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Intact perception but abnormal 
orientation towards face-like 
objects in young children with ASD
Quentin Guillon1, Bernadette Rogé1,2, Mohammad H. Afzali1, Sophie Baduel1, Jeanne Kruck1 
& Nouchine Hadjikhani1,3,4

There is ample behavioral evidence of diminished orientation towards faces as well as the presence 
of face perception impairments in autism spectrum disorder (ASD), but the underlying mechanisms 
of these deficits are still unclear. We used face-like object stimuli that have been shown to evoke 
pareidolia in typically developing (TD) individuals to test the effect of a global face-like configuration 
on orientation and perceptual processes in young children with ASD and age-matched TD controls. 
We show that TD children were more likely to look first towards upright face-like objects than children 
with ASD, showing that a global face-like configuration elicit a stronger orientation bias in TD children 
as compared to children with ASD. However, once they were looking at the stimuli, both groups spent 
more time exploring the upright face-like object, suggesting that they both perceived it as a face. Our 
results are in agreement with abnormal social orienting in ASD, possibly due to an abnormal tuning of 
the subcortical pathway, leading to poor orienting and attention towards faces. Our results also indicate 
that young children with ASD can perceive a generic face holistically, such as face-like objects, further 
demonstrating holistic processing of faces in ASD.

Face detection is an automatic, rapid and subconscious process, considered as a core component of the social 
perceptual system subtending social behaviors1. Faces can even be perceived in non-face stimuli, such as grilled 
toasts, clouds or landscapes (i.e. an illusory detection termed pareidolia)2. Detecting faces in non-face stimuli may 
have strong adaptive values. From an evolutionary point of view, the cost of erroneously detect a face in non-face 
stimuli might indeed be smaller than the one associated with failing to detect other’s face in the environment3. 
Furthermore, many studies demonstrated that newborns look longer and orient more frequently towards faces 
and face-like patterns rather than stimuli of similar complexity, suggesting a predisposition to detect, orient and 
attend to visual stimuli that most likely display a face4–6.

In the present study, we asked whether young children with Autism Spectrum Disorder (ASD) could orient to 
and perceive a face in non-face stimuli on the basis of a global face-like configuration (i.e. two eyes, above a nose 
which is above a mouth, also termed ‘first-order relational information’, see7).

Famous examples of non-face stimuli that can be perceived as face-like (referred to hereafter as ‘pareidolic 
faces’) are Mooney and Arcimboldo images8–17. Mooney and Arcimboldo images do not contain elementary facial 
parts but can still be perceived as a face due to the global face-like configuration formed by their parts. However, 
when presented upside down, pareidolic faces are no longer perceived as faces, because inversion disrupts the 
global face-like configuration. Furthermore, the perception of a face in these stimuli is independent of the identi-
fication of the local parts. For instance, Moscovitch et al.13 reported the case of a visual agnostic patient who was 
impaired at identifying the local elements in Arcimboldo images (e.g. fruits, vegetables) though being still able to 
perceive the face. From a developmental point of view, the ability to perceive faces in these stimuli emerges early 
in the course of development. Kobayashi et al.14 found that 7–8 month-olds infants were able to perceive faces in 
Arcimboldo images. In addition, electrophysiological and functional neuroimaging studies have shown that the 
perception of pareidolic faces is hardwired in the human brain and is accompanied by typical face-related cortical 
activity (e.g.9,12,15–17). For instance, Hadjikhani et al.15 found that face-like objects (FLOs) evoked an early signal at 
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170 ms in the ventral fusiform cortex at a time and location similar to that evoked by real faces. Further evidence 
comes from an event-related fMRI study using Mooney and Arcimboldo images9: in that study, the categoriza-
tion of a Mooney or Arcimboldo image as a face activated primarily the right fusiform faces area (FFA). Taken 
together, these results suggest that the ability to perceive faces in non-face stimuli cannot be attributed to a later 
cognitive reinterpretation process of the global face-like configuration.

The fact that non-face stimuli can be as easily perceived as faces solely on the basis of a global face-like config-
uration has been regarded as the most compelling evidence for a holistic/configural view of face perception9–12. 
According to this view, faces are processed as integrated wholes (referred to hereafter as ‘holistic/configural pro-
cessing’) rather than as a collection of independent parts18,19. Two levels of holistic/configural processing can 
be distinguished9,20: one that allows the categorization of a given stimulus as a face based on a basic, coarse, 
representation of a face and a second stage that allows face individualization based on a more fine grained rep-
resentation of the whole face. In the present study, we focus specifically on the former one.

In populations known to display deficits in face perception, the use of pareidolic faces may help to further 
understand the nature of their impairments with faces9,13,20. More specifically for individuals with ASD, the use of 
pareidolic faces further provides the advantage of studying face perception without being confounded by social 
factors necessarily present in real faces, notably the eyes, which have been showed to elicit an increased physio-
logical response (e.g.21–24).

ASD is a neurodevelopmental condition marked by persistent deficits in socio-communicative domains 
together with the presence of restricted and repetitive patterns of behavior, interests or activities25. The study of 
face perception in this population is theoretically grounded by behavioral evidence of diminished orientation 
towards faces, impaired eye contact, as well as by a range of difficulties in face recognition and discrimination 
tasks (e.g.26,27). However, although impairments with faces are well documented in ASD, the nature of these 
impairments is still poorly understood and remains a topic of debate26–32.

According to one view, deficit in face perception in ASD stem from a perceptual origin32–34. This perceptual 
account posits that individuals with ASD process faces using a different strategy, based on an independent anal-
ysis of face parts. Whereas typically developing individuals (TD) process faces holistically, individuals with ASD 
would preferentially process the local facial features rather than the global configuration of faces. Support for this 
view comes from early findings showing better performance at recognizing isolated facial features and inverted 
faces35,36, as well as superior processing of face parts37. Studies manipulating spatial frequencies have also been 
taken as evidence for a locally oriented analysis of faces in ASD. Several of these studies reported a bias towards 
high spatial frequencies, which are thought to convey local rather than global information38,39. Importantly, this 
perceptual account of face perception deficit in ASD does not postulate a deficit of holistic/configural processing 
of faces in ASD. Rather, it is assumed that individuals with ASD are biased towards a part-based analysis33,34. As 
a corollary, it is expected that individuals with ASD outperformed TD individuals in tasks where it is advanta-
geous to rely on local information. However, in tasks involving a global representation, individuals with ASD 
are thought to display inferior performance. According to this view, we might therefore postulate that young 
children with ASD would be impaired at perceiving faces in non-face stimuli on the basis of a global face-like 
configuration.

However, this analytical view of face perception in ASD has been challenged by many. In their literature 
review, Weigelt et al.26 noted that in the majority of studies, individuals with ASD are found to be sensitive to face 
manipulations known to probe holistic/configural processing. They noted that 12 out of 14 studies that manip-
ulated face orientation evidenced a significant face inversion effect in individuals with ASD (e.g.37,40). Further 
evidence comes from studies demonstrating the presence of the composite face41 and part-whole42–44 effect in 
ASD, as well as intact sensitivity to the Thatcher illusion24,45,46. Moreover, several fMRI studies of face percep-
tion in ASD found normal FFA activation when gaze patterns and attention to faces, and notably to the eyes, 
were controlled24,47–49. Rather than being perceptual in nature, some have proposed that face-related impair-
ments in ASD would primarily stem from an eye-avoidance strategy resulting from the eye region of the face 
being perceived as socially threatening27. Diminished eye fixation is among the most frequently reported finding 
in eye-tracking studies50–52 and electrodermal studies found greater skin conductance in response to direct eye 
contact in ASD21,22. Furthermore, several fMRI studies reported hyperactivation of the subcortical face processing 
pathway when individuals with ASD were cued to look into the eyes24 or were presented fearful faces gazing at 
them23. Dalton et al.34 have also demonstrated a positive correlation between amygdala activation and time spent 
in the eyes region in individuals with ASD. According to this last view, if indeed, individuals with ASD process 
face holistically, we might therefore expect intact perception of faces in non face-stimuli on the basis of a face-like 
configuration.

Whether individuals with ASD perceive faces in non-face stimuli has recently been investigated in high func-
tioning adolescents53. In a first experiment, participants were asked to rate the face-likeness of objects on a Likert 
scale. The ratings of adolescents with ASD were similar to those of TD adolescents: objects that were rated as 
highly face-like were the same across groups. In a second experiment, the authors studied ERP responses to 
face-like objects (FLOs) and non-FLOs and found a face-likeness effect on the N170 amplitudes in both groups. 
Altogether, these results suggest that high functioning adolescents with ASD are as sensitive to pareidolic faces 
as TD individuals.

In the present study, we explored the perception of pareidolic faces in preschoolers with ASD using a pref-
erential looking task to investigate orientation and attention maintenance towards upright FLOs. We presented 
upright FLOs and their inverted (upside down) version side by side. Because inversion disrupts the global 
face-like configuration, inverted FLOs are usually not perceived as face-like. Initial visual orientation was meas-
ured as the direction of the first fixation. We hypothesized that if the global face-like configuration had an effect 
on initial visual orientation, then children would be more likely to direct their first fixation towards upright rather 
than inverted FLOs. Attention maintenance was measured as the time spent looking at upright vs. inverted FLOs. 
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We hypothesized that if children were sensitive to the global face-like configuration of upright FLOs, they would 
look longer at upright vs. inverted FLOs. Conversely, if children were not sensitive to the face-likeness of upright 
FLOs, we predicted that FLOs orientation would have no effect on looking time.

Results
General and generalized mixed-effects models were used to reveal the main effect of FLOs orientation, group and 
their interaction; verbal and non-verbal mental ages were taken into consideration in every step. In terms of total 
fixation time, the mixed-effects model revealed a significant effect of FLOs orientation, indicating that total fixa-
tion time for upright stimuli were significantly longer, z =  2.02, p <  .05, β  =  0.19 (Table 1). This effect is observed 
in both groups as the effects of group, and their interactions were non-significant. To further characterize looking 
time between upright and inverted FLOs for each group, thereby probing the effect of face-likeness in maintaining 
attention at the early stage of processing, we computed the estimated mean first visit duration of each FLO (i.e. 
the amount of looking time on FLOs, the first time they are looked at). The mixed-effects model revealed a sig-
nificant effect of FLOs orientation, indicating that first visit duration for upright FLOs were significantly longer, 
z =  1.98, p <  .05, β  =  0.14 (Table 1). Again, this effect is observed in both groups as the effects of group, and their 
interactions were non-significant.

In terms of the probability of directing the first fixation towards upright FLOs, generalized mixed-effects 
model revealed a significant main effect of group indicating that the probability of looking first towards upright 
FLOs is significantly higher in the TD group (estimated probability =  0.57, log it =  0.28, SE =  0.10), compared 
to the ASD group (estimated probability =  0.45, log it =  − 0.22, SE =  0.12), z =  2.43, p <  .05, OR =  1.59 (Fig. 1).

To investigate the robustness of our results, given the discrepancy between the numbers of participants in 
each group (resulting from the exclusion of four participants with ASD, see Methods), we reanalyzed our data, 
removing six TD children, in the way that the variability in the control group is maximized (so the probability of a 
type I error is minimized). This had no effect on the level of significance for any effects. Generalized mixed-effects 
model revealed a significant main effect of group on the probability of directing the first fixation towards upright 
FLOs, z =  2.35, p <  .05, OR =  1.68. Mixed-effects models revealed a significant effect of FLOs orientation for the 
total fixation time, z =  2.91, p <  .01, β  =  0.23, and for the first visit duration, z =  2.07, p <  .05, β  =  0.16.

Discussion
In the current study we asked whether young children with ASD were able to orient to and perceive a face in 
non-face stimuli on the basis of a global face-like configuration. First, we studied orientation towards upright 
FLOs measuring the direction of the first fixation. We found a behavioral dissociation between the two groups, 
showing that TD children were more likely to direct their first fixation towards upright FLOs than young children 

ASD TD

Upright Inverted Upright Inverted

Total fixation 
time (ms) 2056 (75) 1774 (55) 2070 (71) 1879 (73)

First visit 
duration 
(ms)

1252 (93) 1110 (95) 1303 (74) 1170 (80)

Table 1.  Estimated means and standard errors for total fixation time and first visit duration for upright 
and inverted FLOs by group.

Figure 1. Probability of directing the first fixation towards upright FLOs in TD and ASD, *p < .05. 
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with ASD. Second, we measured looking times on upright and inverted FLOs and found that both groups looked 
significantly longer at upright vs. inverted FLOs. This result was found for the total looking time and the first visit 
duration. We will discuss these findings and their implications in turn.

In a context where faces are not presented centrally, they need to be (1) detected parafoveally, and (2) oriented 
towards in order for normal face processing to occur54. This ‘parafoveal detection’ is thought to be mainly sub-
served by a rapid and automatic subcortical neural pathway, including the superior colliculus, the pulvinar com-
plex, and the amygdala4,5. In the first months of life, the detection of faces would automatically trigger preferential 
orienting towards them at a time when it is difficult to infants to select relevant information in their environment, 
thereby ensuring the proper development of specialized face processing and social brain networks5,55. However, 
with the development of attention control, these two different, yet closely linked, processes would dissociate. It is 
important to note that although the existence of a subcortical pathway has been disputed56, there is mounting evi-
dence in the recent years to support the existence of this pathway both at the anatomical and functional level5,57.

Our analysis of the direction of the first fixation revealed that children with ASD were less likely than controls 
to detect and orient first towards upright FLOs. This result somewhat echoes findings of diminished orientation 
towards faces in ASD emerging at around 12 months of age (e.g.58,59). Some have proposed that a poor orientation 
towards faces may be caused by an innate deficit of the subcortical pathway4. However, a primary deficit of this 
neural pathway in ASD has recently been questioned60. Prospective studies of infants at high-risk for ASD indi-
cate that within the first six months of life those who later develop ASD show typical spontaneous orienting and 
engagement with faces and eyes59–62. Notably, Jones and Klin62 established that at 2 months, infants at high-risk 
later diagnosed with ASD looked more at the eyes than TD infants. Our results showing reduced orientation 
may reflect a delay in maturation of the face processing network in ASD (e.g.63), as both Akechi et al.64 and Shah 
et al.65 showed that in older individuals with ASD there was a preferential detection of simple face-like stimuli 
(protoface). Note however that these studies investigated conscious awareness and covert orienting respectively 
while we studied overt orienting in the present study. Differences in outcome measures could also be a reason 
for the discrepancies in findings. Furthermore, as stated in the introduction, there is also evidence for an abnor-
mal hyperactivation of the subcortical pathway in ASD when participants are cued to look into the eyes24 or are 
presented fearful faces gazing at them23. In contrast, other studies have reported that stimuli known to engage 
subcortical processes, averted eyes in a fearful face66 and fearful bodies67 , failed to activate the subcortical path-
way in ASD24,68. Altogether these results may point to an abnormal tuning of the subcortical pathway in ASD, 
which under certain circumstances may lead to typical responses (e.g. Akechi et al.64, Shah et al.65). We thus agree 
with the view that a primary deficit of this neural pathway is unlikely in ASD. We nevertheless postulate that an 
abnormal tuning of the subcortical pathway in ASD may strongly interfere with orientation while leaving detec-
tion rather spared. Interestingly, Johnson et al.5 also discussed the possibility that eye contact processing and face 
processing in the subcortical pathway may be distinct processes. Further studies need to address the integrity of 
the subcortical face-processing pathway in ASD and its neurodevelopmental aspect as well as how and to what 
extent it interacts with attention control processes.

Our results also revealed a preference for upright FLOs in both groups. This indicates that young children with 
ASD, like TD controls, were sensitive to the global face-like configuration of upright FLOs. This finding extends 
the previous report of intact FLOs perception in high functioning adolescents with ASD53 in two ways. First, we 
demonstrate that even young children with ASD likely perceive a face in non-face objects on the basis of a global 
face-like configuration. Second, we also demonstrate that this face perception occurs spontaneously in ASD, with-
out being explicitly cued, further confirming the view that perceiving faces in non-face stimuli relies on an early 
integrative process of the global face-like configuration. These findings therefore add to the evidence of holistic/
configural processing of faces in ASD26.

According to the perceptual hypothesis of face perception in ASD, it was expected that FLOs orientation 
would have no effect on looking time in young children with ASD. This was not the case, further confirming that 
a bias towards local elements is unlikely to be the leading cause of abnormal face perception in ASD26,27. Rather, 
we agree with the view that impairments with faces in ASD primarily stem from an eye avoidance strategy result-
ing from an increased physiological response to the eyes27. Although this strategy can be regarded as adaptive 
(in the sense that it would decrease the overall level of arousal), we would like to argue that, without preventing 
holistic/configural processing of faces, this strategy nevertheless interferes with fine-grained holistic processing 
of individual faces. More specifically, it is likely that this eye-avoidance strategy lead to a difficulty in integrating 
simultaneously the multiple facial features provided by this region into a single representation, resulting in a 
reduced refined representation of this specific region. This view is in agreement with the evidence of impaired 
fine-grained discrimination of eye gaze direction69 as well as lack of discrimination of subtle changes in spacing 
affecting the eyes but not the mouth43,70.

Perceiving faces in non-face stimuli has been shown to rely primarily on the right hemisphere9,10. This is in 
agreement with the evidence of right hemispheric dominance for face perception (e.g.71–74). This right hemi-
spheric dominance is usually explained by a differential involvement of each hemisphere in face processing75–77: 
while the left hemisphere is thought to be mostly involved in part-based processing, the right hemisphere is 
regarded as being mostly involved in holistic/configural processing. Although studies on hemispheric laterali-
zation for face perception are scarce in ASD, there are a number of evidence that indicate a lack of right hemi-
spheric dominance in processing faces among individuals with ASD. For instance, McPartland et al.78, studying 
ERPs, found a reduced right lateralization effect for faces in ASD compared to TD individuals. In another study, 
Ashwin et al.79 found a reduced bias to the left visual field in a chimeric face task. In addition, a lack of left gaze 
bias in ASD has also been found80,81. Studies of infants at high risk for ASD also reveal atypical right hemispheric 
specialization82–84. For now, these results are difficult to reconcile with a holistic/configural processing of face and 
intact perception of FLOs. However, it is important to keep in mind that the right hemispheric dominance for face 
perception reflects a relative dominance of one hemisphere over the other in early stages of holistic processing 
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rather than absolute differences. Further investigations will be necessary to explore specifically the right hemi-
sphere contribution to the perception of pareidolic faces in ASD and more broadly, to investigate hemispheric 
specialization as well as inter-hemispheric cooperation for face perception.

Pellicano and Burr85 have proposed that individuals with ASD may have attenuated Bayesian priors, leading 
to a different, more accurate perception of the world. The present data add to previous studies demonstrating that 
individuals with ASD are sensitive to pareidolic stimuli, and that for that category at least, they have similar per-
ceptual inferences as TD controls, going against Pellicano and Burr’s assumption. There may however be a special 
status for social stimuli such as faces – that in one hand can be ‘overgeneralized’ as shown here with FLOs, but 
that on the other hand lead to abnormal orienting mechanisms, via an abnormal subcortical pathway linked to 
abnormal action control processes, maybe through alterations of the dopaminergic pathways that in turn reduce 
saliency of these social stimuli86.

In conclusion, using a preferential looking task, we found that young children with ASD were less likely to 
orient first towards upright FLOs than TD, showing that a global face-like configuration initially bias orientation 
of ASD children to a lesser degree than is observed in TD. However, once upright FLOs are foveated, both groups 
look longer at these stimuli, suggesting that they both perceive them as a face. We suggest that abnormal orienta-
tion to upright FLOs may stem from an abnormal tuning of the subcortical pathway that fails to increase attention 
and orientation towards biologically relevant stimuli. Once foveated, however, upright FLOs may elicit activation 
in the classical face-processing network, as suggested by increased looking time for upright vs. inverted stimuli. 
Additional investigations using pareidolic faces are needed. Notably, it will be necessary to further explore the 
neural bases of pareidolic face perception in individuals with ASD. The use of these pareidolic faces bears the 
potential of a better understanding of the integrity, both at a behavioral and neural level, of the face-processing 
routes in ASD.

Methods
Participants. Participants included 17 preschoolers with ASD aged 24–60 months and 23 age-matched TD 
peers (see Table 2). An additional four preschoolers with ASD participated in this study but had to be excluded 
from the analysis because of poor calibration due to fussiness. Children in the TD group had no history of social 
or cognitive developmental concerns and no family history of ASD in first- or second- degree relatives by parent 
report. The diagnosis of ASD was established using algorithm cut-offs on the ADOS (module 1 or 2) and the 
ADI-R and was further confirmed by one expert clinician (BR or JK) based on DSM-5 criteria and a review of all 
available information. To standardize ADOS scores between modules, we also computed a severity score based on 
Gotham et al.87. They had no known specific neurological disorders or genetic conditions.

Given reports regarding the prevalence of developmental delays in preschoolers with ASD (e.g. Chawarska  
et al.88), nonverbal and verbal developmental level were assessed in both groups using the Mullen Scales of Early 
Learning at the time children were included in the study.

An independent samples t-test was performed to test for between-group difference in chronological age, non-
verbal and verbal developmental level. We used a chi-square test of independence to examine difference in sex 
ratio. The ASD group did not differ from the TD group in terms of chronological age, t(38) =  − 0.59, p >  .05 and 
sex ratio, χ2 (1, N =  40) =  2.15, p >  .05. However, as expected, TD children had significantly higher nonverbal, 
t(38) =  − 2.41, p <  .05, and verbal, t(38) =  − 3.17, p <  .005, developmental level (see Table 2).

All parents gave their free and informed consent to the study before testing in accordance with the Declaration 
of Helsinki and all procedures were approved by the local Ethics Committee (CPP). All procedures were carried 
out in accordance with the approved protocol.

Stimuli. Fourteen color photographs of FLOs, from the book “FACES” by François Robert and Jean Robert, 
were used for this study. They were selected from those used in our previous study and they all have been inter-
preted as a face by neurotypical adults in a face-like/no face-like categorization task (for grayscale examples of 
these stimuli see Fig. 1 from Hadjikhani et al.15). The width of the photographs was standardized to 400 pixels 
(10.1° at 60 cm). The heights were adjusted so as not to change original proportions. The resulting heights ranged 
from 354 to 520 pixels (9.0° to 13.2° respectively at 60 cm). The letters and numbers displayed in certain objects 
were digitally removed to prevent any attentional bias towards these categories, which are known to be centers of 
narrow interests in preschoolers with ASD89,90.

Procedure. Stimuli were presented using E-prime 2.0 software (Psychology Software Tools Inc., Pittsburgh, 
PA) on a 17-inch screen (1280 ×  1024 pixels), integrated to a Tobii T120 eye-tracker (Tobii Inc., Stockholm, 

ASD (n = 17) TD (n = 23)

M SD M SD

CA 40.9 12.1 43.5 14.3

NVMA* 34.9 13.0 45.6 14.6

VMA* 29.5 13.8 44.3 15.2

Male/female 14/3 14/9

ADOS severity score 6.6 1.6 N/A

Table 2.  Sample characteristics. ASD, autism spectrum disorder; TD, typical development; CA, chronological 
age in months; NVMA, non-verbal mental age in months; VMA, verbal mental age in months. *p <  0.05.
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Sweden). The pupil and corneal reflections were recorded binocularly at a sampling rate of 60 Hz. The record-
ings were made in room where light levels were kept constant for all participants. All potential distractors were 
removed, and children sat in a car seat adapted and fixed to a chair with adjustable height at a distance of about 
60 cm from the screen. If they so desired, parents could stay with their children, provided they remained behind 
the seat and did not talk to the child during the experiment. Prior to the test, a 5-point calibration was performed. 
The calibration point was a video of 1.5° ×  1.5° representing a bouncing ball accompanied by a sound, displayed 
successively at each of the four corners of the screen and its center. Calibration was repeated until the five calibra-
tion points had sufficient quality as judged by visual inspection of gaze plots provided by the eye tracker.

A preferential-looking task was used for this study (Fig. 2). The experimental session consisted of 14 trials where 
an upright and an inverted FLO were presented bilaterally on the left and right side of the screen. The two FLOs were 
identical except for their orientation. A distance of 8.1° separated the inner side of the two FLOs (i.e. about 4° away 
from the center of the screen). Upright and inverted FLOs were counterbalanced by side such that half the trials had 
upright FLOs on the left and half had them on the right. Each trial began with a 1.5° ×  1.5° central fixation point 
representing a colorful spinning top on a white background. We used an active gaze contingent procedure to ensure 
that upright and inverted FLOs were equidistant from the participants’ view when they appeared on the screen. For 
the FLOs to appear, participants had to look at the spinning top for at least 300 consecutive milliseconds within a 
time window of 5 seconds. Otherwise, the stimuli were displayed after 5 seconds had elapsed, and the trial was not 
included in the analysis. Paired FLOs were presented for 5 seconds in random order, followed by a white screen 
accompanied by a sound varying in length from 500 to 1000 milliseconds to maintain the child’s attention on the task.

Data analysis. Pre-processing of raw gaze data were done in Matlab based on algorithms developed by Wass 
et al.91. Fixations were identified using a velocity threshold of 35° s−1 and with a minimum duration threshold of 
100 milliseconds. Trials were included in subsequent analyses only (1) if children were looking at the central fix-
ation point when they shifted their gaze toward FLOs (upright or inverted) and (2) if a minimum fixation time of 
2100 milliseconds (5th percentile) on FLOs was available for analysis. This threshold was used to target trials with 
insufficient data resulting from either children not being engaged or low robustness (i.e. fragmented contact with 
the eye tracker). Children in the ASD group contributed an average of 10.5 (75%) trials (SD =  1.9) and children in 
the TD group contributed an average of 10.9 (78%) trials (SD =  2.4). An independent samples t-test revealed no 
significant difference between groups, t(38) =  − 0.54 , p >  .05.

A crossed random effect mixed model was used to address our research questions. This statistical approach 
has several advantages such as 1) flexibility in addressing dependencies among observations, 2) possibility of 
simultaneous examination of the main effects and interactions of categorical and continuous variables, 3) flexi-
bility in handling missing data coming from individuals with only partial response92,93. Considering these advan-
tages this approach has become increasingly popular in eye-tracking studies. Mixed effect models provide the 
possibility of both testing the independent variables of interest and their interactions in terms of fixed-effects (in 
our case, group, FLOs orientation and developmental levels) as well as other dependencies in the data structure 
which may affect the outcome in terms of random-effects (in our case, individual participants and individual 
stimuli). All analyses were performed using R software, package lme494.

Figure 2. Description of a trial from the preferential-looking task. Photo by Francois & Jean ROBERT at 
icuc@mac.com

icuc@mac.com
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