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Introduction

The interleukin-17 (IL-17) cytokine family is composed of six
defined members, including IL-17A through IL-17F'. Among
the IL-17 family members, IL-17A and IL-17F have the best-
characterized proinflammatory activity. Although the genes
encoding IL-17A and IL-17F are both located on chromosome
1 and 6 (respectively), in mice and humans’, their functions
can be similar or distinct, depending on the type of infection’.
Although other members of the IL-17 family such as IL-17B, IL-
17C, and IL-17D can also induce the production of proinflamma-
tory cytokines and chemokines’, their functions are not as well
characterized and will be only briefly summarized. The IL-17
cytokine family employs various cytokine receptors (IL-17RA,
IL-17RB, IL-17RC, IL-17RD, and IL-17RE) on target cells to
mediate their biological functions’. IL-17R is a heteromeric
receptor comprising IL-17RA and IL-17RC and mediates signal-
ing of IL-17A and IL-17F. In contrast, partnering of IL-17RA
with IL-17RB is thought to mediate IL-17E signaling whereas
IL-17RA partnering with IL-17RE mediates IL-17C signaling’.
IL-17Rs are ubiquitously expressed in various cell types ranging
from leukocytes to fibroblasts, epithelial cells, mesothelial cells,
endothelial cells, and keratinocytes®’. IL-17A or IL-17F mediates
their biological function through the IL-17R via the activation of
nuclear factor-kappa B (NF-xB) and mitogen-activated protein
kinase (MAPK), leading to the production of proinflammatory
cytokines and chemokines®''. Tumor necrosis factor receptor-
associated factor 6 (TRAF-6) plays an indispensable role in
IL-17R signaling as IL-17 stimulation fails to activate IL-17R
signaling in TRAF-6-deficient mouse embryonic fibroblasts'>!*.
In addition, NF-xB activator 1 (Actl) is important for IL-17R
signaling, where it acts as an adapter molecule for the recruitment
of TRAF-6 with IL-17R'*"°, In this review, we will use IL-17 to
refer to IL-17A.

Upon exposure to pathogen or pathogen-associated molecular
patterns (PAMPs), dendritic cells, monocytes, and macrophages
induce cytokines such as IL-23, IL-1B, IL-6, and transforming
growth factor-beta (TGF-fB), which initiate the differentiation and
polarization of naive CD4* T cells toward the T helper cell type
17 (Th17) subsets'. Low levels of TGF-B support induction of
the transcription factor RAR-related orphan receptor gamma
(RORYy) and differentiation toward a Thl7 subset, while high
levels of TGF-B along with defined cytokines such as IL-2
mediate transition to regulatory T cells (Tregs) through
the activation of the transcription factor, fork head box P3
(Foxp3)'"~". Th17 cells are considered a primary source of IL-17
and co-produce other cytokines, including IL-22, IL-21, tumor
necrosis factor-alpha (TNF-o), and granulocyte macrophage-
colony-stimulating factor (GM-CSF)***!. However, depending on
the cytokine milieu, Th17 cells can exhibit substantial plasticity
in cytokine production”’. Th17 cells can also co-express GATA
binding protein 3 (GATA-3) or T-box transcription factor (T-bet),
allowing them to progress into either IL-4-expressing or interferon-
gamma (IFN-y)-expressing Th17 subsets*. Thus, it is likely that
during infection in vivo, Th17 cells exhibit substantial plasticity
and can co-express Th17 cytokines along with other Th1, Th2, and
Treg-associated cytokines. Additionally, in response to early IL-23
and IL-1P production by myeloid cells, innate cells such as Y3
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T cells* and group 3 innate lymphoid cells iLC3)** can produce
IL-17 and mediate early immune responses. Other immune cells
such as neutrophils” =, invariant natural killer T (iNKT)* cells,
innate Th17 cells (iTh17)*, and natural killer (NK)** cells can also
produce IL-17 through stimulation of TGF-B, IL-1p, IL-6, IL-23,
or alpha-galactoceramide (ct-galcer)™. A primary mechanism by
which IL-17 mediates protection against pathogens (such as
Klebsiella, Candida, and Chlamydia) is through the induction of
chemokines and cytokines and downstream recruitment of neu-
trophils**. TL-17 can act alone or in synergy with other cytokines
such as TNF-o. and IL-22 to mediate induction of neutrophil-
recruiting chemokines such as granulocyte-colony-stimulating
factor (G-CSF) and C-X-C motif chemokine ligand 1 (CXCL1)
and regulate neutrophil-mediated destruction of pathogens™.
In addition, IL-17 alone or synergistically with IL-22 or 1,25-
dihydroxyvitamin D3 induces the expression of anti-microbial
proteins such as Lipocalin-2*’, B-defensin®, SI00A7 (psoriasin),
S100A8/9 (calprotectin), and cathelicidin (LL37), resulting in
pathogen control', likely through direct anti-microbial actions.
Our recent knowledge on the role of IL-17 in immunity to various
pathogens, including extracellular’*®* or intracellular’'~* bacteria,
fungi’*, viruses*, and parasites’**’, has emerged within the past
decade. In this short review, we will summarize the recent progress
in the field of IL-17-mediated immune responses against various
infections.

Role of IL-17 in immunity to extracellular bacterial
infection

The role of IL-17 in host defense against extracellular bacteria is
thought to be primarily through the induction of anti-microbial
molecules and mediation of neutrophil recruitment at the site of
infection guided by chemokine gradients. Early studies with IL-
17R-deficient mice demonstrated a critical role for IL-17 in the
clearance of the extracellular pulmonary pathogen Klebsiella
pneumoniae infection. IL-17R-deficient mice upon infection with
K. pneumoniae produced lower levels of the neutrophil-driving
cytokine G-CSF and neutrophil-recruiting chemokine, macrophage
inflammatory protein-2 (MIP-2). These changes in cytokines and
chemokines in IL-17R-deficient mice resulted in decreased neu-
trophil infiltration into the lung and subsequently higher bacterial
burden along with increased mortality*®. Additionally, IL-17R-defi-
cient mice are more susceptible to a variety of mucosal extracel-
lular pathogens, including the gut-specific pathogen Citrobacter
rodentium®, skin pathogen Staphylococcus aureus™, and pulmo-
nary pathogen Bordetella pertussis’’. Moreover, neutralization
of IL-17 resulted in the suppression of anti-microbial peptide
B-defensin production, which killed invading S. aureus at mucosal
surfaces™. These studies provide the consensus that upon infection
with extracellular pathogens, y0 T cells™, iLC3, and iNKT™ cells
are important early producers of IL-17 which are associated with
innate immunity following extracellular bacterial infections. In
addition, Th17 cells are involved in the IL-17-mediated responses
associated with adaptive immune responses’®”’. Therefore, these
studies suggest that induction of IL-17 and synchronized produc-
tion of anti-microbial molecules and neutrophil recruitment help
the resolution of extracellular infection. During extracellular patho-
genesis, the major IL-17 responsive cell population is thought to
be mucosal epithelial cells’**”. However, other studies suggest
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that macrophage or dendritic cells (or both) also express IL-17R
and respond to IL-17 and downstream protective responses™*.
Recently, it was reported that innate immune defense against a
highly antibiotic-resistant strain of K. pneumoniae depends on
crosstalk between inflammatory monocytes and innate lymphocytes
which is mediated by TNF-o. and IL-17°*. IL-17-producing
resident epidermal 0 T cells are essential for protecting the host
against a subsequent staphylococcal infection®. IL-17-dependent
neutrophil-mediated protection is also observed during sponta-
neous S. aureus infection® > and K. pneumoniae infection®-.
Although in most studies IL-17 plays a protective role during
extracellular bacterial infections, in some cases IL-17 can also
mediate pathology associated with the infection. For example, the
periodontal extracellular bacteria Porphyromonas gingivalis can
directly promote autoimmune arthritis by the induction of Toll-
like receptor 2 (TLR2)/IL-1Ra-driven IL-17 response in DBA/1J
mice®. Furthermore, increased frequency of IL-17* cells was
observed in gingival tissue of patients with periodontitis®’, likely
produced by human CD4* T cells®. Similarly, B. pertussis infec-
tion can bias the host immune response toward IL-17 production,
which may be associated with cough pathology in pertussis infec-
tion"”. Additionally, TL-17 is associated with the neutrophilia
and airway inflammation during Haemophilus influenza infection
in mice undergoing allergic airway disease’’. Thus, IL-17 has an
important role in protective immunity to extracellular pathogens
through release of anti-microbial proteins from cell types such
as epithelial cells and neutrophils (and monocytes). On the other
hand, IL-17 induced in response to infection may mediate excessive
inflammation and pathology.

Role of IL-17 in intracellular bacterial infection

Although infection by intracellular bacteria is predominantly
cleared by Thl immune responses, recent studies have described
an emerging role for IL-17 in protection against intracellular patho-
gens such as Listeria monocytogenes’', Mycoplasma pneumonia’,
Legionella pneumophila™™, Salmonella typhimurium”, Chlamy-
dia muridarum’, Francisella tularensis’’, and Mycobacterium
tuberculosis’. Following infection with intracellular pathogens,
like infection with extracellular pathogens, both innate cells
such as iLC-3* and yd T cells” and adaptive cells such as Th17
cells® are the primary producers of IL-17. But during intracellu-
lar infection, unlike extracellular infection, macrophages or mye-
loid cells have been shown to be major responder cells to IL-17.
In response to IL-17 stimulation, macrophages and myeloid cells
secrete higher amounts of anti-microbial cytokines such as TNF-a,
IFN-y, or IL-12 and contribute to host immune response against
infections such as F. tularensis’”’. Although ¥y T cell-derived IL-
17 has played a more prominent role in L. monocytogenes*',
M. tuberculosis®', F. tularensis®’, and Mycobacterium bovis
Bacillus Calmette-Guérin® infections, Th17 cells as well as CD8*
cells are also involved in the antigen-specific production of IL-17 at
the site of infection®. In addition, IL-17-deficient mice experience
higher bacterial burden associated with disorganized granuloma
formation (reduced monocyte, granulocyte, and T cell recruitment
within the granuloma) during infections with intracellular patho-
gens such as F. tularensis’’, S. typhimurium™, or M. tuberculosis*.
In some infection models, including C. muridarum, IL-17
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complemented the protective role imparted by the IL-12/IFN-y
axis through the involvement of myeloid differentiation factor 88
(MyD88) signaling where MyD88-deficient infected mice showed
reduced IL-17 responses along with reduced neutrophil infiltration,
which is important for early control of disease pathogenesis®’**.
However, excess IL-17 production is detrimental for the host, as
IL-10-deficient mice exhibit increased mortality after pulmonary
F. tularensis infection due to excessive inflammation induced
by IL-17%, which suggests that IL-17 is tightly regulated by
IL-10. However, other evidence suggests that the contribution of
IL-17 may serve a more compensatory function under unfavora-
ble conditions such as in the absence of type I and II interferon
signaling, where a low-magnitude IL-17 response to L. monocy-
togenes or M. tuberculosis infection is evident*’". On the contrary,
early studies suggest that IL-17-mediated immunity is dispen-
sable against M. tuberculosis infection as evident by the results
obtained from either anti-IL-17 treated or IL-17R-deficient mice
which were not more susceptible against infection with less
virulent lab-adapted M. tuberculosis strains as compared with
wild-type mice’””. However, the involvement of IL-17 in
mucosal vaccine-driven protection in murine models of tuber-
culosis seems to be crucial, as suggested by Gopal er al”.
IL-17-mediated induction of CXCL-9-11 is responsible for the
recruitment of protective antigen-specific T cells as well as induc-
tion of CXCL-13 to localize C-X-C motif chemokine receptor 5
(CXCRS5)-positive cytokine-producing T cells within lung granu-
lomas of M. tuberculosis-infected mice™. Interestingly, IL-17
responses were involved in protection against a hyper-virulent
clinical isolate M. tuberculosis HN878 strain, as IL-17-deficient
mice infected with M. tuberculosis HN878 had significantly
higher bacterial burden along with reduced chemokine expression
and less organized granuloma formation®™. However, there are
some contradictory views regarding the role of IL-17 in the con-
text of human tuberculosis. Some studies support the protective
role of IL-17 during human tuberculosis as IL-17 helps in the gen-
eration of proinflammatory cytokines such as IL-12 and IFN-y and
restricts pathogenesis within the host”. In contrast, other reports
identified that IL-17 had a negative correlation with tuberculosis
treatment and disease outcome”. In addition, IL-17-producing
T cells are reported to play an immunopathological role in
patients with multidrug-resistant M. tuberculosis by promot-
ing severe tissue damage, which may be associated with low
effectiveness of the second-line drugs employed during
treatment’’. Moreover, IL-23-dependent IL-17 production is
associated with neutrophil accumulation and inflammation dur-
ing a chronic re-stimulation model of tuberculosis®. Indeed,
exacerbated production of IL-17 appears to drive pathology by
inducing S100A8/A9 proteins that recruit neutrophils into the
lung” and cause excessive inflammation in mice during tuber-
culosis. Therefore, at least in the context of tuberculosis, the
M. tuberculosis strain to some extent specifically dictates the
protective role of IL-17. Therefore, during intracellular patho-
gen infections, although IL-17 is mostly associated with host
protection through regulation of chemokine and cytokine balance
and infiltration of different immune cells to the site of infection,
IL-17 activity should be tightly regulated in order to maintain the
fine balance between protection and pathology induced by IL-17.
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Role of IL-17 during sepsis

Although sepsis is a syndrome rather than a disease itself, the role
for IL-17 in experimental murine sepsis models and human sepsis
has been studied. In a colitis model, both IL-17-deficient mice and
mice treated with IL-17 neutralizing antibody resulted in signifi-
cant improvement in survival which was associated with reduced
disease pathology and decreased bacteremia'"'"". In line with this
observation, IL-17 also drives sepsis-associated acute kidney injury
by increasing the levels of proinflammatory cytokines and induc-
ing neutrophil accumulation and tubular epithelial cell apoptosis'””
in mouse models. More recently, targeting IL-17 has been shown
to attenuate IL-18-dependent disease severity in a neonatal sepsis
mouse model'”. In vitro studies with the peripheral blood mononu-
clear cells (PBMCs) from healthy donors and patients undergoing
severe sepsis showed increased Th17 cells in patients with sepsis
when compared with healthy donors. Additionally, IL-17 neutrali-
zation increased IL-10 production in PBMCs, suggesting a role for
IL-10 in modulating immune responses during sepsis'**. Thus, IL-
17 has a pathological role in sepsis, and targeting IL-17 may serve
to resolve sepsis and sepsis-induced pathogenesis.

Role of IL-17 in parasitic infection

Although IL-17 has been considered an important player in
the mediation of host protection against extracellular and some
intracellular pathogens, the role of IL-17 in host defense against
intracellular protozoan parasites remains less well studied. Infec-
tion studies demonstrate that Th17 cells mediate host defense
against Trypanosoma cruzi'”, Toxoplasma gondii'®, Leishmania
braziliensis'’, and Echinococcus granulosus'™ infections. NK
cells are a major source of IL-17 during toxoplasmosis®. In addi-
tion, CD4* and CD8* cells express IL-17 in human toxoplasmo-
sis and impact human pregnancy by controlling parasite invasion
and replication which often cause fetal malfunction or abortion'”.
Increased IL-17 levels were detected in the PBMCs and tissue from
leishmaniasis-infected patients and associated with enhanced neu-
trophil and macrophage-mediated destruction of the parasite'"’.
Furthermore, IL-17R-deficient mice were associated with reduced
production of the chemokine MIP-2 along with the suboptimal lev-
els of neutrophil recruitment and higher parasitic load as compared
with wild-type counterparts'''. Additionally, during echinococ-
cosis, IL-17 plays a crucial immune protective role by regulating
the Tregs which are associated with tolerance during infection'”.
In contrast, in human cutaneous leishmaniasis''*'"> and Eimeria
tenella infection in chickens''®, TL-17 contributed to the pathology
through excessive inflammation and subsequent tissue damage. A
recent report suggests that Leishmania guyanensis is associated
with a cytoplasmic virus which enhances parasite virulence and is
linked to increased IL-17 levels induced following L. guyanensis
infection'"”. Neutralization of IL-17 was effective in reducing dis-
ease severity in a mouse model of cutaneous leishmaniasis, sug-
gesting that IL-17 may have a strain-specific immunological role
during leishmaniasis infection'"”. Despite having a protective role
against T. gondii infection, IL-17 had a deleterious effect that is
evident where neutralization of IL-17 had a partial protective role
against the fatal disease'’’, through co-production of IL-10 and
IFN-y which regulated the exacerbated inflammation induced by
IL-17. Taken together, these reports argue with previous reports
and present new evidence in favor of the pathological role of IL-17
during parasitic infections. Therefore, during parasitic infection,
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the role of IL-17, whether protective or pathologic, has yet to be
firmly established.

Role of IL-17 in fungal infection

IL-17 plays an immunologically important host protective
role against fungal pathogens such as Candida albicans'®,
Cryptococcus  neoformans'”,  Pneumocystis — carinii'”’, and
Aspergillus fumigatus'' in both humans and mice. Similar to the
mechanisms seen in the intracellular and extracellular bacterial
infections, fungal pathogens elicit IL-17 protective effects through
the release of proinflammatory cytokines, chemokines, and anti-
microbial peptides. During infection, IL-17 is expressed by various
cell types, including oral resident ¥ T cells'*, iLC3'*, and natural
Th17 cells'”>. Moreover, the IL-17 cytokine family contributes in
the development of NK cells which promote anti-fungal immu-
nity by secreting GM-CSF, necessary for the fungicidal activity of
neutrophils'**'>. Recent advances in the field of oral candidiasis
depict oral epithelial cells (OECs) as the major responder cells
to IL-17 signaling'*. These OECs produce B-defensin 3 through
IL-17R signaling which is necessary for protection against oral
candidiasis through both a neutrophil-dependent and -independent
manner''®, Caspase recruitment domain family member 9
(CARD-9) signaling is associated with the production of IL-17
during fungal infections'”’. Accordingly, humans with CARD-9'*
or IL-17R deficiency have increased mucocandidiasis'” and are
more vulnerable during systemic candidiasis'*, and decreased
IL-17 production is associated with increased susceptibility to
fungal pathogens'*. These studies suggest that fungal pathogens
are dependent on IL-17-mediated recruitment of inflammatory
cells for fungal control. In contrast, IL-17C subset is associated
with lethal inflammation during candidiasis through induction of
proinflammatory cytokines in renal epithelial cells'*'. Moreover,
the IL-23/IL-17 pathway promotes inflammation and susceptibil-
ity to fungal infectious disease models such as C. albicans and
A. fumigatus through excessive inflammation, which impairs anti-
fungal resistance against those infections'**~'*. Therefore, critical
observation on the particular role played by the IL-17 cytokine
family is necessary before considering IL-17 signaling as a
potential drug target.

Role of IL-17 in viral infection

Recent studies have addressed whether IL-17 is protective or
pathologic in response to viral infections such as influenza (HIN1,
HS5N1), vaccinia virus, Epstein-Barr virus (EBV), herpes simplex
virus (HSV), respiratory syncytial virus (RSV), human immuno-
deficiency virus (HIV), and hepatitis (B and C). Although several
studies have suggested a protective role imparted by IL-17 signal-
ing in host immunity during influenza infection, other studies have
suggested a more pathological role instead. For example, it has
been observed that depletion of IL-17 resulted in a more severe
disease outcome in a mouse model of influenza, which was associ-
ated with increased weight loss as well as reduced survival'*>1%,
Furthermore, adoptive transfer of Th17 polarized antigen-specific
effector cells has been shown to be protective in mice challenged
with a lethal dose of influenza, thus suggesting a protective role
for IL-17 that is independent of IFN-y'*’. In contrast, IL-17R-defi-
cient mice have also been shown to have reduced neutrophil influx
and decreased inflammation, suggesting a pathological role for
IL-17 during influenza challenge'**'*’. The genetic background of
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mice used and the influenza dose used were different between the
studies, suggesting a protective or pathological role for IL-17 in
influenza. Therefore, these studies suggest that the genetic back-
ground and infectious dose may act as a determining factor regard-
ing the protective or pathologic role of IL-17 during influenza
infection. In contrast, IL-17 is associated with the pathology in
2009 pandemic influenza A (HIN1)-induced acute lung injury'*.
Additionally, IL-17 levels are associated with the exacerbated
disease pathology induced following viral infections such as
hepatitis'*"'**,  vaccinia virus'**'*, RSV!*-147 HSV!14 " and
EBV'"""“5! During viral infections (such as hepatitis), IL-17 can
either potentiate early neutrophil infiltration at the site of infection'*
or inhibit NK cell-mediated host immune response (for exam-
ple, vaccinia virus infection)'*. Neutralization of IL-17 not only
reduced the disease severity but also reduced the viral load in
the host and improved survival of the host during HSV’>'* and
Dengue virus'™* infections. Despite having a pathological role
against most viral infections, IL-17 was suggested in several
reports to have a protective role during HIV infection. Along with
the Th17 cells, a subset of CD8* cells which produce IL-17, also
known as TC17, are important in the context of viral infection,
although the detailed role of TC17 has yet to be delineated'>>'*°.
Moreover, Treg/Th17 ratios dictate the outcome of infection as
well as effectiveness of anti-retroviral treatment'””'**. Therefore,
the balance between the Treg and Th17/Tcl7 is suggested to
be more important than that of the expression of IL-17 alone'”.
However, some recent data also suggest that during HIV infection
IL-17 levels have a negative correlation with HIV plasma viral
load'®. Therefore, these data together suggest that IL-17 may
be contributing to the inflammatory injury in response to viral
infection, but the recruitment of inflammatory cells such as
neutrophils or lymphocytes may be required for protection. We
propose that the full array of IL-17 responses during various viral
infections has yet to be fully delineated.

Anti-IL-17 therapies and impact on host immunity to
infections

Exacerbated IL-17 production is linked to excessive inflammation
-associated complications such as autoimmunity, chronic
obstructive pulmonary disease (COPD), and contact dermatitis.
Moreover, P. gingivalis infection predisposes the patient to the
potential risk of acquiring autoimmune disorders, specifically
rheumatoid arthritis (RA)'°"'®> through excessive inflammation
(induced by IL-17) or generation of autoantibodies. As a result,
diseases such as psoriasis'®, RA'*, and contact dermatitis'® are
emerging as particularly strong IL-17-driven disorders. Similarly,
excessive IL-17 leads to the upregulation of neutrophil-attracting
chemokines and subsequent neutrophil infiltration and inflam-
mation during COPD'**'*’. A number of biologic drugs targeting
IL-17A/F and IL-17RA are being used or evaluated as treatment
options against several diseases, such as COPD'®, psoriasis, and
RA, with impressive efficacy'*'"". However, IL-17 is strongly asso-
ciated with the protection against Mtb clinical isolates and fungal
infections. IL-17 and IL-17RA single-nucleotide polymorphisms
enhance the risk of fungal diseases such as candidiasis'”' and
bacterial disease such as pulmonary tuberculosis in certain
cohorts'’*'”%.  Moreover, deficiency in CARD-9'* or gain of
function of signal transducer and activator of transcription 1
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(STAT-1)"" impairs IL-17 signaling and these mutations are asso-
ciated with the chronic candidiasis. Therefore, we suggest that
anti-IL-17 treatments may have a detrimental effect on the overall
immunity of those individuals as they may become immunocom-
promised, resulting in predisposition toward the risk of acquiring
several infections (including Candida'"® and Mycobacterium'"’).

Conclusions

The importance of IL-17 in different infectious models is now
well established. Although there are several infections where the
role of IL-17 is not clear, IL-17 plays distinct yin-and-yang roles
in a majority of the cases. IL-17 plays a protective role against
the infection, and excess IL-17 promotes pathology and tissue
destruction. The overall global role for the involvement of IL-17
in infection models is summarized in Figure 1 and Table 1. Upon

Myeloid cells

Epithelial cells

==

IL-23, IL-1B
LY

®

g9 Pathogen

DC, Monocyte/Macrophages -

A Chemokines

# Cytokines
Destruction of pathogen or B Antimicrobial proteins
Exacerbated inflammation §1L-17

Figure 1. Yin-and-yang roles of IL-17 during infections. As the
host immune system encounters a pathogen, host immune cells
respond by releasing an array of cytokines such as IL-23, IL-6, and
IL-1B. (A) These cytokines elicit IL-17 production from both innate
cells (ILC3, NK, iNKT, iTH17, and y8 T) and adaptive cells (Th17 and
Tc17). (B) This IL-17 then acts on responder cells, which express
IL-17Rs on the cell surface, such as epithelial cells or myeloid
cells. (C) Through IL-17R signaling, these responder cells produce
chemokines which help recruit neutrophils to the site of infection.
(D) These recruited neutrophils destroy the pathogen (mostly
extracellular) through the production of cytokines, chemokines, and
anti-microbial peptides. (E) Similarly, myeloid cells are also able to
restrict pathogen establishment through activation and recruitment
of Th1 cells. These Th1 cells secrete proinflammatory cytokines,
chemokines, and anti-microbial peptides to restrict pathogenesis.
On the other hand, excessive inflammation at the site of infection
may lead to exacerbated disease pathology. IL, interleukin; IL-17R,
interleukin 17 receptor; iLC3, group 3 innate lymphoid cell; iINKT,
invariant natural killer T; iTH17, innate T helper cell type 17 cell; NK,
natural Killer; Th, T helper cell type.
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Table 1. Description of infections where protective or pathologic roles of IL-17 have been demonstrated

Protective roles of IL-17

Extracellular bacteria

Intracellular bacteria

Klebsiella pneumoniae*, Citrobacter rodentium’,
Staphylococcus aureus™, and Bordetella pertussis®’

Listeria monocytogenes’', Mycoplasma pulmonis’,

Pathologic role of IL-17

Bordetella pertussis™*,
Porphyromonas gingivalis®,
and Haemophilus influenza’®

Mycobacterium tuberculosis®*

Legionella pneumophila™ ', Salmonella typhimurium’,
Chlamydlia muridarum’®, Francisella tularensis’’, and
Mycobacterium tuberculosis™

Pneumocystis carinii''®, and Aspergillus fumigatus'*°

Parasites
granulosus'”
Fungus
Virus H5N115156 and HIV#415%

HIV, human immunodeficiency virus; IL-17, interleukin-17.

exposure to pathogens (bacteria, fungus, or virus), myeloid cells
produce factors that promote the production of IL-17 from both
innate and adaptive cells. IL-17 then acts on primary responder
cells (epithelial, macrophage, or myeloid cells), thereby induc-
ing the production of other anti-microbial peptides, chemokines,
and cytokines. IL-17-induced chemokines recruit neutrophils (and
other immune cells) to the site of infection and restrict patho-
genesis. On the other hand, this pathway can mediate excessive
inflammation and exacerbated pathology at the infectious milieu.
Hence, careful observation on the role of IL-17 is necessary to
improve the overall treatment strategy against such infections.
Therefore, it is important to critically consider the yin-and-yang
roles of IL-17 while designing novel strategies to target specific
pathways for control of pathogens.
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