytubercidin is a promising lead to treat

late-stage sleeping sickness.
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S leeping sickness or human African trypanosomiasis (HAT)
is almost always fatal and is endemic in much of
sub-Saharan Africa, coinciding with the geographical loca-

lization of the tsetse fly vector. Its causative agent is the haemo-
flagellate protozoan parasite Trypanosoma brucei spp., of which
T. b. gambiense and T. b. rhodesiense are infectious to humans,
and prevalent in West and Central Africa, and in East and
Southern Africa, respectively1. Patients initially show non-specific
symptoms such as fever and general malaise, caused by parasites
proliferating in the haemolymphatic system (stage 1 disease),
after which the trypanosomes invade the central nervous system
(CNS; stage 2 disease), thereby causing severe neurological
complications, one of which is the altered sleep/wake cycle that
gave this infectious disease its name2–4.

Treatment of HAT is currently based on the following five
drugs: pentamidine, suramin, melarsoprol, eflornithine and
nifurtimox5. A sixth drug, fexinidazole, recently concluded clin-
ical trials successfully6. Pentamidine and suramin are the first-line
drugs against stage 1 disease caused by T. b. gambiense and T. b.
rhodesiense, respectively. The first-line treatment for the second
stage of T. b. gambiense HAT is a nifurtimox–eflornithine com-
bination therapy, with eflornithine monotherapy used when
nifurtimox is unavailable or contraindicated. Melarsoprol, an
organo-arsenical compound, leads to treatment-related death in
2.5 to 5% of cases7,8 and is now restricted to the treatment of
stage 2 T. b. rhodesiense HAT, while being almost completely
phased out for stage 2 T. b. gambiense HAT. All these drugs suffer
from major limitations ranging from stage-specific efficacy (e.g.
only active against stage 1 disease) to significant toxicity, as well
as the necessity for parenteral administration (intravenous for
suramin, melarsoprol and eflornithine and intramuscular for
pentamidine), which poses practical challenges in rural Africa.
Clinical trial results with orally administered fexinidazole6

showed it is safe and effective against T. b. gambiense HAT,
marking it the first new HAT therapeutic in three decades, as well
as the first oral monotherapy against both stage 1 and stage 2
HAT. Nonetheless, resistance is readily induced in vitro and
fexinidazole displays cross-resistance with nifurtimox9,10. Addi-
tionally, this drug requires a high pill burden treatment regime6,
underscoring that research efforts for the discovery of new
therapeutics to treat this neglected tropical disease remain of
significant interest2,3.

Protozoan parasites are incapable of synthesizing purine
nucleosides de novo and hence rely on uptake and salvage of
exogenous purines. In this context, purine analogues that can act
as inhibitors11–13 or ‘subversive’ substrates14 of purine salvage
enzymes are a promising source of compounds with activity
against protozoan parasites (e.g. cordycepin15–18, formycin B16

and tubercidin19,20) and have been shown to exhibit good activity
against African trypanosomes14,17,18,21. Moreover, nucleoside
analogues could have the advantage of a higher likelihood to cross
the blood–brain barrier (BBB) and thus be active against stage 2

HAT, owing to the presence of specific (purine) transporters at
the BBB22. The nucleoside antibiotics cordycepin 315–17,23 and
tubercidin 619,24 represent two of the most thoroughly studied
antitrypanosomal nucleoside analogues (Fig. 1).

Inspired by the activity of tubercidin against T. brucei spp., we
recently explored a series of 7-substituted tubercidin analogues
and identified analogues displaying promising in vitro activity
against kinetoplastid parasites25. In an attempt to further increase
the antitrypanosomal activity, we set out to investigate the effect of
modifying the sugar part of tubercidin and its 7-substituted
analogues.

The present communication reports the identification of a
promising adenosine analogue that is highly active in both stage 1
and stage 2 mouse models of HAT. Furthermore, we demonstrate
its affinity for T. brucei adenosine transporters, and provide
insights into its mechanism of action by applying whole-genome
RNA interference (RNAi) screening, and analysis of its metabo-
lism in the parasite through nucleotide pool analysis.

Results
Hybrid nucleosides display highly potent in vitro activity.
Based on the reported activity of cordycepin and tubercidin, and
taking into account our recently reported tubercidin derivatives25,
a small series of 2′- and 3′-deoxytubercidin analogues was syn-
thesized (Supplementary Methods) and evaluated in vitro against
T. brucei spp. (Fig. 2).

Comparison of the in vitro activity profile of the ribofuranose (6
and 8), 2′-deoxy (11 and 12) and 3′-deoxyribofuranose analogues
(9 and 10) showed a clear preference for the latter with respect to
antitrypanosomal potency, as well as selectivity (Table 1).

Moreover, we observed that the effect of most of the analogues
remained almost unchanged (<3-fold) when assayed against
drug-resistant T. brucei strains (Table 2), except for the 11-fold
reduction in sensitivity to 9 observed in trypanosomes lacking the
TbAT1 gene encoding the P2 aminopurine transporter, that is,
TbAT1-knockout (KO) and clone B48 (derived from TbAT1-KO,
with additional loss of the HAPT1/AQP2 transporter)26.
Importantly, the absence of the P2 transporter did not cause
insensitivity to 9 as its in vitro activity remained submicromolar.
It is therefore unlikely that the P2 transporter is the only
transport protein involved in the uptake of 9, although it is
probably the most important one. The resistance pattern shows
no indication that any of the nucleosides are substrates of the
HAPT1/AQP2 drug transporter, given the similar effect observed
on B48, which is deficient in this activity, and its parental cell line,
TbAT1-KO. Surprisingly, several analogues (6, 8 and 12)
displayed reduced activity to the isometamidium-resistant cell
line ISMR1, which is not known to have altered nucleoside
transport. This may however be related to the fact that these
parasites lack kinetoplasts and have reduced mitochondrial
membrane potential, resulting in a substantially slower growth
rate27.
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Fig. 1 Different nucleoside analogues with reported activity against African trypanosomes. [Cordycepin: TCMDC-143080; Formycin B: TCMDC-143083
(codes originating from ref. 16)].
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3′-Deoxytubercidin analogues are trypanocidal. Incubation of
wild-type T. brucei cells with 8, 9 and 10 at 2× and 5× their half-
maximal effective concentration (EC50) showed that derivatives 9
and 10 display a clear trypanocidal effect against T. brucei
bloodstream forms in vitro, whereas cultures incubated with 8 at
either 2× and 5× EC50 only displayed growth arrest after a few
hours, demonstrating a more trypanostatic characteristic

(Supplementary Fig. 1 and Supplementary Fig. 2). We further
observed that cells treated with adenosine analogues 8, 9 and 10
at 2× and 5× EC50 showed clear aberrant morphology at 6 h and
especially at 12 h, with gross distortions of cell shape and the
apparent formation of intracellular vacuoles. Staining with the
fluorescent DNA dye DAPI (4′,6-diamidino-2-phenylindole)
revealed no evidence of inhibition of cytokinesis, which usually
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Fig. 2 Combination of cordycepin and tubercidin yields highly potent hybrids (Table 1).

Table 1 In vitro drug sensitivity of 7-deazapurine nucleoside analogues.

Cpd. T. b. brucei EC50 (µM) T. b. rhodesiense EC50 (µM) MRC-5 EC50 (µM) SI (MRC/T.b. brucei) SI (MRC/T.b. rhodesiense)

Tubercidin, 6 0.48 ± 0.1 0.036 ± 0.001 2.2 ± 0.7 4 61
8 1.2 ± 0.3 0.12 ± 0.02 12 ± 2 10 107
9 0.048 ± 0.009 0.00052 ± 0.00004 >64 >1333 >123,077
10 0.0013 ± 0.0003 0.00040 ± 0.00009 15 ± 3 11,462 37,500
11 48 ± 1 >64 >64 1.3 –
12 0.46 ± 0.08 0.12 ± 0.01 6.1 ± 0.7 13 50

EC50 values, determined with the Alamar blue cell viability assay, are expressed in µM, and represent mean and SEM. The number of independent replicates was n = 5 (8, 9, 10), n = 4 (6) and n = 2 (11
and 12). Cytotoxicity was assessed in human MRC-5 fibroblasts. Source data are provided as a Source Data file
SI selectivity index

Table 2 In vitro drug sensitivity against drug-resistant T. brucei.

Cpd. Lister 427
EC50 (µM)

TbAT1-KO
EC50 (µM)

RF B48 EC50 (µM) RF ISMR1 EC50 (µM) RF

6 TUB 0.15 ± 0.03 2.61 ± 0.70 17.2** 4.3 ± 1.3 28.7* 1.7 ± 0.5 11.1**
8 7-Br-TUB 0.32 ± 0.27 0.825 ± 0.0173 2.62*** 0.448 ± 0.196 1.42 1.529 ± 0.157 4.85**
9 3′-Deoxy-TUB 0.033 ± 0.001 0.375 ± 0.012 11.2*** 0.368 ± 0.013 11.0*** 0.0324 ± 0.0038 0.97
10 7-Br-3′-deoxy-TUB 0.0018 ± 0.0003 0.0021 ± 0.00025 1.2 0.0013 ± 0.0003 0.75 0.0011 ± 0.0002 0.63
11 2′-Deoxy-TUB 96.4 ± 13.8 43.7 ± 2.2 0.45** 41.8 ± 1.4 0.43** 77.8 ± 1.7 0.81
12 7-Br-2′-deoxy-TUB 0.31 ± 0.063 0.76 ± 0.18 2.37* 0.83 ± 0.16 2.64** 0.92 ± 0.12 2.93**
Pentamidine 0.011 ± 0.001 0.018 ± 0.002 1.8** 0.99 ± 0.16 94.6*** 0.14 ± 0.04 13.8**
Diminazene 0.42 ± 0.064 4.5 ± 0.9 10.6*** 7.2 ± 1.6 16.9*** 2.9 ± 0.4 6.9***
Isometamidium 0.65 ± 0.085 0.75 ± 0.14 1.2 0.56 ± 0.13 0.85 3.1 ± 0.5 4.8***

In vitro antitrypanosomal evaluation against drug-resistant T. b. brucei cell lines. EC50 values are given in µM and are mean and SEM of three independent determinations (n= 3). RF = Resistance factor,
that is, the ratio of EC50 of resistant and reference (Lister 427WT) cell line. TbAT1-KO: T. brucei cell line lacking the TbAT1(P2) transporter gene. B48: pentamidine, diminazene and melaminophenyl
arsenical resistant T. brucei line. ISMR1: isometamidium-resistant T. brucei cell line. TUB, tubercidin. Source data are provided as a Source Data file
*p <0.05, **p <0.01; ***p < 0.001; Student’s t test (two-sided)
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leads to the appearance of large, multi-nucleated cells (Supple-
mentary Fig. 3). The morphology of the nucleus and kinetoplast
appears not to have been substantially altered in compound-
treated cell populations.

Nucleoside analogue 9 is metabolically stable. Incubations with
mouse, rat and human S9 microsomal fractions revealed that 9 is
metabolically stable, defined as ≥50% of parent compound
remaining after 30 min (Supplementary Table 1). Next, the
impact of adenosine deaminase on 7-deazapurine nucleoside
analogues 6, 9 and 10 was studied, given that it has been
described to greatly affect the antitrypanosomal activity of ade-
nosine analogues17,18,23. Therefore, the in vitro antitrypanosomal
activity was re-assessed in the presence of an inhibitor of this
enzyme, 2’-deoxycoformycin (Supplementary Table 2). In con-
trast to cordycepin (3), the EC50 values of the 7-deazapurine
analogues (6, 9 and 10) were not significantly affected by the
inhibition of adenosine deaminase.

Based on its low cytotoxicity, potent in vitro activity (Fig. 2)
and metabolic stability, nucleoside analogue 9 was selected for
follow-up evaluation in mouse models of HAT.

Compound 9 shows excellent efficacy in murine HAT models.
First, 9 was evaluated in a mouse model of acute HAT. Intra-
peritoneal administration at 10 mg kg−1 s.i.d. (once a day) for
5 days, or oral dosing at 25, 12.5 and 6.25 mg kg−1 b.i.d. (twice a
day) for 5 days resulted in negative blood parasitaemia and sur-
vival of all treated mice at the pre-set endpoint of 21 days post
infection (dpi) (Supplementary Fig. 4). No adverse reactions have
been noted nor was weight loss recorded in any of the treatment
schedules, indicating that 9 was well tolerated by the test animals.
Unfortunately, the bromo analogue 10, although more potent
in vitro, was not well tolerated at a dose of 6.25 mg kg−1 orally,
and was not pursued further.

Next, 9 was evaluated in a CNS mouse model of HAT. Oral
dosing at 25 mg kg−1 b.i.d. for 5 days resulted in excellent activity,
comparable to the reference drug for CNS clearance, melarsoprol.
All treated animals showed negative blood parasitaemia and
survived the pre-set endpoint of 9 weeks post infection (wpi).
Bioluminescent imaging (BLI) confirmed a total clearance of all
organs, including the CNS (Fig. 3a, b). Quantification of the
luminescent signal in the head region showed a rapid decline of
the signal in both melarsoprol and 9-treated animals to levels
similar to those detected in a non-infected control mouse
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(Fig. 3c). Dose titration at 25, 12.5 and 6.25 mg kg−1 s.i.d. for
5 days also resulted in negative blood parasitaemia up to 9 wpi,
with BLI confirming a total clearance in all organs including the
CNS (Supplementary Fig. 5). Additional follow-up of surviving
mice with BLI up to 14 wpi did not reveal any signs of relapse. All
treated (melarsoprol and analogue 9) animals showed complete
absence of parasite burdens as assayed in several tissue samples
(brain, spleen and fat) by a highly sensitive spliced-leader RNA
(SL-RNA) quantitative PCR (qPCR) detection method (Supple-
mentary Table 3)28.

Whole-genome RNAi screening. Exposure of a genome-wide
T. b. brucei RNAi library to 9 led to the selection and identifi-
cation of six RNAi inserts that reduced the in vitro effectiveness
of 9 (Supplementary Table 4). In order to confirm the involve-
ment of the different inserts in the mode of action of 9, the RNAi
constructs were back-cloned into T. brucei NY-SM cells, and for
each, two independent clones containing genomically inserted
RNAi cassettes were tested for their susceptibility to the com-
pound (except for the AT1 gene, as a KO (AT1-KO) is available).

Out of the five knockdown constructs and the AT1-KO tested,
only the knockdown targeting adenosine kinase (ADKIN;
Tb927.6.2300) and the adenosine transporter 1 (AT1;
Tb927.5.286b) KO cell line decreased the sensitivity for 9: from
an EC50 of 0.0077 ± 0.00017 µM (mean and SEM, n= 2) to 0.10 ±
0.005 µM (mean and SEM, n= 2) upon ADKIN knockdown
(Fig. 4a) and from 0.0064 ± 0.0004 µM (mean and SEM, n= 2) to
0.15 ± 0.03 µM (mean and SEM, n= 2) upon AT1-KO (Fig. 4b).
Notably, despite the ~20-fold reduced susceptibility observed in
the ADKIN knockdown cell lines, the in vitro activity of 9

remained in the submicromolar range, suggesting that both
ADKIN and AT1 contribute to an important extent but are not
essential per se for the antitrypanosomal activity of 9. However, it
must also be realized that the RNAi knockdown of ADKIN is
unlikely to be 100% and that residual ADKIN activity therefore
may be responsible for the remaining activity. For the remaining
four constructs, no significant differences in susceptibility could
be observed between tetracycline-induced and non-induced
clones (Supplementary Fig. 6).

Adenosine transporter assays. The polar nature of the presented
nucleoside analogues renders transmembrane translocation
through passive diffusion highly unlikely. To confirm the role for
the TbAT1/P2 aminopurine transporter in the drug sensitivity of
trypanosomes to analogue 9 and to assess the contribution of the
P1 purine nucleoside transporter29 in the uptake of this and
structurally related nucleosides, we investigated analogues 8, 9
and 10 for their ability to inhibit P1- and P2-mediated [3H]
adenosine uptake (Fig. 5). The Km values for adenosine, obtained
as control, were consistent with previously reported values
(Table 3)29,30.

Regarding transport via P1, we observed that all three
analogues, and especially 9, presented substantially lower affinity
than adenosine (Fig. 5 and Table 3), corroborating the lower
sensitivity of the TbAT1-KO and B48 strains to 9 (Table 2 and
Fig. 4). This indicates a high level of reliance of 9 on P2 transport
and is in line with the identification of the encoding gene
(TbAT1) in the whole-genome RNAi screening experiment.
Interestingly, the addition of a bromine at the 7-position of 9
(analogue 10) improved the affinity for P1 10-fold and recovered
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5.9 kJ mol−1 in Gibbs free energy (Table 3), whereas the presence
of the 3′-OH (8 versus 10) only doubled the affinity for P1
(Table 3). The very modest binding energy ΔG0 associated with
the 3′-OH [δ(ΔG0) = 1.6 kJ mol−1], which has previously been
shown to be one of the interaction points of adenosine with P1
having an apparent contribution of 18.4 kJ mol−1 to the
binding29, appears to indicate that the 7-substituted analogues
orient differently in the P1-binding pocket, making the 3′-OH
less important.

The 3′-deoxy analogues displayed higher affinity for P2 than
adenosine, with cordycepin (3) and 9 displaying almost identical
Ki values, roughly 3-fold lower than the Km value for adenosine,
representing an energy advantage of ~3 kJ mol−1, the same as the
δ(ΔG0) for 10 compared to 8 (Table 3). This is similar to the
energy gain upon removal of the 2′-OH29 and consistent with P2

being essentially an adenine transporter condoning the ribose
moiety31,32.

Intracellular fate of analogue 9. RNAi experiments revealed the
importance of ADKIN for the activity of nucleoside 9. Therefore,
the intracellular nucleotide pools of T. brucei after exposure to 25
μM of this nucleoside analogue were further analysed. Compound
9 did not cause any change in the balance or total quantity of
intracellular purine and pyrimidine nucleotides in comparison to
untreated trypanosomes (Fig. 6a, b). However, the analysis
unambiguously showed that 9 is internalized and metabolized by
T. brucei to mono-, di- and triphosphates (Fig. 6a, Supplementary
Figs. 7 and 8). Incubation of analogue 9 with purified recom-
binant TbADKIN was performed to characterize the kinetic
parameters of the first phosphorylation step (Fig. 6c), revealing a

Table 3 Kinetic parameters nucleoside analogue for P1 and P2 transporters.

Compound P1 transporter P2 transporter

Km or Ki ΔG0 δ(ΔG0) Km or Ki ΔG0 δ(ΔG0)

Adenosine 0.12 ± 0.02 −39.4 0.53 ± 0.02 −35.8
3 Cordycepin 210 ± 48a −21.0 18.4 0.18 ± 0.02b −38.5 −2.7
8 7-Br-TUB 4.85 ± 0.83 −30.3 9.1 1.99 ± 0.31 −32.5 3.3
9 3′-Deoxy-TUB 99.9 ± 21.7 −22.8 16.6 0.149 ± 0.03 −38.9 −3.1
10 7-Br-3′-deoxy-TUB 9.47 ± 1.4 −28.7 10.7 0.502 ± 0.14 −35.9 −0.1

Km (highlighted in bold) and Ki values are in µM; ΔG0 in kJ mol−1. Km and Ki values are mean ± SEM, derived from three independent experiments (n= 3) with three replicates. δ(ΔG0) was calculated in
comparison to adenosine. Source data are provided as a Source Data file.
aValue was taken from ref. 29
bValue was taken from ref. 18
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Km of 195 ± 24 µM (mean and SE, n= 3) and Vmax mg−1 of
0.116 ± 0.0048 U (µmol s−1) (mean and SE, n= 3), similar to
what is reported for 2′-deoxyadenosine33. In agreement, we got
comparable activities with 1 mM 9 and 2′-deoxyadenosine that
was used as control (Fig. 6c).

Analogue 9 does not impact T. brucei DNA and RNA synthesis.
Cell cycle analysis by flow cytometry on T. brucei parasites
exposed for 24 h to various concentrations of 9 indicated no
major impact on DNA synthesis with only a minor effect on
relative trypanosome numbers in the S phase (Fig. 7), suggesting
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that the formed triphosphate of analogue 9 (9-TP) does not
inhibit the parasite’s DNA polymerase. Subsequently, the impact
of various concentrations of analogue 9 on RNA synthesis was
analysed using standard quantification methods on the total RNA
extracts and specific quantitative reverse transcription PCR (RT-
qPCR) for the quantitative detection of T. brucei SL-RNA, 18S
ribosomal RNA (rRNA) and TERT (telomerase reverse tran-
scriptase) transcripts (Fig. 7e–h). The results indicate that neither
nucleoside 9 nor any of its derived phosphorylated metabolites
act as chain terminators for RNA synthesis given the absence of a
major impact on the total RNA pool and the levels of specific
transcripts produced by RNA polymerase I and II.

Discussion
For decades nucleoside (and nucleobase) analogues have been
successfully used in the clinic, particularly for the treatment of
viral infections and cancer, which is evidenced by the more than
40 chemical entities from this compound class that are Food and
Drug Administration approved at the present date34,35. Their
utilization in the treatment of parasitic infections, however, is
currently limited to the occasional use of allopurinol against
canine leishmaniasis36, although many other purine and
pyrimidine analogues have been tested for their anti-
trypanosomal and leishmanicidal effects, most prominently
against T. brucei14,17,18,21,25,37. Using nucleoside analogues as
chemotherapeutic agents against HAT potentially benefits from
the inherently higher likelihood of crossing the BBB than for
most other water-soluble compounds22, thus enabling their use
in the neurological stage of the disease1.

By combining the molecular scaffolds of two well-studied
antitrypanosomal purine nucleoside analogues, tubercidin and
cordycepin, we have discovered 3′-deoxy-7-deazaadenosine
derivatives with highly potent trypanocidal activity, validating the
use of focussed purine nucleoside libraries as an effective strategy
in phenotypic drug discovery. The frontrunner analogue 9, which
was first described in 1973 by Robins et al.38, and later assessed by
researchers at Merck for its in vitro activity against hepatitis C
virus39, has never been evaluated as a trypanocide.

A major issue for the therapeutic potential of adenosine-like
nucleoside analogues is the high serum adenosine deaminase
activity in vivo, resulting in the formation of potentially inactive
inosine-like nucleosides, which is most prominently exemplified
by cordycepin, requiring co-administration with 2′-deox-
ycoformycin to ensure sufficient in vivo activity17,18,23. The
absence of N7 in tubercidin-derived analogues potentially cir-
cumvents this issue40, obviating co-administration. Analogue 9
was metabolically stable and showed remarkable efficacy in ani-
mal models of both stage 1 and stage 2 HAT at doses as low as
6.25 mg kg−1 s.i.d. after oral gavage.

In their search for host purines, T. brucei parasites express
several purine (nucleoside) transporters41, coupled to an elabo-
rate purine salvage pathway network enabling them to grow on
virtually every purine source14,42. Following the uptake of ade-
nosine, two metabolic routes are possible, which entails either a
cleavage step (deribosylation by means of inosine-adenosine-
guanosine nucleoside hydrolase43, or methylthioadenosine
phosphorylase44) or the direct phosphorylation by ADKIN to
AMP33,45. We show here that, similarly to adenosine, analogue 9
is phosphorylated by TbADKIN, although kinetic analysis
revealed it to be a low-affinity substrate of the recombinant
enzyme. We therefore hypothesize that 9 accumulates in the
trypanosomal cell, driven by the active uptake that coupling of the
T. brucei purine transporters to the proton-motive force
engenders46,47, at which point it becomes a high capacity sub-
strate (with a Vmax similar to that of cordycepin33).

The absence of major perturbations in the nucleotide pool of
cells treated with 9 appears to indicate that it exerts its trypa-
nocidal activity by some mechanism other than causing an
imbalance in the intracellular nucleotide pool21. Moreover, the
absence of DNA fragmentation or disruption of DNA synthesis
shows that 9 is not incorporated into DNA, as the 3′-deoxy
analogue would be an obligate chain terminator. Additionally, we
have shown that 9 (or any of its phosphorylated metabolites) does
not interfere with RNA synthesis. The presence of all three
phosphorylated metabolites, as shown by high-performance
liquid chromatography (HPLC) analysis, further complicates
mode-of-action investigations, as it was shown that the tripho-
sphate of tubercidin was responsible for the inhibition of T. brucei
phosphoglycerate kinase24, an enzyme from the glycolytic
pathway.

In summary, we here described the discovery and effects of
potent antitrypanosomal agents having a 3′-deoxy-7-deazaade-
nosine structure. Analogue 9 represents a potent and orally
bioavailable chemotherapeutical candidate for treatment of
human and animal African trypanosomiases, which shows no
detrimental level of cross-resistance with currently used drugs.

Methods
Ethics statement for animal models. The use of laboratory rodents was carried
out in strict accordance to all mandatory guidelines (EU directives, including the
Revised Directive 2010/63/EU on the Protection of Animals used for Scientific
Purposes that came into force on 1 January 2013, and the Declaration of Helsinki
in its latest version) and was approved by the Ethical Committee of the University
of Antwerp, Belgium [UA-ECD 2017–04].

Trypanosoma brucei in vitro drug susceptibility assays. Drug susceptibility tests
with Lister 427WT, TbAT1-KO48, B4826 and ISMR127 were performed using an
assay based on the viability indicator dye resazurin in 96-well plates, each well
containing 2 × 104 cells. The plates were incubated for 48 h with a doubling dilu-
tion series of the test compounds in HMI-9/fetal bovine serum at 37 °C/5% CO2

(23 dilutions starting at 100 µM, except for the pentamidine control (50 µM)), after
which resazurin (20 µL of 125 µg mL−1 resazurin sodium salt solution was added to
each well (containing 200 µL of cells and test compound)) was added to each well
and the plates incubated for another 24 h. Fluorescence was determined using a
FLUOstar Optima (BMG Labtech, Durham, NC) and the results fitted to a sigmoid
curve with variable slope using Prism 5.0 or Prism 7.04 (GraphPad, San
Diego, CA).

Susceptibility assays with T. brucei Squib 42749 or T. b. rhodesiense STIB-90050

were performed under similar conditions as above, but using 10 concentrations of a
4-fold compound dilution series starting at 64 µM. Trypanosoma brucei Squib 427
was seeded at 1.5 × 104 parasites/well and T. b. rhodesiense at 4 × 103 parasites per
well, followed by the addition of resazurin (final concentration of 10 µg mL−1) after
24 h (T. brucei) or 6 h (T. b. rhodesiense).

Susceptibility assays with NY-SM51, BS22148 and TbAT1-KO48 (derived from
BS221) cells were performed using 10 concentrations of a 4-fold compound
dilution series starting at 64 µM. Parasites were seeded at 4 × 103 parasites per well
and exposed to drug compound for 72 h, after which resazurin (final concentration
of 10 µg mL−1) was added to the plates. Fluorescence intensities were determined
after 6 h.

Cytotoxicity on MRC-5 fibroblasts. Cytotoxicity assays were performed on MRC-
5SV2 (Sigma-Aldrich/ECACC, catalogue number 84100401) human embryonic
lung fibroblasts, which were cultured in minimum essential medium with Earle’s
salt medium, supplemented with L-glutamine, NaHCO3 and 5% inactivated foetal
calf serum. All cultures and assays were conducted at 37 °C with 5% CO2.
Ten microliters of the aqueous compound dilutions were added to 190 µL of MRC-
5SV2 (3 × 104 cells mL−1). Cell growth was compared to untreated control wells
(100% cell growth) and medium control wells (0% cell growth). After a 3-day
incubation, cell viability was assessed fluorimetrically after the addition of 50 μL
resazurin per well (final concentration of 10 µg mL−1). After 4 h at 37 °C, fluor-
escence was measured (λex 550 nm, λem 590 nm). The results were expressed as
percentage reduction in cell growth/viability compared to control wells and an
EC50 was determined.

Mouse model of acute HAT (T. b. brucei Squib 427). Female Swiss mice (body
weight (BW) ~20–24 g; Janvier Labs, France) were allocated randomly to groups of
three animals and infected intraperitoneally (i.p.) with 104 T. b. brucei Squib 427
derived from a heavily infected donor mouse. Drinking water and food were
available ad libitum throughout the experiment. Analogue 9 was formulated in 10%
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(v/v) polyethylene glycol 400 in water at 2 mgmL−1 or in 5% (v/v) Tween-80 in
water at 4 mgmL−1 and was freshly prepared at every administration. Analogue 9
was administered orally b.i.d. for 5 days at 25, 12.5 and 6.25 mg kg−1 or i.p. s.i.d.
for 5 days at 10 mg kg−1 (all groups n= 3). The reference drug suramin was
formulated in phospahte-buffered saline (PBS) at 2.5 mg mL−1 and administered s.
i.d. i.p. for 5 days at 10 mg kg−1 (n= 3). All treatments were initiated 30 min prior
to the i.p. infection. Animals were observed for the occurrence of clinical or adverse
effects during the course of the experiment and were weighed daily. Parasitaemia
was determined by microscopic evaluation of tail vein blood samples at 4, 7, 10, 14
and 21 dpi (pre-set endpoint). As a test of cure, blood samples (250 µL) were
collected from treated mice at 21 dpi and were sub-inoculated i.p. in naive Swiss
mice (n= 3), followed by monitoring of parasitaemia as follow-up.

Mouse model of stage 2 HAT. Female Swiss mice (BW ~ 20–24 g; Janvier
Labs France) were randomly allocated to groups of 4 animals and infected i.p. with
104 T. b. brucei AnTAR1.1 PPYRE952 derived from a heavily infected donor mouse.
Analogue 9 was formulated in 5% (v/v) Tween-80 in water at 4 mgmL−1 and
was freshly prepared at every administration. Analogue 9 was administered by
oral gavage for 5 days at 25 mg kg−1 b.i.d. (n= 2), 25 mg kg−1 s.i.d. (n= 3),
12.5 mg kg−1 s.i.d. (n= 2) or 6.25 mg kg−1 s.i.d. (n= 3). The reference drug
melarsoprol was formulated as a stock solution of 3.6% in propylene glycol. The
stock solution was converted into a gel by the addition of hydroxypropylcellulose to
a final concentration of 1.5%. Melarsoprol was administered topically s.i.d. for
3 days at ≥120 mg kg−1 (n= 2). Treatment was initiated at 21 dpi. Parasitaemia
was determined microscopically using a Neubauer improved haemocytometer at
21, 25, 28, 32, 35, 43, 50, 59 and 63 dpi. Bioluminescent images were acquired at 7,
21, 28, 35, 43, 50, 59 and 63 dpi to evaluate parasite burdens in the various organs.
Mice were injected i.p. with 15 mg kg−1 of D-luciferin and anaesthetised using
isoflurane. The luminescent signal was acquired from both the dorsal and ventral
side of the animals. Bioluminescent images were acquired over an exposure time of
5 s from animals prior to treatment (until 3 wpi) and from animals in the vehicle
control (n= 2) group that harbour high parasite burdens. Animals subjected to the
different treatment schemes (from 4 wpi) were additionally imaged over a 5 min
exposure time for enhanced sensitivity. Surviving animals at the 63 dpi time-point
were further monitored up to 98 dpi. At 121 dpi, mice were sacrificed and brain, fat
and spleen samples were collected for qPCR analysis to determine the presence of
residual parasite burdens. Tissues were weighed and RNA was extracted using the
RNeasy Plus Mini Kit (Qiagen) according to the manufacturer’s recommendations.
Parasite levels in these tissues were determined using quantitative real-time PCR
targeting SL-RNA as described previously28. Quantitative real-time PCR targeting
the eukaryotic translation elongation factor 2 (Eef2), a mouse reference gene, was
performed in parallel, to confirm appropriate RNA extraction in all tested sam-
ples53. A list of primers used is provided in the Supplementary Methods section of
the Supplementary Information. BLI images from the IVIS Spectrum In Vivo
Imaging System (Perkin Elmer) were analysed using LivingImage v4.3.1. SoftWoRx
suite 2.0 for microscopy (image deconvolution), then processing using the Fiji
software.

Whole-genome RNAi screening. The RNAi library54 was induced for 68 h by the
addition of 1 µg mL−1 of tetracycline. After induction, the cells were exposed to
different concentrations of 9 (corresponding to the IC98, IC99). Cells were main-
tained until a recovery of the resistant population was observed. Genomic DNA of
the resistant parasite population was isolated, and the RNAi inserts were identified
by PCR amplification, followed by cloning in highly competent Escherichia coli and
sequencing. To validate the involvement of the identified genes, the RNAi inserts
were back-cloned into a p2T7Bern vector54 and transformed into NY-SM cells (the
background strain of the RNAi library). The transformed NY-SM cells were cloned
by limiting dilution. Two clones of each RNAi insert were exposed to tetracycline
to induce the RNAi phenotype and subsequently subjected to different con-
centrations of 9 to determine the susceptibility of induced versus non-induced
clones.

Drug susceptibility assays with induced clones were performed as described
above for NY-SM cells, with an initial induction period of 68 h with 1 µg mL−1

tetracycline prior to the start of the drug susceptibility assay.

In vitro adenosine transporter assay. Transport via P1 was measured using B48
cells, which lack the P2 transport system26, using a [3H]adenosine concentration
of 0.1 µM, whereas the transport via P2 was assessed in B48 cells transfected with
TbAT1(P2) gene (B48 + TbAT1)31 for a constant, high level of expression, in the
presence of 100 µM of inosine to block the P1 transporter (0.033 µM [3H]ade-
nosine). The transport of [3H]adenosine (40 Ci mmol−1; American Radi-
olabelled Chemicals, St. Louis, MO) was measured using the following uptake
protocol:21,55 trypanosomes (1 × 107 cells) were suspended in 100 µL assay buffer
(33 mM HEPES, 98 mM NaCl, 4.6 mM KCl, 0.55 mM CaCl2, 0.07 mM MgSO4,
5.8 mM NaH2PO4, 0.3 mM MgCl2, 23 mM NaHCO3, 14 mM glucose, pH 7.3)55

at room temperature and incubated with 100 nM [3H]adenosine in the same
buffer for 60 s, followed by rapid termination by the addition of ice-cold 2 mM
adenosine, followed by immediate centrifugation in a microfuge through an oil

layer (250 μL of 7:1 mixture of di-n-butylphthalate and light mineral oil (Sigma))
for 1 min at 13,000 r.p.m. Non-specific association of radiolabel with the cell
pellet was determined using an identical incubation in the presence of saturating
(1 mM) unlabelled adenosine. The incubation times used were well within the
linear phase of uptake47. Inhibition constants (Ki) were calculated from 50%
inhibition values (IC50) obtained by non-linear regression (sigmoid curve with
variable slope; GraphPad Prism 5.0) and the Cheng–Prusoff equation Ki = IC50/
(1+(L+Km), in which L is the permeant concentration55. The Gibbs free energy
was calculated from ΔG0=−RT ln(Ki) as described29, in which R is the gas
constant and T the absolute temperature. Prism 7 (GraphPad) was used for the
analysis of transporter data, fitting to a sigmoid dose–response curve with
variable slope.

Nucleotide pool analysis. Logarithmically growing T. brucei Lister 427 cells
(50 mL, 1.5–2 × 106 cells mL−1) were incubated for 1 h with compound 9 (25 µM
final concentration) added to the growth medium at 37 °C. Afterwards, the cell-
containing flasks were placed on ice for 5 min before harvesting by centrifugation
for 5 min (4000 × g) at 4 °C. The supernatant was discarded and the cells were
gently resuspended and transferred to an Eppendorf tube. The sample was cen-
trifuged for 1 min at maximum speed (21,000 × g), and the pellet was resuspended
in 50% (v/v) acetonitrile by pipetting it up and down in the solution to disintegrate
the cells. After re-centrifugation, the supernatant was centrifuged through a pre-
washed Nanosep 3k Omega filter (PALL Corporation, Port Washington, NY,
USA). The filtrate was evaporated in a speedvac, resuspended in water and stored
at −20 °C and mixed 1:1 with mobile phase before HPLC analysis. Exact chro-
matographic conditions for each specific analysis are described in the Supple-
mentary Information (Supplementary Figs. 7–11). Data for nucleotide pool analysis
are based on four independent biological repeats.

ADKIN assay. The T. brucei ADKIN enzyme was diluted in a buffer containing
0.05% (v/v) Tween-20, 50 mM KCl, 0.1 mM dithiothreitol, and 50 mM Tris-HCl,
pH 7.5 (dilution buffer), prior to use in the assay. The final assay mixture contained
12.5 ng T. brucei ADKIN, a range between 50 and 1000 µM of nucleoside 9 (or
1000 µM deoxyadenosine in the control reaction), 100 mM KCl, 10 mM MgCl2,
0.5 mM ATP, 5 mM potassium phosphate and 50 mM Tris-HCl, pH 7.5. The assay
was incubated at 37 °C for 30 min, and subsequently heated for 2 min at 100 °C to
inactivate the enzyme, diluted with 2 volumes of water, centrifuged through a
Nanosep 3k Omega filter and mixed 1:1:2 with water and mobile phase. The HPLC
analysis was performed on a 2.1 × 150 mm ACE Excel C18 column using a mobile
phase composition 4A:76B:20C (see nucleotide pool analysis, Supplementary
Information for details). Using these conditions, consecutive samples could be
loaded (Supplementary Fig. 12). After 4–5 samples, the column was washed with
high percent A (80A:20C) to remove bound ADP and ATP before re-equilibrating
the column to original conditions.

Cell cycle analysis. NY-SM cells were exposed to different concentrations of 9
(corresponding to the IC50, IC50/2 and IC50/5) for 24 h. After 24 h, the cells were
harvested and washed with PBS before staining with Hoechst 33342 at 5 µg mL−1

for 25 min at 37 °C. Cells were analysed on a MACSQuant flow cytometer (Mil-
tenyi Biotec) using the FlowJo X software package.

RNA quantification. NY-SM cells were exposed to different concentrations of
compound 9 (corresponding to the IC50, IC50/2, IC50/5) for 24 h. After 24 h, the
cells were harvested and washed with PBS. Extracts were made from a normalized
number of cells, given that particularly incubation with compound 9 at the IC50

concentration had a significant impact on the number of recovered trypanosomes.
RNA was extracted using the QIAamp RNA Blood Mini Kit (Qiagen). Total RNA
yields were determined using both Nanodrop 2000 spectrometry and Qubit
fluorimetric RNA content analysis. Additionally, specific transcripts in the RNA
pool were quantified using RT-qPCR targeting the SL-RNA, 18S rRNA and tran-
scripts encoding the telomerase reverse transcriptase (TERT)28,56. A list of primers
used is provided in the Supplementary Methods section of the Supplementary
Information.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that the data underlying the findings of this study are available
within the paper and its Supplementary Information files. Genome sequence and
annotation information was obtained from TritrypDB (http://www.tritrypDB.org). The
source data underlying Figs. 3–7, Tables 1–3 and Supplementary Figs. 1, 2, 4, 5, 7 and
Supplementary Table 1 and 2, are provided as Source Data File.
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