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SUMMARY

We assess contributions to autoimmune disease of genes whose regulation is driven by 

enhancer regions (enhancer-related) and genes that regulate other genes in trans (candidate 

master-regulator). We link these genes to SNPs using several SNP-to-gene (S2G) strategies and 

apply heritability analyses to draw three conclusions about 11 autoimmune/blood-related diseases/

traits. First, several characterizations of enhancer-related genes using functional genomics data are 

informative for autoimmune disease heritability after conditioning on a broad set of regulatory 

annotations. Second, candidate master-regulator genes defined using trans-eQTL in blood are 

also conditionally informative for autoimmune disease heritability. Third, integrating enhancer-

related and master-regulator gene sets with protein-protein interaction (PPI) network information 

magnified their disease signal. The resulting PPI-enhancer gene score produced >2-fold stronger 

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
*Correspondence: kdey@hsph.harvard.edu.
AUTHOR CONTRIBUTIONS
K.K.D. and A.L.P. designed the experiments. K.K.D. performed the experiments. K.K.D., S.G., B.v.d.D., S.S.K., and A.L.P. analyzed 
the data. J.N. and J.M.E. provided the ABC data and assistance regarding the same. K.K.D. and A.L.P. wrote the paper with assistance 
from all authors.

SUPPLEMENTAL INFORMATION
Supplemental information can be found online at https://doi.org/10.1016/j.xgen.2022.100145.

DECLARATION OF INTERESTS
The authors declare no competing interests.

HHS Public Access
Author manuscript
Cell Genom. Author manuscript; available in PMC 2022 July 22.

Published in final edited form as:
Cell Genom. 2022 July 13; 2(7): . doi:10.1016/j.xgen.2022.100145.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by-nc-nd/4.0/


heritability signal and >2-fold stronger enrichment for drug targets, compared with the recently 

proposed enhancer domain score. In each case, functionally informed S2G strategies produced 

4.1- to 13-fold stronger disease signals than conventional window-based strategies.

Graphical abstract

In brief

Disease risk variants associated with complex traits and diseases predominantly lie in non-coding 

regulatory regions of the genes, motivating the need to assess the relative importance of genes for 

disease through the lens of gene regulation. Here, Dey et al. assess contributions to autoimmune 

disease of enhancer-related genes and candidate master-regulator genes in blood using SNP-to-

gene linking strategies.

INTRODUCTION

Disease risk variants associated with complex traits and diseases predominantly lie in non-

coding regulatory regions of the genes, motivating the need to assess the relative importance 

of genes for disease through the lens of gene regulation.1–6 Several recent studies have 

performed disease-specific gene-level prioritization by integrating genome-wide association 

study (GWAS) summary statistics data with functional genomics data, including gene 

expression and gene networks.7–14 Here, we investigate the contribution to autoimmune 

disease of gene sets reflecting two specific aspects of gene regulation in blood—genes 
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with strong evidence of enhancer-related regulation and candidate master-regulator genes 

that may potentially regulate many other genes. Previous studies suggested that both of 

these characterizations are important for understanding human disease.9,15–24 For example, 

several common non-coding variants associated with Hirschsprung disease have been 

identified in intronic enhancer elements of RET gene and have been shown to synergistically 

regulate its expression,25,26 and NLRC5 acts as a master-regulator of MHC class genes 

in immune response.27 Our two main goals are to characterize which types of genes are 

important for autoimmune disease and to construct SNP annotations derived from those 

genes that are conditionally informative for disease heritability, conditional on all other 

annotations.

A major challenge in gene-level analyses of disease is to link genes to SNPs that may 

regulate them, a prerequisite to integrative analyses of GWAS summary statistics. Previous 

studies have often employed window-based strategies such as ±100 kb,8,9,11 linking 

each gene to all SNPs within 100 kb; however, this approach lacks specificity. Here, 

we incorporated functionally informed SNP-to-gene (S2G) linking strategies that capture 

both distal and proximal components of gene regulation. We evaluated the resulting SNP 

annotations by applying stratified linkage disequilibrium (LD) score regression28 (S-LDSC) 

conditional on a broad set of coding, conserved, regulatory, and LD-related annotations 

from the baseline-LD model,29,30 meta-analyzing the results across 11 autoimmune diseases 

and blood cell traits. We focused on autoimmune diseases and blood cell traits because the 

functional data underlying the gene scores and S2G strategies that we analyze is primarily 

measured in blood. We also assessed gene-level enrichment for disease-related gene sets, 

including approved drug targets for autoimmune disease.10

RESULTS

Overview of methods

We define an annotation as an assignment of a numeric value to each SNP with minor allele 

count ≥5 in a 1000 Genomes Project European reference panel,31 as in our previous work;28 

we primarily focus on annotations with values between 0 and 1. We define a gene score 

as an assignment of a numeric value between 0 and 1 to each gene; gene scores predict 

the relevance of each gene to disease. We primarily focus on binary gene sets defined by 

the top 10% of genes; we made this choice to be consistent with Finucane et al.,9 and to 

ensure that all resulting SNP annotations (gene scores × S2G strategies; see below) were of 

reasonable size (0.2% of SNPs or larger). We consider 11 gene scores prioritizing enhancer-

related genes, candidate master-regulator genes, and genes with high network connectivity 

to enhancer-related or candidate master-regulator genes (Table 1 and Figure S1); these 

gene scores were only mildly correlated (average r = 0.08, Figure S2). We considered 

enhancer-related and candidate master-regulator genes because previous studies suggested 

that both of these characterizations are important for understanding human disease.9,15–24

We define an S2G linking strategy as an assignment of 0, 1, or more linked genes to each 

SNP. We consider ten S2G strategies capturing both distal and proximal gene regulation (see 

STAR Methods, Figure 1A, and Table 2); these S2G strategies aim to link SNPs to genes 

that they regulate. For each gene score X and S2G strategy Y, we define a corresponding 
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combined annotation X × Y by assigning to each SNP the maximum gene score among 

genes linked to that SNP (or 0 for SNPs with no linked genes); this generalizes the standard 

approach of constructing annotations from gene scores using window-based strategies.8,9 

For example, enhancer domain score (EDS)-binary × Activity-by-Contact (ABC) annotates 

SNPs linked by ABC enhancer-gene links32,39 to any gene from the EDS-binary gene set, 

whereas EDS-binary × 100 kb annotates all SNPs within 100 kb of any gene from the 

EDS-binary gene set. For each S2G strategy, we also define a corresponding binary S2G 

annotation defined by SNPs linked to the set of all genes. We have publicly released all gene 

scores, S2G links, and annotations analyzed in this study (see URLs).

We assessed the informativeness of the resulting annotations for disease heritability by 

applying S-LDSC28 to 11 independent blood-related traits (six autoimmune diseases and 

five blood cell traits; average Ncase = 13K for autoimmune diseases and N = 443K for blood 

cell traits, Table S1) and meta-analyzing S-LDSC results across traits; we also assessed 

results meta-analyzed across autoimmune diseases or blood cell traits only, as well as results 

for individual diseases/traits. We conditioned on 86 coding, conserved, regulatory, and 

LD-related annotations from the baseline-LD model (v2.1)29,30 (see URLs). S-LDSC uses 

two metrics to evaluate informativeness for disease heritability: enrichment and standardized 

effect size (τ*). Enrichment is defined as the proportion of heritability explained by SNPs 

in an annotation divided by the proportion of SNPs in the annotation,28 and generalizes to 

annotations with values between 0 and 1.34 Standardized effect size (τ*) is defined as the 

proportionate change in per-SNP heritability associated with a 1 SD increase in the value of 

the annotation, conditional on other annotations included in the model.29

As a preliminary assessment of the potential of the ten S2G strategies, we considered the 

ten S2G annotations defined by SNPs linked to the set of all genes. The S2G annotations 

were only weakly positively correlated (average r = 0.09; Figure S3). We analyzed the ten 

S2G annotations via a marginal analysis, running S-LDSC28 conditional on the baseline-LD 

model and meta-analyzing the results across the 11 blood-related traits. In the marginal 

analysis, all ten S2G annotations were significantly enriched for disease heritability, with 

larger enrichments for smaller annotations (Figure 2A and Table S2); values of standardized 

enrichment (defined as enrichment scaled by the SD of the annotation11) were more similar 

across annotations (Figure S4 and Table S3). Seven S2G annotations attained conditionally 

significant τ* values after Bonferroni correction (p < 0.05/10) (Figure 2B and Table 

S2). In the joint analysis, three of these seven S2G annotations were jointly significant: 

transcription start site (TSS) (joint τ* = 0.97), Roadmap (joint τ* = 0.84), and ABC (joint 

τ* = 0.44) (Figure 2B and Table S4). This suggests that these three S2G annotations are 

highly informative for disease. Subsequent analyses were conditioned on the baseline-LD+ 

model defined by 86 baseline-LD model annotations plus all S2G annotations (except 

Coding, TSS, and Promoter, which were already part of the baseline-LD model), to ensure 

that conditionally significant τ* values for (gene scores × S2G strategies) annotations 

are specific to the gene scores and cannot be explained by (all genes × S2G strategies) 

annotations. Accordingly, we confirmed that (random genes × S2G strategies) annotations 

did not produce conditionally significant τ* values for any S2G strategy (Table S5).
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We validated the gene scores implicated in our study by investigating whether they were 

enriched in five “gold-standard” disease-related gene sets: 195 approved drug target genes 

for autoimmune diseases;10,45 550 Mendelian genes related to immune dysregulation,46 390 

Mendelian genes related to blood disorders,47 146 “Bone Marrow/Immune” genes defined 

by the Developmental Disorders Database/Genotype-Phenotype Database (DDD/G2P),48 

and 2,200 (top 10%) high-pLI genes49 (Figure 3C and Table S6). (We note that the high-pLI 

genes should not be viewed as a strict gold standard, as not all of these genes are disease-

related, but ≈30% of these genes have an established human disease phenotype.49)

Subsequent subsections are organized in the following order: description of gene scores 

for that subsection; marginal analyses using S-LDSC; joint analyses using S-LDSC; and 

validation of the gene scores implicated in our study using gold-standard disease-related 

gene sets.

Enhancer-related genes are conditionally informative for autoimmune disease heritability

We assessed the disease informativeness of seven gene scores prioritizing enhancer-related 

genes in blood. We defined these gene scores based on distal enhancer-gene connections, 

tissue-specific expression, or tissue-specific expression quantitative trait loci (eQTL), all 

of which can characterize enhancer-related regulation (Figure 1B, Table 1, and STAR 

Methods). Some of these gene scores were derived from the same functional data that 

we used to define S2G strategies (e.g., ABC32,39 and assay for transposase-accessible 

chromatin using sequencing [ATAC-seq];33 see URLs). We included two published gene 

scores: (binarized) blood-specific EDS24 and specifically expressed genes in Genotype-

Tissue Expression (GTEx) whole blood9 (SEG-GTEx). We use the term “enhancer-related” 

to broadly describe gene scores with high predicted functionality under a diverse set of 

metrics, notwithstanding the fact that all genes require the activation of enhancers and their 

promoters. Four of our enhancer-related gene scores (ABC-G, ATAC-distal, EDS-binary, 

and promoter-capture Hi-C [PC-HiC]) were explicitly defined based on distal enhancer-gene 

connections. Using the established EDS-binary (derived from the published EDS24) as a 

point of reference, we determined that the other three gene scores (ABC-G, ATAC-distal, 

and PC-HiC) had an average excess overlap of 1.73 with the EDS-binary score (p values per 

gene score: 2 × 10−8 to 6 × 10−6; Table S7), confirming that they prioritize enhancer-related 

genes. Three of our enhancer-related scores (eQTL-CTS, Expecto-MVP (magnitude of 

variation potential), and SEG-GTEx) were not explicitly defined based on distal enhancer-

gene connections. We determined that these three gene scores also had an average excess 

overlap of 1.5× with the EDS-binary score (p values per gene score: 4 × 10−7 to 1 × 10−4; 

Table S7), confirming that they prioritize enhancer-related genes; notably, the excess overlap 

of 1.5× was almost as large as the excess of overlap of 1.7× for gene scores defined based on 

distal enhancer-gene connections.

We combined the seven enhancer-related gene scores with the ten S2G strategies (Table 

2) to define 70 annotations. In our marginal analysis using S-LDSC conditional on the 

baseline-LD+ model (meta-analyzing S-LDSC results across 11 autoimmune diseases and 

blood cell traits), all 70 enhancer-related annotations were significantly enriched for disease 

heritability, with larger enrichments for smaller annotations (Figure S5 and Table S8); values 
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of standardized enrichment were more similar across annotations (Figure S6 and Table S9). 

Thirty-seven of the 70 enhancer-related annotations attained conditionally significant τ* 

values after Bonferroni correction (p < 0.05/110) (Figure 3A and Table S8). We observed 

the strongest conditional signal for ATAC-distal × ABC (τ* = 1.0 ± 0.2). ATAC-distal 

is defined by the proportion of mouse gene expression variability across blood cell types 

that is explained by distal ATAC-seq peaks in mouse;33 the mouse genes are mapped 

to orthologous human genes. Four of the seven gene scores (ABC-G, ATAC-distal, EDS-

binary, and SEG-GTEx) produced strong conditional signals across many S2G strategies; 

however, none of them attained Bonferroni-significant τ* for all ten S2G strategies 

(Figure 3A). Among the S2G strategies, average conditional signals were strongest for the 

ABC strategy (average τ* = 0.59) and TSS strategy (average τ* = 0.52), which greatly 

outperformed the window-based S2G strategies (average τ* = 0.04–0.07), emphasizing the 

high added value of S2G strategies incorporating functional data (especially the ABC and 

TSS strategies).

We compared meta-analyses of S-LDSC results across six autoimmune diseases versus 

five blood cell traits (Figures 3B and S7; Tables S1, S10, and S11). Results were broadly 

concordant (r = 0.57 between τ* estimates), with slightly stronger signals for autoimmune 

diseases (slope = 1.3). We also compared meta-analyses of results across two granulocyte-

related blood cell traits (white blood cell count and eosinophil count) versus three red blood 

cell or platelet-related blood cell traits (red blood cell count, red blood cell distribution 

width, and platelet count) (Figure S8; Tables S12 and S13). Results were broadly concordant 

(r = 0.65, slope = 1.1). We also examined S-LDSC results for individual disease/traits and 

applied a test for heterogeneity50 (Figures S9 and S10; Tables S14 and S15). Results were 

generally underpowered (false discovery rate [FDR] < 5% for 16 of 770 annotation-trait 

pairs), with limited evidence of heterogeneity across diseases/traits (FDR < 5% for 11 of 70 

annotations).

We jointly analyzed the 37 enhancer-related annotations that were Bonferroni-significant in 

our marginal analysis (Figure 3A and Table S8) by performing forward stepwise elimination 

to iteratively remove annotations that had conditionally non-significant τ* values after 

Bonferroni correction. Of these, six annotations were jointly significant in the resulting 

enhancer-related joint model (Figure S11 and Table S16), corresponding to four enhancer-

related gene scores: ABC-G, ATAC-distal, EDS-binary, and SEG-GTEx.

We assessed the enrichment of the seven enhancer-related gene scores (Table 1) in five 

gold-standard disease-related gene sets: drug target genes,10,45 Mendelian genes (Freund),46 

Mendelian genes (Vuckovic),47 immune genes,48 and high-pLI genes49 (Figure 3C and 

Table S6). Six of the seven gene scores were significantly enriched (after Bonferroni 

correction; p < 0.05/55) in the drug target genes, all seven were significantly enriched in 

both Mendelian gene sets, three of seven were significantly enriched in the immune genes, 

and five of seven were significantly enriched in the high-pLI genes. The largest enrichment 

was observed for SEG-GTEx genes in the drug target genes (2.4×, SE 0.1) and Mendelian 

genes (Freund) (2.4×, SE 0.1). These findings validate the high importance to disease of 

enhancer-related genes.
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We performed five secondary analyses. First, for each of the six annotations from the 

enhancer-related joint model (Figure S11), we assessed their functional enrichment for 

fine-mapped SNPs for blood-related traits from two previous studies.51,52 We observed 

large and significant enrichments for all six annotations (Table S17), consistent with 

the S-LDSC results. Second, for each of the seven enhancer-related gene scores, we 

performed pathway enrichment analyses to assess their enrichment in pathways from 

the ConsensusPathDB database;53 all seven gene scores were significantly enriched in 

immune-related and signaling pathways (Table S18). Third, we explored other approaches 

to combining information across genes that are linked to a SNP using S2G strategies by 

using either the mean across genes or the sum across genes of the gene scores linked to a 

SNP, instead of the maximum across genes. We determined that results for either the mean 

or the sum were very similar to the results for the maximum, with no significant difference 

in standardized effect sizes of the resulting SNP annotations (Tables S8, S19, and S20). 

Fourth, we repeated our analyses of the five enhancer-related gene scores for which the top 

10% (of genes) threshold was applied, using top 5% or top 20% thresholds instead (Tables 

S21 and S22). We observed very similar results, with largely non-significant differences 

in standardized effect sizes. Fifth, we confirmed that our forward stepwise elimination 

procedure produced identical results when applied to all 70 enhancer-related annotations, 

instead of just the 37 enhancer-related annotations that were Bonferroni-significant in our 

marginal analysis.

We conclude that four of the seven characterizations of enhancer-related genes are 

conditionally informative for autoimmune diseases and blood-related traits when using 

functionally informed S2G strategies.

Genes with high network connectivity to enhancer-related genes are even more 
informative

We assessed the disease informativeness of a gene score prioritizing genes with high 

connectivity to enhancer-related genes in a protein-protein interaction (PPI) network (PPI-

enhancer).We hypothesized that (1) genes that are connected to enhancer-related genes 

in biological networks are likely to be important, and (2) combining potentially noisy 

metrics defining enhancer-related genes would increase the statistical signal. We used the 

STRING PPI network38 to quantify the network connectivity of each gene with respect to 

each of the fourjointly informative enhancer-related gene scores from Figure S11 (ABC-G, 

ATAC-distal, EDS-binary, and SEG-GTEx) (Figure 1D). Network connectivity scores were 

computed using a random walk with restart algorithm10,54 (see STAR Methods). We defined 

the PPI-enhancer gene score based on genes in the top 10% of average network connectivity 

across the four enhancer-related genescores (Table 1). The PPI-enhancer gene score was 

only moderately positively correlated with the four underlying enhancer-related gene scores 

(average r = 0.28; Figure S2).

We combined the PPI-enhancer gene score with the ten S2G strategies (Table 2) to define 

ten annotations. In our marginal analysis using S-LDSC (meta-analyzing S-LDSC results 

across 11 autoimmune diseases and blood cell traits), all ten PPI-enhancer annotations 

were significantly enriched for disease heritability, with larger enrichments for smaller 
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annotations (Figure S5 and Table S23); values of standardized enrichment were more similar 

across annotations (Figure S6 and Table S24). All ten PPI-enhancer annotations attained 

conditionally significant τ* values after Bonferroni correction (p < 0.05/110) (Figure 3A and 

Table S23). Notably, the maximum τ* (2.0 [SE 0.3] for PPI-enhancer × ABC) was >2-fold 

larger than the maximum τ* for the recently proposed EDS24 (0.91 [SE 0.21] for EDS-

binary × ABC). All ten PPI-enhancer annotations remained significant when conditioned 

on the enhancer-related joint model from Figure S11 (Table S25). In a comparison of meta-

analyses of S-LDSC results across five blood cell traits versus six autoimmune diseases, 

results were broadly concordant (r = 0.93 between τ* estimates) but with much stronger 

signals for autoimmune diseases (slope = 2.2) (Figures 3B and S7; Tables S10 and S11). 

In a comparison of meta-analyses across two granulocyte-related blood cell traits versus 

three red blood cell or platelet-related blood cell traits, results were broadly concordant (r 

= 0.83), but with much stronger signals for granulocyte-related blood cell traits (slope = 

2.1), providing a further validation that the PPI-enhancer gene score is related to immune 

response (Figure S8; Tables S12 and S13). In analyses of individual traits, 62 of 110 

PPI-enhancer annotation-trait pairs were significant (FDR < 5%) (Figures S9 and S10; Table 

S14), eight of them with evidence of heterogeneity across diseases/traits (FDR < 5% for 

eight of ten PPI-enhancer annotations) (Table S15).

We jointly analyzed the six enhancer-related annotations from the enhancer-related joint 

model (Figure S11) and the ten marginally significant PPI-enhancer annotations conditional 

on the enhancer-related joint model in Table S25. Of these, three enhancer-related and four 

PPI-enhancer annotations were jointly significant in the resulting PPI-enhancer-related joint 

model (Figure 3D and Table S26). The joint signal was strongest for PPI-enhancer × ABC 

(τ* = 1.2 ± 0.21), highlighting the informativeness of the ABC S2G strategy. Three of the 

seven annotations attained τ* > 0.5; annotations with τ* > 0.5 are unusual and considered to 

be important.55

We assessed the enrichment of the PPI-enhancer gene score in the five gold-standard 

disease-related gene sets: drug target genes,10,45 Mendelian genes (Freund),46 Mendelian 

genes (Vuckovic),47 immune genes,48 and high-pLI genes49 (Figure 3C and Table S6). The 

PPI-enhancer gene score showed significant enrichment in all five gene sets, with higher 

magnitude of enrichment compared with any of the seven enhancer-related gene scores. In 

particular, the PPI-enhancer gene score was 5.3× (SE 0.1) enriched in drug target genes and 

4.6× (SE 0.1) enriched in Mendelian genes (Freund), a ≥2-fold stronger enrichment in each 

case than the EDS-binary gene score24 (2.1× [SE 0.1] and 2.3× [SE 0.1]).

We performed three secondary analyses. First, for each of the four jointly significant 

PPI-enhancer annotations from Figure 3D, we assessed their functional enrichment for 

fine-mapped SNPs for blood-related traits from two previous studies.51,52 We observed 

large and significant enrichments for all four annotations (Table S17), consistent with the 

S-LDSC results (and with the similar analysis of enhancer-related annotations described 

above). Second, we performed a pathway enrichment analysis to assess the enrichment 

of the PPI-enhancer gene score in pathways from the ConsensusPathDB database;53 this 

gene score was enriched in immune-related pathways (Table S18). Third, we confirmed 

that our forward stepwise elimination procedure produced identical results when applied 
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to all 80 enhancer-related and PPI-enhancer annotations, instead of just the six enhancer-

related annotations from the enhancer-related joint model (Figure S11) and the ten PPI-

enhancer annotations. Additional analyses assessing the relative importance of PPI-network 

information versus combining different enhancer-related gene scores are described in 

Methods S1.

We conclude that genes with high network connectivity to enhancer-related genes are 

conditionally informative for autoimmune diseases and blood-related traits when using 

functionally informed S2G strategies.

Candidate master-regulator genes are conditionally informative for autoimmune disease 
heritability

We assessed the disease informativeness of two gene scores prioritizing candidate master-

regulator genes in blood. We defined these gene scores using whole-blood eQTL data 

from the eQTLGen consortium56 (Trans-master) and a published list of known transcription 

factors in humans (TF)37 (Figure 1C, Table 1, and STAR Methods). We note that TF genes 

do not necessarily act as master regulators and only a small number of transcription factors 

regulate many downstream genes, but TF genes can still be viewed as candidate master 

regulators. Using 97 known master-regulator genes from 18 master-regulator families57–61 

as a point of reference, we determined that Trans-master and TF genes had 3.5× and 5.4× 

excess overlaps with the 97 candidate master-regulator genes (p values: 5.6 × 10−72 and 2.2 

× 10−160; Tables S27 and S28), confirming that they prioritize candidate master-regulator 

genes.

In detail, Trans-master is a binary gene score defined by genes that significantly regulate 

three or more other genes in trans via SNPs that are significant cis-eQTLs of the focal gene 

(10% of genes); the median value of the number of genes trans-regulated by a Trans-master 

gene is 14. Notably, trans-eQTL data from the eQTLGen consortium56 was only available 

for 10,317 previously disease-associated SNPs. It is possible that genes with significant cis-

eQTL that are disease-associated SNPs may be enriched for disease heritability irrespective 

of trans signals. To account for this gene-level bias, we conditioned all analyses of Trans-

master annotations on both (1) ten annotations based on a gene score defined by genes with 

at least one disease-associated cis-eQTL, combined with each of the ten S2G strategies, and 

(2) ten annotations based on a gene score defined by genes with at least three unlinked 

disease-associated cis-eQTL, combined with each of the ten S2G strategies; we chose the 

number 3 to maximize the correlation between this gene score and the Trans-master gene 

score (r = 0.32). Thus, our primary analyses were conditioned on 93 baseline-LD+ and 

20 additional annotations (113 baseline-LD+ cis model annotations); additional secondary 

analyses are described below. We did not consider a SNP annotation defined by trans-eQTLs 

because the trans-eQTLs in eQTLGen data were restricted to disease-associated SNPs, 

which would bias our results.

We combined the Trans-master gene score with the ten S2G strategies (Table 2) to define 

ten annotations. In our marginal analysis using S-LDSC conditional on the baseline-LD+ 

cis model, all ten Trans-master annotations were strongly and significantly enriched for 

disease heritability, with larger enrichments for smaller annotations (Figure S5 and Table 
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S29); values of standardized enrichment were more similar across annotations (Figure S6 

and Table S30). All ten Trans-master annotations attained conditionally significant τ* values 

after Bonferroni correction (p < 0.05/110) (Figure 4A and Table S29). We observed the 

strongest conditional signals for Trans-master × TSS (τ* = 1.6 versus τ* = 0.37–0.39 for 

candidate master-regulator × window-based S2G strategies). We observed similar (slightly 

more significant) results when conditioning on baseline-LD+ annotations only (Table S31).

As noted above, trans-eQTL data from the eQTLGen consortium56 were only available 

for 10,317 previously disease-associated SNPs, and we thus defined and conditioned 

on baseline-LD+ cis model annotations to account for gene-level bias. We verified that 

conditioning on annotations derived from gene scores defined by other minimum numbers 

of cis-eQTL and/or unlinked cis-eQTL produced similar results (Tables S32–S36). To 

verify that our results were not impacted by SNP-level bias, we adjusted each of the 

ten Trans-master annotations by removing all disease-associated trans-eQTL SNPs in the 

eQTLGen data from the annotation, as well as any linked SNPs (STAR Methods). We 

verified that these adjusted annotations produced similar results (Table S37). TF is a binary 

gene score defined by a published list of 1,639 known transcription factors in humans.37 

We combined TF with the ten S2G strategies (Table 2) to define ten annotations. In our 

marginal analysis conditional on the baseline-LD+ cis model, all ten TF annotations were 

significantly enriched for heritability but with smaller enrichments than the Trans-master 

annotations (Table S29; see Table S30 for standardized enrichments). Nine TF annotations 

attained significant τ* values after Bonferroni correction (Figure 4A and Table S29) (the 

same nine annotations were also significant conditional on the baseline-LD+ model; Table 

S31). Across all S2G strategies, τ* values of Trans-master annotations were larger than 

those of TF annotations (Table S29).

We compared meta-analyses of S-LDSC results across six autoimmune diseases versus 

five blood cell traits (Figures 4B and S7; Tables S1, S38, and S39). Results were broadly 

concordant (r = 0.56 between τ* estimates), with slightly stronger signals for blood cell 

traits (slope = 0.57). We also compared meta-analyses of results across two granulocyte-

related blood cell traits versus three red blood cell or platelet-related blood cell traits (Figure 

S8; Tables S40 and S41). Results were broadly concordant (r = 0.94, slope = 1.12). We also 

examined S-LDSC results for individual disease/traits and applied a test for heterogeneity50 

(Figures S12 and S13; Tables S14 and S15). We observed several annotation-trait pairs 

with disease signal (FDR < 5% for 96 of 220 annotation-trait pairs), with evidence of 

heterogeneity across diseases/traits (FDR < 5% for 10 of 20 annotations).

We jointly analyzed the ten Trans-master and nine TF annotations that were Bonferroni-

significant in our marginal analysis (Figure 4A and Table S29) by performing forward 

stepwise elimination to iteratively remove annotations that had conditionally non-significant 

τ* values after Bonferroni correction. Of these, three Trans-master annotations and two TF 

annotations were jointly significant in the resulting candidate master-regulator joint model 

(Figure S14 and Table S42). The joint signal was strongest for Trans-master × Roadmap (τ* 

= 0.81, SE = 0.13), emphasizing the high added value of the Roadmap S2G strategy.
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We assessed the enrichment of the Trans-master and TF gene scores in the five gold-

standard disease-related gene sets: drug target genes,10,45 Mendelian genes (Freund),46 

Mendelian genes (Vuckovic),47 immune genes,48 and high-pLI genes49 (Figure 4C and 

Table S6). The Trans-master gene score showed higher enrichment in all five gene sets 

compared with the TF gene score. The enrichments for candidate master-regulator genes 

were lower (1.4×, SE 0.07) for drug target genes in comparison with some enhancer-related 

genes and the PPI-enhancer gene score (Figure 3C); this can be attributed to the fact 

that candidate master-regulator genes may tend to disrupt genes across several pathways, 

rendering them unsuitable as drug targets.

We performed seven secondary analyses. First, for comparison purposes, we defined a 

binary gene score (Trans-regulated) based on genes with at least one significant trans-eQTL. 

We combined Trans-regulated genes with the ten S2G strategies to define ten annotations. 

In our marginal analysis using S-LDSC conditional on the baseline-LD+ cis model, none of 

the Trans-regulated annotations attained conditionally significant τ* values after Bonferroni 

correction (p < 0.05/110) (Table S43). (In contrast, three of the annotations were significant 

when conditioning only on the baseline-LD+ model; Table S44.) Second, a potential 

complexity is that trans-eQTL in whole blood may be inherently enriched for blood cell 

trait-associated SNPs (since SNPs that regulate the abundance of a specific blood cell type 

would result in trans-eQTL effects on genes that are specifically expressed in that cell 

type56), potentially limiting the generalizability of our results to non-blood-cell traits. To 

ensure that our results were robust to this complexity, we verified that analyses restricted 

to the five autoimmune diseases (Table S1) produced similar results (Table S45). Third, 

for each of the five annotations from the candidate master-regulator joint model (Figure 

S14), we assessed their functional enrichment for fine-mapped SNPs for blood-related 

traits from two previous studies.51,52 We observed large and significant enrichments for 

all five annotations (Table S17), consistent with the S-LDSC results (and with similar 

analyses described above). Fourth, we performed pathway enrichment analyses to assess the 

enrichment of the Trans-master and TF gene scores in pathways from the ConsensusPathDB 

database.53 The Trans-master gene score was significantly enriched in immune-related 

pathways (Table S18). Fifth, we explored other approaches to combining information across 

genes that are linked to a SNP using S2G strategies, by using either the mean across genes 

or the sum across genes of the gene scores linked to a SNP, instead of the maximum across 

genes. We determined that results for either the mean or the sum were very similar to the 

results for the maximum, with no significant difference in standardized effect sizes of the 

resulting SNP annotations (Tables S29, S19, and S20). Sixth, we repeated our analyses of 

the Trans-master gene score, defined in our primary analyses based on 2,215 genes that 

trans-regulate ≥3 genes, using either 3,717 genes that trans-regulate ≥1 gene (most of which 

trans-regulate multiple genes) or 1,170 genes that trans-regulate ≥10 genes (Table S46). We 

observed very similar results, with largely non-significant differences in standardized effect 

sizes. Seventh, we confirmed that our forward stepwise elimination procedure produced 

identical results when applied to all 20 candidate master-regulator annotations, instead of 

just the 19 candidate master-regulator annotations that were Bonferroni-significant in our 

marginal analysis.
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We conclude that candidate master-regulator genes are conditionally informative for 

autoimmune diseases and blood-related traits when using functionally informed S2G 

strategies.

Genes with high network connectivity to candidate master-regulator genes are even more 
informative

We assessed the disease informativeness of a gene score prioritizing genes with high 

connectivity to candidate master-regulator genes in the STRING PPI network38 (PPI-master, 

analogous to PPI-enhancer; see STAR Methods and Table 1). The PPI-master gene score 

was positively correlated with the two underlying candidate master-regulator gene scores 

(average r = 0.43) and modestly correlated with PPI-enhancer (r = 0.22) (Figure S2). In 

addition, it had an excess overlap of 7.2× with the 97 known master-regulator genes57–61 (p 

= 2 × 10−214; Tables S27 and S28).

We combined the PPI-master gene score with the ten S2G strategies (Table 2) to define ten 

annotations. In our marginal analysis using S-LDSC conditional on the baseline-LD+ cis 
model, all ten PPI-master annotations were significantly enriched for disease heritability, 

with larger enrichments for smaller annotations (Figure 4A and Table S47); values of 

standardized enrichment were more similar across annotations (Figure S6 and Table S48). 

All ten PPI-master annotations attained conditionally significant τ* values after Bonferroni 

correction (p < 0.05/110) (Figure 4B and Table S47) (as expected, results were similar 

when conditioning only on the baseline-LD+ model; Table S49). We observed the strongest 

conditional signals for PPI-master combined with TSS (τ* = 1.7, SE 0.16), Coding (τ* 

= 1.7, SE 0.14), and ABC (τ* = 1.6, SE 0.17) S2G strategies, again emphasizing the 

high added value of S2G strategies incorporating functional data (Table S47). Nine of 

the ten PPI-master annotations remained significant when conditioning on the candidate 

master-regulator joint model from Figure S14 (Table S50). In a comparison of meta-analyses 

of S-LDSC results across five blood cell traits versus six autoimmune diseases, results were 

broadly concordant (r = 0.81 between τ* estimates, slope = 0.93) (Figures 4B and S7; Tables 

S38 and S39). In a comparison of meta-analyses across two granulocyte-related blood cell 

traits versus three red blood cell or platelet-related blood cell traits, results were broadly 

concordant but with slightly stronger signals for granulocyte-related traits (r = 0.92, slope 

= 1.3), providing further validation that the PPI-master gene score is related to immune 

response (Figure S8; Tables S40 and S41). In the analyses of individual traits, 101 of 110 

PPI-enhancer annotation-trait pairs were significant (FDR < 5%) (Figures S12 and S13; and 

Table S14), with evidence of heterogeneity across diseases/traits (FDR < 5% for six of ten 

PPI-master annotations) (Table S15).

We jointly analyzed the five candidate master-regulator annotations from the candidate 

master-regulator joint model (Figure S14 and Table S42) and the nine PPI-master 

annotations significant conditional on the candidate master-regulator joint model in Table 

S50. Of these, two Trans-master and three PPI-master annotations were jointly significant in 

the resulting PPI-master-regulator joint model (Figure 4D and Table S51). The joint signal 

was strongest for PPI-master × Roadmap (τ* = 0.94 ± 0.14), and four of the five annotations 

attained τ* > 0.5.
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We assessed the enrichment of the PPI-master gene score in the five gold-standard disease-

related gene sets: drug target genes,10,45 Mendelian genes (Freund),46 Mendelian genes 

(Vuckovic),47 immune genes,48 and high-pLI genes49 (Figure 4C and Table S6). The PPI-

master gene score showed significant enrichment in all five gene sets, with higher magnitude 

of enrichment compared with either of the candidate master-regulator gene scores. In 

particular, the PPI-master gene score was 2.7× (SE 0.1) enriched in drug target genes and 

3.4× (SE 0.1) enriched in Mendelian genes (Freund).

We performed three secondary analyses. First, for each of the three jointly significant 

PPI-master annotations from Figure 4D, we assessed their functional enrichment for fine-

mapped SNPs for blood-related traits from two previous studies.51,52 We observed large and 

significant enrichments for all three annotations (Table S17), consistent with the S-LDSC 

results (and with similar analyses described above). Second, we performed a pathway 

enrichment analysis to assess the enrichment of the PPI-master gene score in pathways from 

the ConsensusPathDB database53 and report the top enriched pathways (Table S18). Third, 

we confirmed that our forward stepwise elimination procedure produced identical results 

when applied to all 30 candidate master-regulator and PPI-master annotations, instead of 

just the five candidate master-regulator annotations from the candidate master-regulator joint 

model (Figure S14) and the nine PPI-master annotations that were Bonferroni-significant in 

our marginal analysis.

We conclude that genes with high network connectivity to candidate master-regulator genes 

are conditionally informative for autoimmune diseases and blood-related traits when using 

functionally informed S2G strategies.

Combined joint model

We constructed a combined joint model containing annotations from the above analyses 

that were jointly significant, contributing information conditional on all other annotations. 

We merged the baseline-LD+ cis model with annotations from the PPI-enhancer (Figure 

3D) and PPI-master (Figure 4D) joint models, and performed forward stepwise elimination 

to iteratively remove annotations that had conditionally non-significant τ* values after 

Bonferroni correction (p < 0.05/110). The combined joint model contained eight new 

annotations, including two enhancer-related, two PPI-enhancer, two Trans-master, and two 

PPI-master annotations (Figure 5 and Table S52). The joint signals were strongest for 

PPI-enhancer × ABC (τ* = 0.99, SE 0.23) and PPI-master × Roadmap (τ* = 0.91, SE 0.12), 

highlighting the importance of two distal S2G strategies, ABC and Roadmap; five of the 

eight new annotations attained τ* > 0.5. Analyses confirmed that the combined joint model 

outperforms other heritability models (Methods S1).

We investigated the biology of individual loci by examining 1,198 SNPs that were 

previously confidently fine-mapped (posterior inclusion probability [PIP] > 0.90) for one 

autoimmune disease and five blood cell traits from the UK Biobank. Focusing on the four 

highly enriched regulatory annotations from Figure 5 (enrichment ≥18; 1.5% of SNPs in 

total), 194 of the 1,198 SNPs belonged to one or more of these four annotations. A list 

of these 194 SNPs is provided in Table S53. We highlight three notable examples. First, 

rs231779, a fine-mapped SNP (PIP = 0.91) for “All Auto Immune Traits” (Table S1), was 
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linked by the ABC S2G strategy to CTLA4, a high-scoring gene for the PPI-enhancer gene 

score (ranked 109) (Figure S17A). CTLA4 acts as an immune checkpoint for activation 

of T cells and is a key target gene for cancer immunotherapy.62–64 Second, rs6908626, 

a fine-mapped SNP (PIP = 0.99) for “All Auto Immune Traits” (Table S1), was linked 

by the Roadmap S2G strategy to BACH2, a high-scoring gene for the Trans-master gene 

score (ranked 311) (Figure S17B). BACH2 is a known master-regulator transcription factor 

that functions in innate and adaptive lineages to control immune responses,65,66 has been 

shown to control autoimmunity in mice knockout studies,67 and has been implicated in 

several autoimmune and allergic diseases including lupus, type 1 diabetes, and asthma.68–70 

Third, rs113473633, a fine-mapped SNP (PIP = 0.99 and PIP = 0.99) for white blood cell 

(WBC) count and eosinophil count (Table S1), was linked by the Roadmap S2G strategy to 

NFKB1, a high-scoring gene for the Trans-master and PPI-master gene scores (ranked 409 

and 111) (Figure S17C for WBC count, Figure S17D for eosinophil count). NFKB1 is a 

major transcription factor involved in immune response71 and is critical for development and 

proliferation of lymphocytes,72,73 and has previously been implicated in blood cell traits.47 

In each of these examples, we nominate both the causal gene and the SNP-gene link.

We performed five secondary analyses. First, we investigated whether the eight annotations 

of the combined joint model still contributed unique information after including the pLI 

gene score,49 which has previously been shown to be conditionally informative for disease 

heritability.42,74,75 We confirmed that all eight annotations from Figure 5 remained jointly 

significant (Figure S18 and Table S54). Second, we constructed a less restrictive combined 

joint model by conditioning on the baseline-LD+ model instead of the baseline-LD+ cis 
model. The less restrictive combined joint model included one additional annotation, SEG-

GTEx × Coding (Table S55). This implies that the combined joint model is largely invariant 

to conditioning on the baseline-LD+ or baseline-LD+ cis model. Third, we analyzed 

binarized versions of all 11 gene scores (Table 1) using MAGMA,76 an alternative gene 

set analysis method. Nine of the 11 gene scores produced significant signals (Table S56), 

11 marginally significant gene scores (Figures 3 and 4), and five gene scores included in 

the combined joint model of Figure 5 in the S-LDSC analysis. However, MAGMA does 

not allow for conditioning on the baseline-LD model, does not allow for joint analysis 

of multiple gene scores to assess joint significance, and does not allow for incorporation 

of S2G strategies. Fourth, we confirmed that our forward stepwise elimination procedure 

produced identical results when applied to all 110 enhancer-related, candidate master-

regulator, PPI-enhancer, and PPI-master annotations, instead of just the 12 annotations 

from the PPI-enhancer (Figure 3D) and PPI-master (Figure 4D) joint models. Fifth, we 

assessed the model fit of the final joint model by correlating the residuals from stratified 

LD score regression with the independent variables in the regression (annotation-specific LD 

scores) for each of the 11 blood-related traits (Figure S19). We observed an average squared 

correlation of 0.02 across annotation-specific LD scores and traits, suggesting good model 

fit.

We conclude that enhancer-related genes and candidate master-regulator genes, as well as 

genes with high network connectivity to those genes, are jointly informative for autoimmune 

diseases and blood-related traits when using functionally informed S2G strategies.
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DISCUSSION

Biological significance

We have assessed the contribution to autoimmune disease of enhancer-related genes 

and candidate master-regulator genes, incorporating PPI-network information and ten 

functionally informed S2G strategies. Our results provide information about which genes 

impact disease risk, distinguishing specific types of genes that play a greater role in 

genetic risk of disease (and have not previously been implicated in playing a greater 

role in genetic risk of disease). In some ways, our results distinguishing genes that are 

important for disease provide a quantitative improvement over previous work (e.g., versus 

EDS-binary, a previously proposed enhancer-related gene score24). However, in other ways 

our results provide qualitatively new findings (e.g., candidate master-regulator genes and 

genes that interact with enhancer-related genes or master-regulator genes without being 

directly implicated). Our characterization of genes that are important for disease is validated 

by their enrichment in gold-standard gene sets, including autoimmune disease drug targets 

and Mendelian genes related to immune dysregulation; these enrichments were higher than 

for previously published characterizations. Notably, 22 out of 196 drug target genes were 

uniquely implicated by PPI-enhancer gene score as compared with other enhancer-regulated 

gene scores (based on top 10% genes) (Table S57). These include three genes, CCL2, 

IFNA1, and IKBKB77–79 known to be particularly important for autoimmune disease; for 

IKBKB, we further note that the SNP rs4737010 (chromosome 8) is a fine-mapped SNP for 

lymphocyte count that is implicated by our PPI-enhancer × ABC annotation (the annotation 

that is most conditionally informative for disease in our combined joint model; Figure 5 and 

Table S53). Similarly, 34 of 196 drug target genes were uniquely implicated by PPI-master 

gene score as compared with other candidate master-regulator gene scores (Table S57). 

Furthermore, although gold-standard gene sets may be viewed as positive controls, our 

results are expected to also implicate true disease genes that are not previously known. 

Genes uniquely implicated by PPI-enhancer that may be important for autoimmune disease 

include CD70, a known target for cancer immunotherapy,80,81 and the STAT family genes 

(STAT4, STAT5A, and STAT6), which serve to organize the epigenetic landscape of immune 

cells82—both of which were not implicated by known gold-standard gene sets. Our results 

provide a route to performing functional follow-up experiments to elucidate and validate 

specific biological mechanisms (see below).

Downstream implications

Our work has several downstream implications. First, the PPI-enhancer gene score, which 

attained a particularly strong enrichment for approved autoimmune disease drug targets, 

will aid prioritization of drug targets that share similar characteristics with previously 

discovered drugs, analogous to pLI49 and LOEUF.83,84 Second, it is not practical to 

perform functional experiments on every SNP or genomic locus in the genome; using our 

results, specific gene-linked regulatory regions implicated by our results can be targeted for 

functional follow-up experiments (e.g., CRISPR base editing targeted at GWAS fine-mapped 

autoimmune disease SNPs linked to genes implicated by our gene scores) to elucidate 

and validate specific biological mechanisms. Third, our results implicate the ABC and 

Roadmap S2G linking strategies as highly informative distal S2G strategies, and TSS 
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as a highly informative proximal S2G strategy, when linking SNPs to genes in analyses 

prioritizing genes or pathways; these S2G strategies should be used instead of or in 

combination with standard gene window-based S2G strategies. Fourth, our framework for 

disease heritability analysis incorporating regulatory S2G strategies (instead of conventional 

window-based approaches) is broadly applicable to other gene sets, e.g., characterizing cell 

types and cellular processes, as in our more recent work.85 Fifth, at the level of genes, our 

findings have immediate potential for improving gene-level probabilistic fine-mapping of 

transcriptome-wide association studies86 and gene-based association statistics,87 using the 

gene scores as gene-level features to inform gene-level priors based on functional similarity 

of genes. Sixth, at the level of SNPs, our findings have immediate potential for improving 

functionally informed fine-mapping52,88–90 (including experimental follow-up91), polygenic 

localization,52 and polygenic risk prediction;92,93 specifically, SNP annotations derived from 

SNPs linked to high-scoring genes can be used to inform SNP-level priors used in these 

applications.

Limitations of the study

Our work has several limitations, representing important directions for future research. 

First, we caution the readers that the terms “enhancer-related genes” and “candidate master-

regulator” genes are inherently broad, and individual gene scores and annotations should 

be interpreted based on their specific meanings. Second, our results do not provide an 

understanding of specific biological mechanisms at individual disease loci, necessitating 

functional follow-up. Third, our findings distinguish specific types of genes that play a 

greater role in genetic risk of disease but do not localize disease risk to a small number 

of genes, motivating more precise gene-level characterizations. Fourth, we restricted our 

analyses to enhancer-related and candidate master-regulator genes in blood, focusing on 

autoimmune diseases and blood-related traits; this choice was primarily motivated by the 

better representation of blood cell types in functional genomics assays and trans-eQTL 

studies. However, it will be invaluable to extend our analyses to other tissues and traits 

as more functional data become available. Fifth, the trans-eQTL data from eQTLGen 

consortium56 is restricted to 10,317 previously disease-associated SNPs; we modified our 

analyses to account for this bias. However, it would be invaluable to extend our analyses to 

genome-wide trans-eQTL data to large sample sizes if those data become available. Sixth, 

we investigated the ten S2G strategies separately, instead of constructing a single optimal 

combined strategy. A comprehensive evaluation of S2G strategies, and a method to combine 

them, will be provided elsewhere (S. Gazal, unpublished data). Seventh, the forward 

stepwise elimination procedure that we use to identify jointly significant annotations29 is 

a heuristic procedure whose choice of prioritized annotations may be close to arbitrary in 

the case of highly correlated annotations; however, the correlations between the gene scores, 

S2G strategies, and annotations that we analyzed were modest. Eighth, the potential of 

the gene scores implicated in this study to aid prioritization of future drug targets—based 

on observed gene-level enrichments for approved autoimmune disease drug targets—is 

subject to the limitation that novel drug targets that do not adhere to existing patterns 

may be missed; encouragingly, we also identify gene-level enrichments of the gene scores 

implicated in this study for four other gold-standard disease-related gene sets. Despite all 

these limitations, our findings expand and enhance our understanding of which gene-level 
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characterizations of enhancer-related and candidate master-regulatory architecture and their 

corresponding gene-linked regions impact autoimmune diseases.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Kushal K. Dey 

(kdey@hsph.harvard.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• All gene scores, S2G links, and SNP annotations analyzed in this study 

are publicly available here:https://data.broadinstitute.org/alkesgroup/LDSCORE/

Dey_Enhancer_MasterReg. Tables S14 and S53 are provided as Excel files in 

the above link. We have also included annotations for 93 million Haplotype 

Reference Consortium (HRC) SNPs and 170 million TOPMed SNPs (Freeze 

3A).DOIs are listed in the Key resources table.

• All original codes reported in this paper, related to generating SNP annotations 

from gene sets, and for performing PPI-informed integration of gene sets are 

publicly available on Github: https://github.com/kkdey/GSSG and also submitted 

to Zenodo (https://zenodo.org/badge/latestdoi/278143533). DOIs are listed in the 

Key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

METHOD DETAILS

Genomic annotations and the baseline-LD model—We define an annotation as 

an assignment of a numeric value to each SNP in a predefined reference panel (e.g., 

1000 Genomes Project;31 see URLs). Binary annotations can have value 0 or one only. 

Continuous-valued annotations can have any real value; our focus is on continuous-valued 

annotations with values between 0 and 1. Annotations that correspond to known or predicted 

function are referred to as functional annotations. The baseline-LD model (v.2.1) contains 

86 functional annotations (see URLs). These annotations include binary coding, conserved, 

and regulatory annotations (e.g., promoter, enhancer, histone marks, TFBS) and continuous-

valued linkage disequilibrium (LD)-related annotations.

Gene scores—We define a gene score as an assignment of a numeric value between 0 

and one to each gene; we primarily focus on binary gene sets defined by the top 10% of 

genes. We analyze a total of 11 gene scores (Table 1): seven enhancer-related gene scores, 

two candidate master-regulator gene scores and two PPI-based gene scores (PPI-master, PPI-

enhancer) that aggregate information across enhancer-related and candidate master-regulator 

gene scores. We scored 22,020 genes on chromosomes 1–22 from ref.7 (see URLs). When 
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selecting the top 10% of genes for a given score, we rounded the number of genes to 2,200. 

We used the top 10% of genes in our primary analyses to be consistent with previous work,9 

who also defined gene scores using the top 10% of genes for a given metric, and to ensure 

that all SNP annotations (gene scores × S2G strategies) analyzed were of reasonable size 

(0.2% of SNPs or larger).

The seven enhancer-related gene scores are as follows:

• ABC-G: A binary gene score denoting genes that are in top 10% of the number 

of ‘intergenic’ and ‘genic’ Activity-by-Contact (ABC) enhancer to gene links in 

blood cell types, with average HiC score fraction > 0.01532 (see URLs).

• ATAC-distal: A probabilistic gene score denoting the proportion of gene 

expression variance in 86 immune cell types in mouse, that is explained by 

the patterns of chromatin covariance of distal enhancer OCRs (open chromatin 

regions) to the gene, compared to chromatin covariance of OCRs that are near 

TSS of the gene and unexplained variances (see Figure 2 from33). The genes 

were mapped to their human orthologs using Ensembl biomaRt.97.

• EDS-binary: A binary gene score denoting genes that are in top 10% of the 

blood-specific Activity-based Enhancer Domain Score (EDS)24 that reflects the 

number of conserved bases in enhancers that are linked to genes in blood related 

cell types as per the Roadmap Epigenomics Project43,98(see URLs).

• eQTL-CTS: A probabilistic gene score denoting the proportion of immune cell-

type-specific eQTLs (with FDR adjusted p value < 0.05 in one or two cell-types) 

across 15 different immune cell-types from the DICEdb project34 (see URLs). 

We consider this to be an enhancer-related gene score, as cell type specificity 

is often characterized by different enhancer activation status in different cell 

types.99,100.

• Expecto-MVP: A binary gene score denoting genes that are in top 10% in terms 

of the magnitude of variation potential (MVP) in GTEx Whole Blood, which 

is the sum of the absolute values of all directional mutation effects within 1kb 

of the TSS upstream and downstream, as evaluated by the Expecto method7(see 

URLs). We consider this to be an enhancer-related gene score, as this score has 

been reported to be indicative of tissue specificity of expression and activation/

repression status.7.

• PC-HiC-distal: A binary gene score denoting genes that are in top 10% in terms 

of the total number of Promoter-capture HiC connections across 17 primary 

blood cell-types.

• SEG-GTEx: A binary gene score denoting genes that are in top 10% in terms 

of the SEG t-statistic9 score in GTEx Whole Blood. We consider this to be 

an enhancer-related gene score, as tissue specificity is often characterized by 

different enhancer activation status in different tissues.99,100

The two candidate master-regulator gene scores are as follows:
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• Trans-master: A binary gene score denoting genes with significant trait-

associated cis-eQTLs in blood that also act as significant trans-eQTLs for at 

least three other genes based on data from eQTLGen Consortium.56 We used 

the threshold of trans-regulating ≥3 genes in our primary analyses because this 

results in a gene score spanning ≈10% of genes, analogous to other gene scores.

• TF: A binary gene score denoting genes that act as human transcription 

factors.37

The two PPI-based gene scores are as follows:

• PPI-enhancer: A binary gene score denoting genes in top 10% in terms of 

closeness centrality measure to the disease informative enhancer-regulated gene 

scores. To get the closeness centrality metric, we first perform a Random Walk 

with Restart (RWR) algorithm54 on the STRING protein-protein interaction 

(PPI) network38,101(see URLs) with seed nodes defined by genes in top 10% 

of the four enhancer-regulated gene scores with jointly significant disease 

informativeness (ABC-G, ATAC-distal, EDS-binary and SEG-GTEx). The 

closeness centrality score was defined as the average network connectivity of 

the protein products from each gene based on the RWR method.

• PPI-master: A binary gene score denoting genes in top 10% in terms of 

closeness centrality measure to the two disease informative candidate master-

regulator gene scores (Trans-master and TF). The algorithm was same as that of 

PPI-enhancer.

S2G strategies—We define an SNP-to-gene (S2G) linking strategy as an assignment of 0, 

one or more linked genes to each SNP with minor allele count ≥5 in a 1000 Genomes 

Project European reference panel.31 We explored 10 SNP-to-gene linking strategies, 

including both distal and proximal strategies (Table 2). The proximal strategies included 

gene body ± 5kb; gene body ±100kb; predicted TSS (by Segway40,41); coding SNPs; 

and promoter SNPs (as defined by UCSC102,103). The distal strategies included regions 

predicted to be distally linked to the gene by Activity-by-Contact (ABC) score32,39 > 0.015 

as suggested in ref.39 (see below); regions predicted to be enhancer-gene links based on 

Roadmap Epigenomics data (Roadmap);43,44,98 regions in ATAC-seq peaks that are highly 

correlated (>50% as recommended in ref.33) to expression of a gene in mouse immune 

cell-types (ATAC);33 regions distally connected through promoter-capture Hi-C links (PC-

HiC);35 and SNPs with fine-mapped causal posterior probability (CPP)42 > 0.001 (we chose 

this threshold to ensure that the SNP annotations generated after combining the gene scores 

with the eQTL S2G strategy were of reasonable size (0.2% of SNPs or larger) for all gene 

scores analyzed) in GTEx whole blood (we use this thresholding on CPP to ensure adequate 

annotation size for annotations resulting from combining this S2G strategy with the gene 

scores studied in this paper). We considered combined annotations based on S2G strategies 

related to gene regulation because SNPs that regulate functionally important genes may be 

important for disease.

Dey et al. Page 19

Cell Genom. Author manuscript; available in PMC 2022 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Activity-by-Contact model predictions—We used the Activity-by-Contact 

(ABC) model (https://github.com/broadinstitute/ABC-Enhancer-Gene-Prediction) to predict 

enhancer-gene connections in each cell type, based on measurements of chromatin 

accessibility (ATAC-seq or DNase-seq) and histone modifications (H3K27ac ChIP-seq), as 

previously described.32,39 In a given cell type, the ABC model reports an “ABC score” for 

each element-gene pair, where the element is within 5 Mb of the TSS of the gene.

For each cell type, we:

• Called peaks on the chromatin accessibility data using MACS2 with a lenient p 

value cutoff of 0.1.

• Counted chromatin accessibility reads in each peak and retained the top 150,000 

peaks with the most read counts. We then resized each of these peaks to be 

500bp centered on the peak summit. To this list we added 500bp regions centered 

on all gene TSS’s and removed any peaks overlapping blacklisted regions104,105 

(https://sites.google.com/site/anshulkundaje/projects/blacklists). Any resulting 

overlapping peaks were merged. We call the resulting peak set candidate 

elements.

• Calculated element Activity as the geometric mean of quantile normalized 

chromatin accessibility and H3K27ac ChIP-seq counts in each candidate element 

region.

• Calculated element-promoter Contact using the average Hi-C signal across 10 

human Hi-C datasets as described below.

• Computed the ABC Score for each element-gene pair as the product of Activity 

and Contact, normalized by the product of Activity and Contact for all other 

elements within 5 Mb of that gene.

To generate a genome-wide averaged Hi-C dataset, we downloaded KR normalized 

Hi-C matrices for 10 human cell types (GM12878, NHEK, HMEC, RPE1, 

THP1, IMR90, HU- VEC, HCT116, K562, KBM7). This Hi-C matrix (5kb) 

resolution is available here: ftp://ftp.broadinstitute.org/outgoing/lincRNA/average_hic/

average_hic.v2.191020.tar.gz.32,106 For each cell type we performed the following steps.

• Transformed the Hi-C matrix for each chromosome to be doubly stochastic.

• We then replaced the entries on the diagonal of the Hi-C matrix with the 

maximum of its four neighboring bins.

• We then replaced all entries of the Hi-C matrix with a value of NaN or 

corresponding to Knight–Ruiz matrix balancing (KR) normalization factors 

<0.25 with the expected contact under the power-law distribution in the cell 

type.

• We then scaled the Hi-C signal for each cell type using the power-law 

distribution in that cell type as previously described.
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• We then computed the “average” Hi-C matrix as the arithmetic mean of the 10 

cell-type specific Hi-C matrices. In each cell type, we assign enhancers only to 

genes whose promoters are “active” (i.e., where the gene is expressed and that 

promoter drives its expression). We defined active promoters as those in the top 

60% of Activity (geometric mean of chromatin accessibility and H3K27ac ChIP-

seq counts). We used the following set of TSSs (one per gene symbol) for ABC 

predictions: https://github.com/broadinstitute/ABC-Enhancer-Gene-Prediction/

blob/v0.2.1/reference/RefSeqCurated.170308.bed.CollapsedGeneBounds.bed. 

We note that this approach does not account for cases where genes have multiple 

TSSs either in the same cell type or in different cell types.

For intersecting ABC predictions with variants, we took the predictions from the ABC 

Model and applied the following additional processing steps: (i) We considered all distal 

element-gene connections with an ABC score ≥0.015, and all distal or proximal promoter-

gene connections with an ABC score ≥0.1. (ii) We shrunk the ~500-bp regions by 150-bp 

on either side, resulting in a ~200-bp region centered on the summit of the accessibility 

peak. This is because, while the larger region is important for counting reads in H3K27ac 

ChIP-seq, which occur on flanking nucleosomes, most of the DNA sequences important for 

enhancer function are likely located in the central nucleosome-free region. (iii) We included 

enhancer-gene connections spanning up to 2 Mb.

QUANTIFICATION AND STATISTICAL ANALYSIS

Stratified LD score regression—Stratified LD score regression (S-LDSC) is a method 

that assesses the contribution of a genomic annotation to disease and complex trait 

heritability.28,29 S-LDSC assumes that the per-SNP heritability or variance of effect size 

(of standardized genotype on trait) of each SNP is equal to the linear contribution of each 

annotation.

var βj = ∑
c

acjτc

where acj is the value of annotation c for SNP j, where acj may be binary (0/1), continuous 

or probabilistic, and τc is the contribution of annotation c to per-SNP heritability conditioned 

on other annotations. S-LDSC estimates the τc for each annotation using the following 

equation.

E χj2 = N∑
c

I(j, c)τc + 1

Where I(j, c) = ∑kackrjk
2  is the stratified LD score of SNP j with respect to annotation c 

and rjk is the genotypic correlation between SNPs j and k computed using data from 1000 

Genomes Project31 (see URLs); N is the GWAS sample size.

We assess the informativeness of an annotation c using two metrics. The first metric is 

enrichment (E), defined as follows (for binary and probabilistic annotations only):
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E =
ℎg2(c)

ℎg2
X M

∑jacj

where h2
g (c) is the heritability explained by the SNPs in annotation c, weighted by the 

annotation values. The second metric is standardized effect size (τ★) defined as follows (for 

binary, probabilistic, and continuous-valued annotations):

τC* =
τcsdc
ℎg2/M

where sdc is the SE of annotation c, h2
g the total SNP heritability and M is the total number 

of SNPs on which this heritability is computed (equal to 5, 961, 159 in our analyses). τc
★ 

represents the proportionate change in per-SNP heritability associated with a 1 SD increase 

in the value of the annotation.

Unlike enrichment, τ quantifies effects that are conditionally informative, i.e. unique 

to the focal annotation conditional on other annotations included in the model. In our 

“marginal” analyses, we estimated τ★ for each focal annotation conditional on the baseline-

LD annotations. In our “joint” analyses, we merged baseline-LD annotations with focal 

annotations that were marginally significant after Bonferroni correction and performed 

forward stepwise elimination to iteratively remove focal annotations that had conditionally 

non-significant τ★ values after Bonferroni correction, as in ref.11,29,42,55,75,107–109. We 

did not consider other feature selection methods, as previous research determined that a 

LASSO-based feature selection method is computationally expensive and did not perform 

better in predicting off-chromosome χ2 association statistics (R. Cui and H. Finucane, 

personal correspondence). The difference between marginal τ★ and joint τ★ is that marginal 

τ★ assesses informativeness for disease conditional only on baseline-LD model annotations, 

whereas joint τ★ assesses informativeness for disease conditional on baseline-LD model 

annotations as well as other annotations in the joint model.

Combined τ★—We defined a new metric quantifying the conditional informativeness of a 

heritability model (combined τ*), generalizing the combined τ★ metric of ref.110 to more 

than two annotations. In detail, given a joint model defined by M annotations (conditional on 

a published set of annotations such as the baseline-LD model), we define

τcomb * = ∑
m = 1

M
τ *m2 + ∑

m ≠ l
rmlτm* τl*

Here rml is the pairwise correlation of the annotations m and l, and rmlτm
★ τl

★ is expected 

to be positive since two positively correlated annotations typically have the same direction 

of effect (resp. two negatively correlated annotations typically have opposite directions of 

effect). We calculate standard errors for τ★ using a genomic block-jackknife with 200 

blocks.
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Evaluating heritability model fit using SumHer loglSS—Given a heritability model 

(e.g. the baseline-LD model or the combined joint model of Figure 5), we define the ΔloglSS 

of that heritability model as the loglSS of that heritability model minus the loglSS of a 

model with no functional annotations (baseline-LD-nofunct; 17 LD and MAF annotations 

from the baseline-LD model29), where loglSS
111 is an approximate likelihood metric that 

has been shown to be consistent with the exact likelihood from restricted maximum 

likelihood (REML). We compute p values for ΔloglSS using the asymptotic distribution 

of the Likelihood Ratio Test (LRT) statistic: −2 loglSS follows a χ2 distribution with degrees 

of freedom equal to the number of annotations in the focal model, so that −2ΔloglSS follows 

a χ2 distribution with degrees of freedom equal to the difference in number of annotations 

between the focal model and the baseline-LD-nofunct model. We used UK10K as the LD 

reference panel and analyzed 4,631,901 HRC (haplotype reference panel112) well-imputed 

SNPs with MAF ≥0.01 and INFO ≥0.99 in the reference panel; We removed SNPs in the 

MHC region, SNPs explaining >1% of phenotypic variance and SNPs in LD with these 

SNPs.

We computed ΔloglSS for eight heritability models:

• baseline-LD model: annotations from the baseline-LD model29 (86 annotations).

• baseline-LD+ model: baseline-LD model plus seven new S2G annotations not 

included in the baseline-LD model (93 annotations).

• baseline-LD+ Enhancer model: baseline-LD+ model plus six jointly significant 

S2G annotations c corresponding to enhancer-related gene scores from Figure 

S11 (99 annotations).

• baseline-LD+ PPI-enhancer model: baseline-LD+ model plus seven jointly 

significant S2G annotations c corresponding to enhancer-related and PPI-

enhancer gene scores from Figure 3D (100 annotations).

• baseline-LD+ cis model: baseline-LD+ plus 20 S2G annotations used to correct 

for confounding in evaluation of Trans-master gene score (see Results) (113 

annotations).

• baseline-LD+ Master model: baseline-LD+ cis plus four jointly significant 

candidate master-regulator S2G annotations from Figure S14 (117 annotations).

• baseline-LD+ PPI-master model: baseline-LD+ cis plus four jointly significant 

candidate master-regulator and PPI-master S2G annotations from Figure 4D (117 

annotations).

• baseline-LD+ PPI-master model: baseline-LD+ cis plus eight jointly significant 

enhancer-related, candidate master-regulator,

• PPI-enhancer and PPI-master S2G annotations from the final joint model in 

Figure 5 (121 annotations).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Enhancer-related and master-regulator genes provide a unique heritability 

signal

• Integration with protein-protein interaction networks further magnifies the 

signal

• The identified specific gene programs are highly enriched for immune drug 

target genes

• Functional SNP-to-gene (ABC, Roadmap, etc.) linking strategies drive the 

signal
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Figure 1. Illustration of S2G strategies and gene scores
(A) SNP annotations defined by integration of genes in gene set with proximal (close to 

gene body) and distal S2G strategies.

(B) Examples of approaches used to define enhancer-related genes.

(C) A Trans-master gene regulates multiple distal genes via a cis-eQTL that is a trans-eQTL 

of the distal genes.

(D) PPI-enhancer genes have high connectivity to enhancer-related genes in a PPI network.
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Figure 2. Disease informativeness of S2G annotations
We evaluated ten S2G annotations defined from the corresponding S2G strategies by SNPs 

linked to the set of all genes.

(A) Heritability enrichment (log scale), conditional on the baseline-LD model. Horizontal 

line denotes no enrichment.(B) Standardized effect size (τ*), conditional on either the 

baseline-LD model (marginal analyses: left column, white) or the baseline-LD+ model, 

which includes all ten S2G annotations (right column, dark shading).

Results are meta-analyzed across 11 blood-related traits. **p < 0.05/10. Error bars denote 

95% confidence intervals. Numerical results are reported in Tables S2 and S4.

Dey et al. Page 34

Cell Genom. Author manuscript; available in PMC 2022 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Disease informativeness of enhancer-related and PPI-enhancer annotations
We evaluated 80 annotations constructed by combining seven enhancer-related + 1 PPI-

enhancer gene scores with ten S2G strategies.

(A) Standardized effect size (τ*), conditional on the baseline-LD+ model.

(B) Comparison of meta-analyzed standardized effect size (τ*) across six autoimmune 

diseases versus five blood cell traits.

(C) Enrichment of enhancer-related and PPI-enhancer genes in five “gold-standard” disease-

related gene sets.

(D) Standardized effect size (τ*), conditional on the baseline-LD+ model plus seven jointly 

significant enhancer-related + PPI-enhancer annotations.

In (A) and (D), results are meta-analyzed across 11 blood-related traits. In (A) and (C), 

double asterisks denote Bonferroni-significant p values (**p < 0.05/110 in A and **p < 

0.05/55 in C) and single asterisk (*) denotes FDR < 0.05. In (A), the black box in each 

row denotes the S2G strategy with highest τ*. In (B), circled dots denote annotations 
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with significant (FDR < 5%) difference in effect size between the two meta-analyses, the 

solid line denotes y = x, and the dashed line denotes the regression slope. We report the 

slope of the regression and the Pearson correlation for enhancer-related and PPI-enhancer 

annotations (slope = 1.3, r = 0.57 for enhancer-related annotations only). Error bars in (D) 

denote 95% confidence intervals. Numerical results are reported in Tables S6, S8, S10, S11, 

S23, and S26.
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Figure 4. Disease informativeness of master-regulator and PPI-master annotations
We evaluated 30 annotations constructed by combining two master-regulator + 1 PPI-master 

gene scores with ten S2G strategies.

(A) Standardized effect size (τ*), conditional on the 113 baseline-LD+ cis model 

annotations.

(B) Comparison of meta-analyzed standardized effect size (τ*) across six autoimmune 

diseases versus five blood cell traits.

(C) Enrichment of master-regulator and PPI-master genes in five “gold-standard” disease-

related gene sets.

(D) Standardized effect size (τ*), conditional on the baseline-LD+ cis model plus five jointly 

significant master-regulator + PPI-master annotations.

In (A) and (D), results are meta-analyzed across 11 blood-related traits. In (A) and (C), 

double asterisks denote Bonferroni-significant p values (**p < 0.05/110 in A and **p < 

0.05/55 in C), and single asterisk (*) denotes FDR < 0.05. In (A), the black box in each 

row denotes the S2G strategy with highest τ*. In (B), circled dots denote annotations with 

significant (FDR < 5%) difference in effect size between the two meta-analyses, the solid 

line denotes y = x, and the dashed line denotes the regression slope. We report the slope of 

the regression and the Pearson correlation for master-regulator and PPI-master annotations 
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(slope = 0.57, r = 0.56 for master-regulator annotations only). Error bars in (D) denote 95% 

confidence intervals. Numerical results are reported in Tables S6, S29, S38, S39, S47, and 

S51.
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Figure 5. Combined joint model
A) Heritability enrichment (log scale) of the eight jointly significant enhancer-related, 

master-regulator, PPI-enhancer-related, and PPI-master-regulator annotations, conditional on 

the baseline-LD+ cis model. Horizontal line denotes no enrichment.

(B) Standardized effect size (τ*) conditional on the baseline-LD+ cis model plus the eight 

jointly significant annotations.

Significance is corrected for multiple testing by Bonferroni correction (p < 0.05/110). Errors 

bars denote 95% confidence intervals. Numerical results are reported in Table S52.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Gene scores, S2G links, annotations This paper https://data.broadinstitute.org/alkesgroup/LDSCORE/
Dey_Enhancer_MasterReg

UK Biobank summary statistics Bycroft et al. 2018 Nat Genet94 https://data.broadinstitute.org/alkesgroup/UKBB/

1000 Genomes Project Phase 3 data 1000G Consortium 2015 Nature95 ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502

Baseline-LD model annotations Finucane et al. 2015 Nat Genet28 https://data.broadinstitute.org/alkesgroup/LDSCORE/

Software and algorithms

GSSG algorithm This paper https://github.com/kkdey/GSSG
Zenodo link:https://zenodo.org/badge/latestdoi/278143533

Stratified LD score regression algorithm Finucane et al. 2015 Nat Genet28 https://github.com/bulik/ldsc

Activity-By-Contact S2G links Nasser et al. 2021 Nature39 https://www.engreitzlab.org/resources

BOLT-LMM Lohetal. 2015 Nat Genet96 https://data.broadinstitute.org/alkesgroup/BOLT-LMM

Cell Genom. Author manuscript; available in PMC 2022 July 22.

https://data.broadinstitute.org/alkesgroup/LDSCORE/Dey_Enhancer_MasterReg
https://data.broadinstitute.org/alkesgroup/LDSCORE/Dey_Enhancer_MasterReg
https://data.broadinstitute.org/alkesgroup/UKBB/
http://ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502
https://data.broadinstitute.org/alkesgroup/LDSCORE/
https://github.com/kkdey/GSSG
https://zenodo.org/badge/latestdoi/278143533
https://github.com/bulik/ldsc
https://www.engreitzlab.org/resources
https://data.broadinstitute.org/alkesgroup/BOLT-LMM

	SUMMARY
	Graphical abstract
	In brief
	INTRODUCTION
	RESULTS
	Overview of methods
	Enhancer-related genes are conditionally informative for autoimmune disease heritability
	Genes with high network connectivity to enhancer-related genes are even more informative
	Candidate master-regulator genes are conditionally informative for autoimmune disease heritability
	Genes with high network connectivity to candidate master-regulator genes are even more informative
	Combined joint model

	DISCUSSION
	Biological significance
	Downstream implications
	Limitations of the study

	STAR★METHODS
	RESOURCE AVAILABILITY
	Lead contact
	Materials availability
	Data and code availability

	METHOD DETAILS
	Genomic annotations and the baseline-LD model
	Gene scores
	S2G strategies
	Activity-by-Contact model predictions

	QUANTIFICATION AND STATISTICAL ANALYSIS
	Stratified LD score regression
	Combined τ★
	Evaluating heritability model fit using SumHer loglSS


	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Table 1.
	Table 2.
	Table T3

