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Selenium (Se) is known to contribute to several vital physiological functions in mammals:
antioxidant defense, fertility, thyroid hormone metabolism, and immune response.
Growing evidence indicates the crucial role of Se and Se-containing selenoproteins
in the brain and brain function. As for the other essential trace elements, dietary
Se needs to reach effective concentrations in the central nervous system (CNS) to
exert its functions. To do so, Se-species have to cross the blood–brain barrier (BBB)
and/or blood–cerebrospinal fluid barrier (BCB) of the choroid plexus. The main interface
between the general circulation of the body and the CNS is the BBB. Endothelial
cells of brain capillaries forming the so-called tight junctions are the primary anatomic
units of the BBB, mainly responsible for barrier function. The current review focuses
on Se transport to the brain, primarily including selenoprotein P/low-density lipoprotein
receptor-related protein 8 (LRP8, also known as apolipoprotein E receptor-2) dependent
pathway, and supplementary transport routes of Se into the brain via low molecular
weight Se-species. Additionally, the potential role of Se and selenoproteins in the BBB,
BCB, and neurovascular unit (NVU) is discussed. Finally, the perspectives regarding
investigating the role of Se and selenoproteins in the gut-brain axis are outlined.

Keywords: selenium, selenoprotein P, low molecular weight selenium species, blood–cerebrospinal fluid barrier,
blood–brain barrier, selenium transport, brain-gut axis, LRP8

INTRODUCTION

The crucial role of the essential trace element selenium (Se) for the brain was already reported in the
study of Weber et al. (1991) demonstrating the alleviation of intractable seizures in children with
a low level of glutathione peroxidase (GPX) activity following Se supplementation. A commonly
accepted Se metabolism concept includes the transformation of dietary Se to hydrogen selenide
(HSe−), which serves as an intermediate between reductive metabolism of Se and excretory
pathways, i.e., water-soluble methylated Se compounds (Chatterjee et al., 2003; Ogra and Anan,
2009) and selenosugars (Juresa et al., 2006; Kuehnelt et al., 2006; Rayman et al., 2008). Importantly,
hydrogen selenide and its activated form selenophosphate and other reactive low molecular mass
(LMM) chemical species of Se are thought to be relevant to the majority of Se biological activity
being metabolic precursors of selenoproteins (Loef et al., 2011; Weekley and Harris, 2013). For
a detailed description regarding Se absorption and metabolism, the reader is referred to the
specialized reviews, e.g., Combs et al. (2013), Roman et al. (2014), Cardoso et al. (2015), and
Vindry et al. (2018).
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Se is known to contribute to several crucial physiological
functions in mammals: antioxidant defense, fertility, thyroid
hormone metabolism, and immune response (Hadaszadeh and
Beggs, 2006; Rayman, 2012; Schomburg, 2012, 2017; Solovyev
et al., 2019). Biological functions of Se in humans (Rayman
et al., 2008; Rayman, 2012) manifest themselves primarily via
25 selenoproteins (Savaskan et al., 2003; Arner, 2010; Zhang
et al., 2010), highly specialized proteins that have the 21st

proteinogenic amino acid selenocysteine (Sec) at their active
center (Kryukov et al., 2003; Arner, 2010; Weekley et al.,
2011). Hitherto, the functions of a couple of selenoenzymes are
rather well described. First of all, antioxidant selenoenzymes
are often in the spotlight, including GPXs types I-IV and
VI (GPX1-4, 6), thioredoxin reductases type I-III (TXNRD1-
3), and methionine sulfoxide reductase B (MrsB) (Arner and
Holmgren, 2000; Davis et al., 2012; Rayman, 2012; Brigelius-
Flohe and Maiorino, 2013; Kim, 2013). Another relatively well-
studied group of selenoprotein are iodothyronine deiodinases
type I-III (DIO1-3), which are involved in thyroid hormone
metabolism (Köhrle et al., 2000). Other selenoproteins are
somewhat less studied, yet their functions seem quite diverse
(Papp et al., 2007). For instance, selenoproteins S (SELENOS), N
(SELENON), M (SELENOM), T (SELENOT), and F (SELENOF,
previously known as 15 kDa selenoprotein (Gladyshev et al.,
2016) are endoplasmic reticulum-associated proteins, involved in
the unfolded protein response (Bar-Nun, 2005; Ye et al., 2005)
and, potentially, other less explored functions.

An important feature of Se metabolism and selenoprotein
expression is a highly hierarchic structure. This hierarchy refers
to the protein species, organs, and body compartments, with
the brain ranging atop of all other organs and tissues. Brain
and cerebrospinal fluid (CSF) levels of Se are independent on
blood Se level (Tondo et al., 2010; Solovyev et al., 2013); so
the brain is protected from Se deficiency (Zhang et al., 2008).
The other hierarchic aspect is connected with the patterns of
expression of certain potentially more essential selenoproteins
(Novoselov et al., 2005) in certain tissues, first of all in the
brain, to maintain these important selenoproteins at a high
level even at Se deficiency. Conversely, the production of other
selenoproteins is severely deprived under Se shortage (Savaskan
et al., 2007; Reeves and Hoffmann, 2009; Zhang et al., 2019).
Such a Se-utilization hierarchy amongst selenoproteins and
body compartments is related to the sophisticated regulation
of selenoprotein expression (Papp et al., 2007; Kim et al.,
2011). Within the selenoprotein transcription hierarchy, Dio1
holds the top position. The main Se transporting protein –
SELENOP – is found in an intermediary position on this
selenoprotein transcription ranking. The various forms of GPXs
show a scattered picture: GPX2 and GPX4 are less affected by Se
deficiency than GPX1 and GPX3 (Sunde, 2012).

Recently, the introduction of genomic, autoradiographic,
and proteomic techniques (Guo et al., 2018), as well as
advances in chemical speciation (Michalke et al., 2018; Sargent
et al., 2019), opened new insights in the studies of brain
Se biochemistry and neurotoxicology (Schweizer et al., 2004;
Solovyev, 2015). For further details concerning the role of
Se in human health (Köhrle et al., 2000; Rayman, 2012;

Steinbrenner and Brigelius-Flohé, 2015), the brain and brain
disease (Schweizer et al., 2004; Pillai et al., 2014; Cardoso
et al., 2015; Solovyev, 2015; Solovyev et al., 2018), metabolism
(Steinbrenner and Sies, 2013; Weekley and Harris, 2013; Vinceti
et al., 2016), and nutrition (Navarro-Alarcon and Cabrera-Vique,
2008; Torres-Vega et al., 2012) the reader is referred to the
specialized reviews.

Se is an essential trace element for the human body and
specifically for the human brain (Ingold et al., 2018), but it also
can be highly neurotoxic depending on intake and speciation
(Rayman, 2012; Vinceti et al., 2014; Solovyev, 2015; Michalke
et al., 2018). The nutritional requirement for Se was first
demonstrated in 1957 (Schwarz and Foltz, 1957), which was
underpinned by the discovery of Se-dependent GPXs (Rotruck
et al., 1973). Nevertheless, the optimal dietary intake of Se
induced intensive debates for a long time, which are still going
on (Sunde, 2006; Vinceti et al., 2013a, 2017b; Roman et al., 2014).
Currently, the values of ca. 20–70 (Gammelgaard et al., 2008;
Schomburg, 2012; Vinceti et al., 2013a; Weekley and Harris, 2013)
or 40–50 µg Se per day are most commonly cited in the literature
as an optimum Se intake (Sunde, 2006; Combs et al., 2013).
Tolerable upper intake level was set by the Institute of Medicine
of the National Academy of Sciences of the United States as
400 µg per day for adults (Boyd, 2011). European Food Safety
Authority (EFSA) set adequate Se intake as 70 µg/day for adults
and 85 µg/day for lactating women (EFSA Panel on Dietetic
Products Nutrition and Allergies (NDA), 2014). For the rodents,
the generally recommended levels of Se in the chow are ca. 0.04–
0.10 µg Se/g diet (Yang et al., 1989; Sunde et al., 2005; Sunde
and Raines, 2011), which may correspond to ca. 1–2 µg Se daily
in rats. The exact optimal intake of Se in rodents seems to be
dependent on exact breed, age, and Se speciation.

Notably, the neuroprotective role of Se compounds is not
exhausted with antioxidant effects of Se species, but also appeared
to have a role in de novo selenoprotein synthesis, regulation
of calcium channels, and mitochondrial biogenesis (Uguz and
Naziroglu, 2012). Remarkably both Se-deficient and Se-excessive
diet in mice lead to an increased level of iron in the hippocampus;
however, in the cerebral cortex, only Se-deficient diet led to
iron accumulation (Sharma et al., 2019). Increased iron in
brain tissue causes reactive oxygen species (ROS) formation
via Fenton reaction, inducing ferroptosis and finally leading
to neurodegeneration (Kim et al., 2015; Stockwell et al., 2017;
Cobley et al., 2018). This indicates that Se metabolism may cross-
effects the regulation of other metal levels and can lead to a wide
range of consequences with pathological effects.

Importantly, as for any other nutritional compounds, dietary
Se needs to reach effective concentrations in the CNS to exert its
vital function (Campos-Bedolla et al., 2014). To do so, Se-species
have to cross the blood–brain barrier (BBB) and/or blood–
cerebrospinal fluid (CSF) barrier (BCB). Crossing the barriers
as well as subsequent promoting antioxidant activity appear to
be, to some degree, dependent on the chemical form, since the
organic form of Se was proven to be more powerful in increasing
the expression and activity of TXNRD, GPX1 and GPX4 (Song
et al., 2014). TXNRD plays an important role in maintaining
the redox balance and has protective role inside dopaminergic
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cells, which are prone to oxidative stress, e.g., under parkinsonian
degeneration (Lopert et al., 2012).

Blood–brain barrier and BCB are “guarding systems” of
the brain formed mainly by endothelial cells, which separate
the central nervous system (CNS) from the general circulatory
system of the body, protecting the brain from toxic metabolites
and pathogens (Zenaro et al., 2017). BBB and BCB provide
trophic support, absorbing nutrients such as amino acids,
polyunsaturated fatty acids, and essential trace elements that are
vital for brain function (de Wilde et al., 2017). The main interface
between the general circulation of the body and the CNS-
compartment is the BBB. Endothelial cells of brain capillaries are
the primary anatomic units of the BBB, mainly responsible for the
barrier function (Abbott et al., 2010). However, brain endothelial
cells actively interacting with other brain cells, including
neurons, astrocytes, myocytes, pericytes, and extracellular matrix
components (Muoio et al., 2014). All these cell types, including
BBB endothelial cells, are involved in the regulation of blood
circulation, including vasodilation and vasoconstriction, together
being referred to as neurovascular unit (NVU).

A peculiar fact on neurodegenerative disorders is that they are
normally characterized by an increased ROS production (Loef
et al., 2011) and the decline of BBB and BCB (Balusu et al.,
2016). For instance, animal (Sengillo et al., 2013) and human
studies (Halliday et al., 2016; Skillbäck et al., 2017) indicate
the vulnerability of the NVU in Alzheimer’s disease, the most
common neurodegenerative disease (Muoio et al., 2014), and
both protective and trophic functions of the neural barrier seem
to be impaired (Balusu et al., 2016; Zenaro et al., 2017).

Upon entering the body through diet, Se is mainly taken by the
liver (Burk and Hill, 2015) to be distributed to the extrahepatic
tissue. For the details on Se absorption and general metabolism
in the body, the reader is referred to the specialized publications
(Ogra and Anan, 2009; Burk and Hill, 2015; Shini et al., 2015;
Solovyev et al., 2018; Ha et al., 2019). The current review focuses
on Se transport to the brain, including, first of all, selenoprotein
P/low-density lipoprotein receptor-related protein 8 (LRP8, also
known as apolipoprotein E receptor-2) dependent pathway, and
supplementary transport routes of Se into the brain via low
molecular weight Se-species. Additionally, a potential role of Se
and selenoproteins in the BBB, BCB, and NVU is discussed.
Finally, the perspectives regarding investigating the role of Se and
selenoproteins in the gut-brain axis are outlined.

BLOOD–BRAIN BARRIER,
BLOOD–CEREBROSPINAL FLUID
BARRIER, AND NEUROVASCULAR UNIT

The mammalian brain is separated from the general circulation
system by the BBB, which is localized in the brain capillaries
and pia-subarachnoid membranes, and the BCB localized in the
choroid plexus of the brain ventricles. The primary contribution
to the barrier function belongs to the BBB since at the level of
brain micro-vessel endothelium BBB is the major site of blood-
CNS exchange (Abbott et al., 2010). BBB plays a crucial role in the
maintenance of CNS homeostasis (Erickson and Banks, 2013).

The functions of the BBB and BCB include: protection of the
brain from pathogens and toxic metabolites, the separation of the
brain and periphery neurotransmitter pools, intake of essential
nutrients and discharge of metabolites, and maintaining the
immune privilege of the brain, where the immune activity is
mainly accomplished by internal microglia rather than, e.g., bone
marrow or thymus-derived immune cells (Galea et al., 2007;
Abbott et al., 2010; de Wilde et al., 2017; Zenaro et al., 2017).

These barriers are physically represented by the so-called tight
junctions between brain endothelial cells and epithelial cells,
attributed to the special proteins such as occludin, claudins, and
the associated proteins zona occludens (ZO-1, ZO-2, and ZO-3),
which are highly expressed in brain endothelium (Chen et al.,
2009; Steinemann et al., 2016). Another aspect of barrier function
is related to the functioning of multiple active transporters, which
carry nutrients and metabolites in both directions (Campos-
Bedolla et al., 2014; Blanchette and Daneman, 2015). Tight
junctions produce high transendothelial cell electrical resistance,
impeding ions and small charged molecules from crossing the
BBB (Blanchette and Daneman, 2015). Tight junctions also
support transporter function by limiting lateral diffusion of
membrane proteins (Abbott et al., 2010).

A second interface between the CNS and periphery, formed
by the epithelial cells of the choroid plexus facing the CSF, the CSF
per se, and the highly permeable ependyma in the brain ventricles,
constitute the BCB (Abbott et al., 2010; Spector et al., 2015). The
choroid epithelial interface of the BCB acts together with the BBB,
maintaining neuron wellbeing (Johanson et al., 2011). The CSF
is an excretion of the choroid plexus into the brain ventricular
system (Brown et al., 2004) and it is in permanent close contact
with the brain in the extraparenchymal cave (Aguilar et al., 1998).
The blood comes close to the CSF in two main areas of the
brain: over the subarachnoid space in the arachnoid membrane
blanket and in the choroid plexus of the brain ventricles (Johanson
et al., 2011). CSF is bathing and sheathing the brain, protecting
it from mechanical stress and contributing to brain homeostasis
through constant exchange with brain interstitial fluid (Abbott
et al., 2010). This fact predestines CSF to be that sample type
from living subjects to analyze CNS-related exposure, transport
efficiency across neural barriers or metabolic changes in the brain
due to neurodegenerative conditions (Solovyev et al., 2013). This
holds true as well for Se and selenoproteins or other Se-species.

Barrier functions develop prenatally and are well-formed
by birth (Goasdoué et al., 2017). Endothelial progenitor cells
invade the neural tissue from the surrounding perineural vascular
plexus and enter into the neuroepithelium; neural progenitor
cells generate molecular signals driving the migration of the
endothelial cells, which in turn secrete cues to recruit pericytes;
for details see a review by Blanchette and Daneman (2015).
Neural barriers are a highly dynamic system, responding to
different signals, including local changes and requirements,
and able to be regulated via a number of mechanisms and
cell types, in both physiological and pathological conditions
(Abbott et al., 2010).

Blood–brain barrier and BCB are sophisticated systems for a
direct study in a living organism. Therefore, active attempts are
being undertaken to design in vitro models of these systems. Such
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artificial systems could facilitate the investigation of processes
across the BBB and BCB. As such models are designed to
reproduce and predict the processes across the real barriers.
The reliable models must correspond to a relevant set of
parameters in the real brain. However, there is still a lack of
in vivo understanding of many processes at neural barriers,
making robust validation of model systems to be associated with
noticeable difficulties.

The developed models can be divided into several main
types: transwell systems (Helms et al., 2016; Stone et al., 2019),
cell aggregate-based models (Urich et al., 2013; Cho et al.,
2017), and dynamic systems (Campisi et al., 2018; Jeong et al.,
2018; Ahn et al., 2020). In the simplest version, transwell
models represent endothelial cells cultured on a matrix-coated
permeable membrane inserts for the standard cell culture plates,
which divide the cultivation well into two parts, imitating the
blood-facing and brain-facing compartments of the barrier.
Additionally, astrocytes, pericytes, and neurons can be co-
cultured together with endothelial cells to mimic the real
vascular environment in the brain more closely (Stone et al.,
2019). The advantages of such systems are the simplicity of
implementation, low costs, and the possibility to assess the
transendothelial electrical resistance (TEER) rather easily as a
parameter characterizing modeled barrier integrity. Additionally,
such systems are well suited for the screening of permeability
coefficients (Wolff et al., 2015); predominantly, in the case of
compounds with a passive diffusion mechanism (Garberg et al.,
2005). The same transwell membranes can be applied for the
modeling BCB (Schroten et al., 2012; Drobyshev et al., 2021).
Nevertheless, there is a lack of the relevant cell lines to model
the whole sophisticated cell interaction for both BBB and BCB,
which is especially problematic for the latter since it is combined
with a more model-challenging barrier geometry (Strazielle and
Ghersi-Egea, 2011). Overall, non-presentation of some cell types
in such models, the absence of blood flow, and a lack of metabolic
and neurochemical coupling between the neuronal cells and
the barrier components limit the implication of these models
(Bagchi et al., 2019).

Dynamic BBB models were designed to overcome the
disadvantages of the transwell models associated with the lack of
shear stress and close contact of endothelial cells with neuroglia.
In these models, endothelial cells and astrocytes are cultured
on the inner and outer surface of the porous hollow fibers (He
et al., 2014). The culture medium is circulated through the system
to achieve shear stress equivalent to that in the physiological
conditions. Also, a gas-permeable tubing system is used to keep
the O2/CO2 balance. However, the dynamic BBB model has a
lot of shortcomings: it is not possible to visualize the endothelial
cells; these models require much higher cell numbers to build-
up a tight monolayer and longer cultivation times to reach stable
TEER values (Cucullo et al., 2002, 2011). Nevertheless, as these
models allow controlling the medium flow, dynamic BBB models
were successfully applied for the investigation of the ischemia-
induced injury (Cucullo et al., 2008) and antiepileptic drugs
(Cucullo et al., 2007). The introduction of microfluidic devices
was the next step in the development of dynamic BBB models
(Wolff et al., 2015). Due to the miniaturization of the flow

chambers and the limitations of the membranes, the conventional
dynamic BBB models were mostly discontinued. At the same
time, the small size of the flow chambers limits their application
for modeling shear stress. However, the active development of
the microfluidic BBB systems in recent years demonstrates the
potential of these models for a variety of research tasks (Adriani
et al., 2017; Jeong et al., 2018; Bhalerao et al., 2020).

Cell aggregate models or “spheroid” models consist of
endothelial cells, astrocytes, and pericytes, which are able to self-
organize into spherical structures with astrocyte core, surrounded
by pericytes and covered with endothelial cells (Urich et al.,
2013). Such systems may become a viable alternative to the
transwell or microfluidic models for certain implications. The
main advantage of these systems is a direct contact between
the barrier cells (Gastfriend et al., 2018). Accordingly, the
disadvantage of these models is the absence of a simple way
to assess barrier function such as TEER measurement and
complicated permeability screening (Cho et al., 2017). At the
moment, such systems seem to be the most suitable for studying
the effects of various compounds on the constitutional cells of the
barrier (Nzou et al., 2018; Leite et al., 2019), rather than directly
on the barrier functions.

There is a large set of requirements for barrier models: strong
barrier function, the presence of a wide range of transporters
and receptors, regulation of immune cell trafficking, mimicking a
complex interaction of several types of cells, as well as, a dynamic
balance between the cells. That makes the implementation of
the in vitro BBB or BCB models extremely difficult. However,
a deeper understanding of the complex nature of BBB and
BCB together with the development of the new models and
the improvement of the current barrier-modeling techniques
indicates that they may become a very useful research tool for
studying BBB and BCB in the future. This may include the
research on the nutrient transport to the brain tissue and barrier
dynamics, including modeling of the NVU functionality.

The concept of NVU was introduced as a structure formed by
neurons, astrocytes, basal lamina covered with smooth muscle
cells and pericytes, endothelial cells (components of the BBB),
and extracellular matrix (Harder et al., 2002). This cellular
complex detects the neuronal supply and triggers necessary
responses, vasodilation or vasoconstriction, via their anatomical
and chemical relationship (Muoio et al., 2014). Importantly,
brain endothelial cells are known to gain their specialized BBB
functions through interactions with other cells of NVU such as
pericytes, astrocytes, and neurons (Canfield et al., 2019), which
is crucial for the development, regulation, maintenance of the
neural barriers (Daneman et al., 2010a,b).

The decline of BBB and BCB are involved in many
neurological diseases (Blanchette and Daneman, 2015),
including, e.g., Alzheimer’s (Erickson and Banks, 2013; Zenaro
et al., 2017) and Parkinson’s disease (Gray and Woulfe, 2015),
epilepsy (Oby and Janigro, 2006), etc. In this respect, BBB
is currently drawing more interest if compared to BCB. To
conclude, neural barriers, first of all, BBB and other aspects of
NVU is a dynamically developing branch of brain research and
they may be expected to gain recognition as valid therapeutic
targets in the future (Campos-Bedolla et al., 2014).

Frontiers in Neuroscience | www.frontiersin.org 4 February 2021 | Volume 15 | Article 630016

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-630016 February 1, 2021 Time: 18:9 # 5

Solovyev et al. Selenium at the Neural Barriers

SELENIUM TRANSPORT TO THE
BRAIN – SELENOPROTEIN P AND LOW
MOLECULAR WEIGHT
SELENIUM-SPECIES

Se is an essential trace element necessary for adequate brain
function (Cardoso et al., 2015; Solovyev, 2015); however, its
uptake by the neuronal tissue should be strictly regulated to
prevent toxicity (Burk and Hill, 2009, 2015). Currently, the role
of disturbed trace element homeostasis and metal exposure in the
brain is being studied intensively. The loss of barrier integrity
promotes increased brain exposure to circulating metabolites,
inorganic ions, and circulation proteins, which in healthy
conditions either cannot enter the brain completely or in a strictly
controlled manner only. Both metal ions and leaked proteins
(Linert and Kozlowski, 2012; Choi et al., 2017) may modulate
amyloidgenesis and other pathological processes in the brain
after a “ticketless” transfer through the barrier. Increased brain
exposure to mineral elements, present as low-molecular-weight
species, bypassing the deteriorating neural barrier may contribute
to the general pathologic processes in the brain.

The initial understanding of brain Se transport came from
the use of 75Se-radioactive tracer experiments (Burk et al., 1991,
2003; Hoppe et al., 2008; Kuhbacher et al., 2009). The presence
of 75Se in the brain after the injection of labeled 75Se-selenite
to Se deficient rats was observed only after the appearance of
75Se-Selenop in the blood plasma, differentiating the brain from
other tissues (Burk et al., 2003). Furthermore, the injection of
75Se-labeled Selenop caused five-time higher accumulation of
75Se in the Se-depleted rat brain 2 h later than that in Se-
sufficient animals (Burk et al., 1991). For more details regarding
the early studies on body Se transport, the reader is referred to the
review by Chen and Berry (2003).

In recent years, our understanding of Se transport to the
brain improved considerably. The central role in Se transport is
attributed to SELENOP, a sole selenoprotein in mammals and
other vertebrates, containing multiple Se atoms as Sec residues
(Kryukov et al., 2003). The biosynthesis of SELENOP, involving
the incorporation of multiple Sec moieties, is modulated by two
SECIS elements in the 3′ UTR region of SELENOP mRNA,
reviewed by Shetty and Copeland (2018a). High high-energy
demand from the cell for the incorporation of 7-17 or more,
up to 35 (Shetty and Copeland, 2018b), Sec residues, depending
on the biological species (Labunskyy et al., 2014), indicates the
importance of the protein for the body. SELENOP contains two
histidine-rich stretches in the N-terminal domain, which may
bind to heparin (Hondal et al., 2001). This differs from the
majority of heparin-binding proteins, which bind through basic
amino acid sequences containing primarily lysine and arginine
(Hileman et al., 1998), but is common for histidine-proline-
rich glycoprotein (HPRG) (Burch et al., 1987). Additionally,
SELENOP contains a separate heparin-binding site in the
N-terminal domain (Burk and Hill, 2009, 2015). Recent studies
also showed possible detoxification role of SELENOP, which
results from the binding affinity for transition metals such as
mercury (Liu et al., 2018). Although SELENOP seems to be a

multifunctional protein (Schweizer et al., 2016; Brigelius-Flohe
and Flohe, 2017; Solovyev, 2020), body Se transport seems to
be its most crucial role (Lobanov et al., 2009). SELENOP is
a secreted heparin-binding glycoprotein (Yang et al., 2000),
containing ten Se atoms in humans (Chen and Berry, 2003;
Rayman, 2012). Circulating SELENOP is mainly produced
by the liver (Burk and Hill, 2009; Pillai et al., 2014; Short
et al., 2018); however, intracellular expression of SELENOP was
reported for neurons (Scharpf et al., 2007), astrocytes (Yang
et al., 2000; Steinbrenner et al., 2006), testicular Leydig cells
(Koga et al., 1998), adipocytes (Zhang and Chen, 2011), and
β-cells of the pancreas (Steinbrenner et al., 2013), at least
in vitro. Full-length SELENOP and shorter truncated isoforms
are detected in the circulation, the latter corresponding both to
termination of SELENOP translation at one of the Sec UGA
codons (Ma et al., 2002; Kurokawa et al., 2014a) and the
action of the proteases (Saito et al., 2004; Kurokawa et al.,
2014a,b). SELENOP considerably contributes to the maintenance
of body Se homeostasis, mainly orchestrated by the liver
(Steinbrenner and Sies, 2009; Solovyev, 2020). The liver directs
Se toward essential selenoproteins biosynthesis or excretion
(Papp et al., 2007).

As was already mentioned, the human body maintains a
specific Se hierarchy (Steinbrenner and Brigelius-Flohé, 2015).
The brain ranks high in this hierarchy, being able to maintain
relatively high selenoprotein expression under Se deficiency
(Burk and Hill, 2009; Solovyev, 2015; Solovyev et al., 2018);
together with regulation of selenoprotein expression, SELENOP-
dependent Se uptake to the brain seems to play an important
role in maintaining this strict hierarchy. In the brain, SELENOP
is primarily expressed in astrocytes, but neurons have also been
identified as a source of endogenous SELENOP through the
entire brain (Steinbrenner et al., 2006; Scharpf et al., 2007), with
particularly elevated expression in the putamen and substantia
nigra (Bellinger et al., 2012). The regulation of SELENOP
synthesis seems to be even more sophisticated than that for
other selenoproteins, due to the necessity to incorporate multiple
Sec elements (Shetty and Copeland, 2018b). As a Se transport
protein, SELENOP significantly contributes to Se-dependent
brain pathways, including: redox signaling, protein folding,
neurochemical signal transduction, and cytoskeleton assembly
(Loef et al., 2011; Cardoso et al., 2015).

The majority of the extrahepatic tissues depend on
receptor-mediated uptake of SELENOP to maintain adequate
selenoprotein expression. Figure 1 illustrates body Se
homeostasis and Se transport, based on several sources
(Burk and Hill, 2009, 2015; Ogra and Anan, 2009; Solovyev
et al., 2013). First of all, the brain, testes, placenta, and kidney
rely on receptor-mediated endocytosis of SELENOP. Se delivery
to neurons by SELENOP is accomplished via its receptor,
low-density lipoprotein receptor-related protein 8 (LRP8, also
known as ApoER2, Figure 1) (Burk et al., 2007). SELENOP
enters the brain from blood plasma by docking with LRP8
at the BBB in brain capillary endothelial cells (BCECs) and
choroid plexus epithelial cells (Burk et al., 2014). In other
body compartments, LRP8, or another membrane receptor –
megalin (also known as LRP2) – is used for SELENOP uptake
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FIGURE 1 | The scheme of body Se homeostasis. Abbreviations: LRP8 – low-density lipoprotein receptor-related protein 8 (LRP8, also known as apolipoprotein E
receptor-2, ApoER2), GPX3 – glutathione peroxidase type III, GPX4 – glutathione peroxidase type IV, Sec – selenocysteine, MeSec – methyl selenocysteine,
SELENOM – selenoprotein M, SELENOP – selenoprotein P, SELENOS – selenoprotein S; * – auxiliary brain Se transport mechanism, independent of SELENOP,
possibly related to selenosugars (Burk and Hill, 2015) and other low molecular weight Se-species (Solovyev et al., 2013) and possibly other minor contributors
(please, see text for more detail). Based on Solovyev et al. (2018) with modification.

(Olson et al., 2007, 2008; Chiu-Ugalde et al., 2010; Kurokawa
et al., 2012, 2014b); SELENOP per se was reported to be in
oxidized form for the uptake to take place (Shetty et al., 2018).

This primary mechanism of brain Se uptake was postulated
based on mice transgenic studies (first of all, using Selenop−/−

mice) and is relatively well explored by now. Genetic ablation
of SELENOP or LRP8 results in diminished brain Se levels
(Hill et al., 2003; Schomburg et al., 2003; Burk and Hill,
2009; Burk et al., 2014) and severe neurological dysfunction
upon administration of a Se-deficient diet (Hill et al., 2004;
Valentine et al., 2008). The study of mRNA levels of selenoprotein
and selenoproteom-related genes in Selenop−/− mice indicated
a considerable reduction of brain selenoprotein expression
compared to wild-type mice (Hoffmann et al., 2007). Specifically,
the selenoproteins with relatively high expressions in the brain –
Gpx4, Selenom, and Selenok – were significantly affected, whereas
for selenoprotein W [Selenow, an antioxidant selenoprotein

with not yet fully understood functions (Whanger, 2009; Yao
et al., 2013, 2016)] the expression became nearly undetectable
(Hoffmann et al., 2007). Another SELENOP uptake receptor,
megalin may also contribute to Se transport to the brain. Megalin
is mainly responsible for Se uptake by the kidney (Figure 1) and
prevents the discharge of SELENOP in the urine (Olson et al.,
2008; Kurokawa et al., 2014a,b). Megalin was demonstrated to
be present in the choroid plexus of the BCB (Carro et al., 2005;
Dietrich et al., 2008); however, its exact contribution to brain
Se transport was not systematically studied and it seems to be
rather limited since megalin−/− mice do not exhibit neurological
phenotype associated with Se deficiency (Kurokawa et al., 2014b),
typical for Selenop−/− or Lrp8−/− mice.

In a recent study, Sasuclark et al. (2019) explored the cell-
type-specific expression of Se-related genes in the mouse and
human brain using single-cell RNA sequencing. Transcriptomic
data was analyzed in 23,822 mouse and 15,928 human cells for
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the genes of 22 selenoproteins and 12 other genes, associated
with Se-transport and/or metabolism. Different cell types were
investigated. High level of expression of LRP8 was observed
for brain endothelial cells of the BBB. SELENOP expression
considerably overlapped with that in glial fibrillary acidic protein-
positive astrocytes and was generally more prominent in white
matter. Additionally, SELENOP expression was most robust
in the choroid plexus and regions lining the brain ventricles
(Sasuclark et al., 2019), which is in line with the previous studies
(Rueli et al., 2015). Generally, in accordance with the previous
findings (Zhang et al., 2008), Sasuclark et al. (2019) indicated that
DIO2, SELENOP, and Se-binding protein 1 (SELENBP1) were
predominantly expressed in non-neuronal cells (interestingly,
SELENOP was co-expressing with SELENBP1 in astrocytes),
whereas the vast majority of selenoproteins and Se-related
proteins were most abundant in neurons. Importantly, SELENOP
expression was maximal in adjacent astrocytes, rather than
the ependymal cells directly lining the ventricles. The authors

proposed the following model of Se uptake to the brain via
SELENOP-LRP8: SELENOP present in blood and CSF is taken
up by LRP8-positive cells of BBB and BCB, resynthesized in
neighboring astrocytes, and subsequently released to supply
LRP8-positive neurons within the brain with Se – Figure 2.
SELENOP is known to cross the BCB, being the most abundant
selenoprotein and Se-species in the CSF (Solovyev et al., 2013;
Mandrioli et al., 2017). For instance, for a collective of 24
neurologically healthy sample donors, a good, age-consistent
BBB-integrity value of albumin quotient (QHSA) of 5.25 × 103,
but higher Q-values for GPX (QGPX = 8.31 × 103) and
TXNRD (QTXNRD = 21.34 × 103) were observed, demonstrating
active transport into the brain-CSF compartment (Solovyev
et al., 2013). For SELENOP, even higher CSF-blood quotient
(QSELENOP = 91.24× 103) was reported (Michalke et al., 2017). It
may indicate the increased SELENOP transport across the neural
barriers, due to high expression of LRP8 at the BBB, which keeps
Se levels relatively stable, even during deficiency periods making

FIGURE 2 | Hypothetical model of Se transport across blood–brain barrier (BBB) and blood–cerebrospinal fluid barrier (BCB). Circulating SELENOP present in blood
and CSF is taken up by LRP8-positive cells in the epithelial (BBB) and ependymal (BCB) layers, resynthesized in neighboring astrocytes, and released to supply
LRP8-positive neurons with Se. In the astrocytes, SELENBP1 sequesters Se from selenoprotein synthesis and thus negatively regulating SELENOP production.
There is also evidence indicating the existence of the SELENOP-independent Se uptake pathway (Figure 1). Reproduced from Sasuclark et al. (2019) with
modification.
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an adequate Se pool available in the CNS (Zachara et al., 2001).
The above-proposed hypothesis is quite intriguing and certainly
requires further insight.

Recent investigations by Jin et al. (2020) have shown,
that human hepatocellular carcinoma (HepG2) cells secrete
SELENOP mainly within exosomes, which are stable against
cleavage by plasma kallikrein protease (Saito et al., 2004).
Additionally, in vitro experiments showed that exosomal
SELENOP potentially crossed the BBB and supplemented Se
to neuronal cells (mouse neuroblastoma N2a cells), inducing
the production of intracellular selenoproteins. Exosomes are a
subclass of extracellular vesicles of endosomal origin, which
are released from the cells for extracellular communication by
the transportation of proteins, DNA or RNA (György et al.,
2011). The size of exosomes is ∼40–100 nm in diameter
and they are enveloped with a lipid double layer as an
outer membrane. The function of exosomes in cell-to-cell
communication, protein or RNA transport, immune response
regulation, antigen presentation, and non-classical secretion of
proteins is reviewed by Simpson et al. (2009). Additionally, Jin
et al. (2020) indicated the possible involvement of apolipoprotein
E (ApoE) in the regulation of exosomal SELENOP secretion and
transport, which probably needs further in vivo confirmation.
For more detailed information about the cellular uptake of
exosomes, the reader is referred to the review of Mathieu et al.
(2019). Although further studies on secreted exosomal SELENOP
are required, the exosomal transport of selenoprotein through
BBB to neuronal cells might be an alternative route for Se
delivery into the brain.

The mechanism of SELENOP intracellular turnover is not
fully clear. Lysosomal degradation of SELENOP was reported
(Kurokawa et al., 2012; Shetty et al., 2018); however, the exact
proteolysis pathway requires further insight. Se liberated from
SELENOP must then be recycled for the production of new
selenoproteins. Selenocysteine β-lyase (Scly), an enzyme that
seems to play an important role in Se metabolism, releasing Se
atoms from Sec (Seale et al., 2018a; Seale, 2019). The idea that Scly
may be responsible for SELENOP’s Se recycling came from the
fact that Scly-depleted HeLa cells exhibited a significant decline
of selenoprotein production in the case SELENOP was used as a
Se source (Kurokawa et al., 2011).

If SELENOP, as a source of Se for selenoprotein synthesis, acts
via Scly, it might deliver the highly reactive Sec residues directly
to Scly or through an intermediate, in order to decompose Sec
and recycle Se (Seale, 2019). It is worth noting that although
Scly−/− mice have reduced selenoprotein expression, they
do not exert any of the Selenop−/− phenotypes like male
sterility or severe neurologic defects (Raman et al., 2012;
Byrns et al., 2014). Byrns et al. (2014) explored the phenotype
of double-knockout Selenop−/−/Scly−/− mice, indicating
exacerbated neurological phenotype compared to Selenop−/−

mice, including motor coordination, audiogenic seizures, and
brainstem neurodegeneration. Selenop−/−/Scly−/− animals
were shown to require supra-physiological Se supplementation
to survive (Byrns et al., 2014). Interestingly, the neurological
dysfunction related to the inhibition of GABAergic neuron
maturation in male double-knockout Scly−/−/Selenop−/−

mice could be prevented by prepubescent castration (Pitts
et al., 2015). This suggests a competition between the testes
and the brain regarding Se-distribution under Se-deficiency or
disrupted Se-homeostasis.

The presence of alternative SELENOP-independent transport
pathways for Se was identified in the early studies in Selenop−/−

mice fed Se sufficient diet (Hill et al., 2003; Schomburg et al.,
2003). Up-to-now, these pathways are considerably less explored
than the main SELENOP/LRP8 pathway, probably, owing to their
supplementary function, which may take over only under specific
conditions such as SELENOP or LRP8 deficiency. SELENOP-
independent Se transport to neuronal tissue may be attributed to
selenosugars (Burk and Hill, 2015) and/or other low molecular
weight Se-species (Solovyev et al., 2013). Se conversion into
methylated species or selenosugars are Se detoxification pathways
present in many biological species. However, there is a lack
of understanding of the relationship between specific and non-
specific Se metabolism (Tobe and Mihara, 2018). Excretory Se-
species, such as selenosugars and trimethylselenonium cation
(TMSe+), were shown to be non-toxic for the astrocytoma and
other cell types, compared to selenite (Marschall et al., 2016).
These compounds are rather intensively produced under supra-
nutritional Se intake (Itoh and Suzuki, 1997; Suzuki et al., 2005;
Tsuji et al., 2009), and may contribute to brain Se transport
under SELENOP or LRP8 deficiency. In this respect, selenosugars
seem to be more feasible candidates, since they might exploit
glucose- or other transporters (Campos-Bedolla et al., 2014) to
cross the BBB and/or BCB whereas TMSe+ is unlikely to be either
effectively transported to the brain due to its positive charge
and missing capability of effective metabolization in the brain
tissue (Suzuki et al., 2006; Jackson et al., 2013). Furthermore,
TMSe+ seems not to be regularly appearing in human biofluids.
Jäger et al. (2016) reported that TMSe+ was present among Se-
excretory species only for a small fraction of the population.
Finally, GPX3 as a secreted isoform of GPX (Steinbrenner
and Sies, 2009; Brigelius-Flohe and Maiorino, 2013) may also
contribute to supplementary Se transport to the brain. Blood
serum GPX3 (Figure 1) is mainly produced by the kidney (Olson
et al., 2008) and GPX3 was detected in human CSF (Solovyev
et al., 2013; Vinceti et al., 2019), whereas a rather low level of
GPX3 expression was reported for the rat choroid plexus (Kratzer
et al., 2013). Notably, GPX3 contribution to Se transport to the
CNS under normal conditions seems to be far lower compared to
the SELENOP-associated pathway.

Recently, Seale et al. (2018a) presented in vivo results on Scly
expression and activity under the absence of Sec-rich Selenop,
indicating the presence of other pathways of maintaining Sec
supply for Scly, which remain to be identified. Dietary Se-
species, first of all, SeMet and selenite may substitute SELENOP
deficiency. For instance, enhanced reduction of selenite and
accelerated trans-selenation pathway for SeMet [analog of trans-
sulfuration mechanism, transferring sulfur from methionine to
serine to yield cysteine (Jackson et al., 2013)] may be additional
sources of Se for selenophospate synthesis and consequently
selenoprotein production (Seale, 2019). The activation of these
pathways may accelerate the induction of dietary Se-species into
selenoprotein synthesis (Esaki et al., 1981; Kumar et al., 1992).
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Selenite can be reduced to selenide and elemental Se by the action
of TXNRD1 (Kumar et al., 1992), an essential selenoprotein
ranking high in the selenoprotein hierarchy (Kuhbacher et al.,
2009). The scheme of Scly role in Se metabolism is demonstrated
in Figure 3 (Seale, 2019). To conclude, the story of Se recycling
still poses some unanswered questions; for instance, the exact
cellular localization of Scly, whether Scly directly transfers Se to
selenophosphate synthetase 2 (SEPH2) or there are other proteins
involved, and the exact role of minor intermediates such as
selenohomocysteine (trans-selenation pathway) or Se bound to
glutathione (selenite reduction pathway) in Se turnover (Seale
et al., 2018a; Seale, 2019).

Inorganic Se (selenite and selenate) may cross the BBB and
BCB using inorganic anion transporters, which are present in the
barriers (Campos-Bedolla et al., 2014). Sulfate transporters [e.g.,
SLC13: human Na+-sulfate/carboxylate co-transporter family
(Hu et al., 2020)] may be responsible for carrying selenate across
the barrier since it is isomorphic to sulfate. The presence of
selenate was observed in human CSF (Vinceti et al., 2013b,
2019; Mandrioli et al., 2017; Violi et al., 2020); however, it is
usually mainly attributed to the decaying of CSF selenoproteins,

first of all, that of SELENOP (Michalke and Berthele, 2011;
Solovyev et al., 2013). Selenite may also employ some inorganic
ion transporters but this requires a further warrant. The transport
of inorganic Se into the brain appears to be mainly responsible
for Se neurotoxicity (Vinceti et al., 2014, 2016), implementing the
U-shaped effects of Se on human health (Rayman et al., 2018;
Seale et al., 2018b). However, such inorganic Se delivery may
become beneficial under severe Se deficiency or malfunction of
SELENOP/LRP8 delivery system.

In turn, organic dietary species of Se such as selenoamino
acids (SeMet, Se-methylselenocysteine, and to the lesser
extent Sec) seem to be capable of entering the brain via
aminoacid transporters and, possibly, other routes. Notably, the
corresponding mechanistic relationships remain to be elucidated.
The key enzyme of the trans-selenation pathway (cystathionine
γ-lyase) is known to be expressed in the brain (Diwakar and
Ravindranath, 2007; Patel et al., 2018; Seale et al., 2018b). Finally,
a minor alternative pathway of Se entering the brain may be
related to proteins leaking through the BBB (or BCB), first of all,
under pathological conditions, impairing the barrier function,
but this notion is rather speculative at the moment. Any general

FIGURE 3 | A schematic representation of selenocysteine β-lyase role in Se metabolism. Scly – selenocysteine β-lyase; Sec – selenocysteine; SeMet –
selenomethionine; HSe- – hydrogen selenide; GSSeSG – selenodiglutathione; GSSeH – selenoglutathione; SEPHS2 – selenophosphate synthetase 2. Based on
Seale (2019) with modification.
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body proteins contain Se as a non-specific substitute for its sulfur
analog methionine (Ogra and Anan, 2009). Thus, non-specific
leaking of the proteins through the barrier (Pardridge and
Mietus, 1980; Lin et al., 2016) may deliver some Se to the brain
cells. Particularly, selenized human serum albumin is detected in
human CSF (Solovyev et al., 2013; Letsiou et al., 2014). However,
the actual contribution of such “backdoor” transport pathways
remains elusive.

SELENIUM AND THE GUT-BRAIN AXIS

The human gastrointestinal tract is inhabited by the numerous
microorganisms of varied species from different domains of
Life, including viruses, archaea, protozoa, bacteria, fungi, and
eukaryota (Qin et al., 2010; Welcome, 2019). There is growing
evidence of a direct link between gastrointestinal function and
the brain (Caracciolo et al., 2014). The gut-brain axis is a
bidirectional neurohumoral communication system between the
CNS and the enteric nervous system (Collins et al., 2012).
For instance, traumatic brain injury activates the gut-brain axis
and increases intestinal permeability (Patel et al., 2016); on
the other hand, changes of gut microbial composition during
neurodevelopment in early life may be detrimental for the CNS
and leads to neurological disorders in later life (Louwies et al.,
2019). The effect of the gut microbiota on the host’s health is
related to the production of biologically active compounds per se,
competing with the host for essential nutrients, and affecting the
host’s immune system (de Vos and de Vos, 2012; Caracciolo et al.,
2014; O’Mahony et al., 2015; Yang et al., 2020) and epigenome
(Louwies et al., 2019). Intestinal Se absorption depends on the
chemical speciation of the element as well as other factors such as
the individual’s sex, age, nutritional status, and the composition
and activity of the intestinal microbiome (Peters et al., 2018).

The presence of several key selenoproteins including GPXs,
SELENOM, SELENOP, and SELENOS as well as SELENBP1
was reported for the intestine, Se status thus affecting gene
expression, signaling pathways, and cellular functions in the small
and large intestine as well as the gut microbiome composition
(Speckmann and Steinbrenner, 2014). Se deficiency is detrimental
for the gut barrier function, inducing the disordered intestinal
immune response in mice. Additionally, it reduces the levels
of neuroactive substances, such as serotonin and melatonin
(O’Mahony et al., 2015; Zhai et al., 2019), which are involved in
the gut-brain axis (Mawe and Hoffman, 2013; Carabotti et al.,
2015). Furthermore, pathological alteration of gastrointestinal
flora may lead to diseases, such as inflammatory bowel disease
and cancer. The role of Se in these processes remains to be
elucidated. The role of Se in the gut disease is outside the scope
of the current review and the reader is referred to the specialized
publications (Rannem et al., 1998; Speckmann and Steinbrenner,
2014; Kudva et al., 2015; Peters et al., 2018; Kipp, 2020).

The gut microbiota is metabolically highly active and
it produces a range of different compounds, including
neuroactive molecules, such as acetylcholine, catecholamines,
γ-aminobutyric acid, histamine, melatonin, and serotonin. These
molecules are essential for regulating peristalsis and sensation

in the gut (Petra et al., 2015). Additionally, the presence of gut
microbiota considerably affects the uptake and metabolism of the
nutrients. Up to 25% of all bacteria have selenoproteins in their
genomes (the number varies from 0 to 57) and, thus, they require
Se for their growth and metabolism (Kasaikina et al., 2011;
Zhang et al., 2019).

In the study of Kipp et al. (2009), male mice were kept on
diets for 6 weeks, simulating Se-sufficient (150 µg/kg Se as SeMet)
and moderately Se-deficient (86 µg/kg Se) diets in humans. Even
this narrow decrease in Se net intake caused the alteration of
952 genes expression – 772 genes were down-regulated and 230
genes were found to be up-regulated. The following pathways
were shown to be affected: regulation of protein biosynthesis,
response to stress, inflammation, carcinogenesis, and the Wnt
pathway (Kipp et al., 2009). In a later study, Kasaikina et al.
(2011) studied the composition of gut microbiota in mice
kept on Se-deficient, Se-sufficient, and Se-excessive diets. High-
throughput sequencing was used for the purpose. They showed
gut microbiota to be able to partially sequester dietary Se, limiting
its uptake by the host. The authors also pointed out that dietary
Se affected both the composition of existing microbiota and
the establishment of gastrointestinal microflora (Kasaikina et al.,
2011). In the recent experiments in rats, it was shown that high
doses of Se (as selenite) partially restored the ranks of phylum
and genus of the gut flora after the exposure to methylmercury.
The authors also pointed out that the host’s Se level was related
to the state of the gut microbiome (Liu et al., 2019). Gangadoo
et al. (2019) reported that exposure to Se nanoparticles affected
the diversity and structure of chicken caecal microbiota in vitro.
To conclude, it is tempting to speculate that the alterations of
the host organism due to Se dietary levels (Kipp et al., 2009,
2012; Peters et al., 2018; Zhai et al., 2019) may be partially related
to the gut microbiota. However, further studies should support
such a hypothesis.

Another important aspect of the gut microbiota in line
with the scope of the current review is related to its role
in maintaining BBB integrity. Pathological alterations in gut
microbiota induce the increased production of toxic metabolites
and reduced production of beneficial compounds like short-
chain fatty acids. The metabolic change affects the balance of
pro-inflammatory and anti-inflammatory cytokines and other
immune factors, promoting the decline of the gut epithelial
barrier. This results in concomitant activation of local and
distant immune cells and dysregulation of enteric neurons and
glia (Welcome, 2019). Gut flora also appears to have a role in
the induction of BBB properties; in the absence of normal gut
microbiota in the mouse dams, the expression of BEC claudin-5
and occludin is diminished and an increase in BBB permeability
is observed in the offspring (Braniste et al., 2014). Notably, more
research is currently required to shed light on the exact molecular
switches that control the processes in the histohematic barriers
of the gut and brain (Welcome, 2019). Even less information
exists regarding the role of Se in these processes. There was
a report that Se uptake (as selenite) to the brain increased in
lipopolysaccharide treated female mice, whereas in males, no
increased BBB permeability for selenite was observed under such
conditions (Minami et al., 2002). The sex-specific phenotype in
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Se metabolism is rather well-described – the reader is referred
to the review by Seale et al. (2018b). Additionally, Se treatment
(100 nmol/L) was shown to inhibit glucose-induced expression of
adhesion molecules in the human umbilical vein endothelial cells
(Zheng et al., 2008); however, the research in brain endothelium
is still required to evaluate the role of Se in cell adhesion in BBB
and BCB. Oztas et al. (2007) reported that sodium selenite (4 ppm
in rat dams drinking water) and vitamin E supplementation had
a beneficial effect on BBB integrity in the rat pups. However, the
studies on the effect of dietary Se and/or selenoprotein expression
on, e.g., tight junction protein expression or systemic in vivo
research on Se/selenoprotein in BBB and BCB permeability are
currently absent, to the best of the author’s knowledge.

CONCLUSION AND PERSPECTIVES

The understanding of brain Se transport has considerably
improved, first of all, over the past two decades. The primary
SELENOP/LRP8-dependent mechanism of Se entering the brain
is rather well described. However, even in this respect, there
are still some gaps remaining. For instance, ApoE, sharing the
brain uptake receptor with SELENOP, appears to be important for
the regulation of tight junction integrity at the BBB (Blanchette
and Daneman, 2015). This is tempting to speculate on possible
interplay, but such speculations require a further warrant,
especially in vivo research.

Another currently understudied and important aspect of Se
interplay with BBB and BCB may be accomplished through
immune and inflammatory pathways. Individual selenoproteins
are known to be involved in regulating inflammation and
immunity. Se deficiency negatively impacts immune cells during
activation, differentiation, and proliferation through redox
signaling, oxidative burst, calcium flux, and the subsequent
effector functions of immune cells (Huang et al., 2012; Avery and
Hoffmann, 2018; Toledo et al., 2020). For instance, the potential
inhibition of the nuclear factor kappa-B (NFκB) signaling
pathway by Se and selenocompounds is often considered
(Santamaría et al., 2005; Vunta et al., 2007; Duntas, 2009;
Gholami et al., 2015). Importantly, Dreher et al. (1997)
demonstrated in vitro that human SELENOP gene’s promoter
was cytokine responsive. Consequently, inflammatory processes
may affect SELENOP production by the liver thus influencing
brain Se uptake.

Se metabolism is known to be affected by sex (Schomburg,
2016; Seale et al., 2018b). On the other hand, common
neurological diseases, e.g., Alzheimer’s disease have pronounced
both marked sex-dependency (Ferretti et al., 2018) and
involvement in the BBB decline (Zenaro et al., 2017).
Additionally, studies in mice have shown higher liver and kidney
expression of Selenop in females than that in males (Schomburg
et al., 2007), so SELENOP/LRP8-brain Se uptake pathway may
also exert sex-dependence. Thus, another aspect for future
research of Se at the brain barriers may be related to improving
our understanding on sex-related differences, including the
effects of dietary Se, selenoproteins, and selenometabolites on
permeability and function of BBB, BCB as well as gut-brain axis

and brain immunity. The same corresponds to the effect of age
and aging on the brain barrier functions and the related effects of
Se and selenoproteins (Huang et al., 2012).

Many studies indicate the critical importance of the exact
chemical speciation of essential trace elements (Templeton et al.,
2000) in determining their biological activity (Michalke et al.,
2018). For instance, in post mortem studies in the human brain
from Alzheimer’s disease patients, it was demonstrated that
the Se distribution pattern in the brain is seriously distorted
(Bellinger et al., 2008; Rueli et al., 2015). SELENOP was shown
to be co-localized with Alzheimer’s disease brain tissue lesions –
Aβ plaques and neurofibrillary tangles (Bellinger et al., 2008).
Moreover, in a further study of the same group, the increased
release of SELENOP from the choroid plexus to the CSF in
Alzheimer’s disease patients was reported (Rueli et al., 2015).
Speciation studies in CSF demonstrated that exposure of the
brain tissue to hexavalent Se may be involved in Alzheimer’s
(Vinceti et al., 2017a, 2019) or amyotrophic lateral sclerosis
pathology (Vinceti et al., 2013b; Mandrioli et al., 2017; Violi
et al., 2020). Unfortunately, the exact molecular pathways of
Se in the neurodegenerative processes, including the transport
through the neural barrier endothelia have only been studied
scarcely. The diverse biological activities of Se urgently require
systematic studies concerning its behavior at the BBB and
BCB and its role in maintaining barrier function and integrity.
The investigations on in vitro BBB or BCB models, analogous
to those published by Bornhorst et al. (2012) and Müller
et al. (2018) for other elements could help to further clarify
barrier processes regarding Se and seleno-species. Mapping of
brain-barrier regions with laser ablation inductively coupled
plasma mass spectrometry (LA-ICP-MS) technology for Se in
combination with microscopy and histology is encouraged to
support this interesting research field. Recent technological
advances in analytical science are now enabling the study
of Se transport, its spatial and chemical distribution at an
unprecedented level of detail. Finally, the question of Se efflux
from the brain is not properly addressed. It should be noted
that uptake of Se into the brain compartment without a
balanced Se-discharge mechanism could finally lead to local,
brain-compartment related Se-overexposure. In contrast to this
necessary balance, there is a considerable misbalance between the
studies concerning Se entering the brain or particular brain cells
and these on Se leaving the CNS. Along with thorough literature
research on studies about Se-efflux from brain compartment
no references were found. Although similar mechanisms may
be involved in Se discharge from the brain, i.e., involving
SELENOP and minor low molecular weight Se-metabolites, there
are no relevant studies supporting this notion, to the best of
the authors’ knowledge. That misbalance should be addressed in
future research.
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