
Connecting Prognostic Ligand Receptor Signaling Loops
in Advanced Ovarian Cancer
Kevin H. Eng*, Christina Ruggeri

Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, New York, United States of America

Abstract

Understanding cancer cell signal transduction is a promising lead for uncovering therapeutic targets and building
treatment-specific markers for epithelial ovarian cancer. To brodaly assay the many known transmembrane receptor
systems, previous studies have employed gene expression data measured on high-throughput microarrays. Starting with
the knowledge of validated ligand-receptor pairs (LRPs), these studies postulate that correlation of the two genes implies
functional autocrine signaling. It is our goal to consider the additional weight of evidence that prognosis (progression-free
survival) can bring to prioritize ovarian cancer specific signaling mechanism. We survey three large studies of epithelial
ovarian cancers, with gene expression measurements and clinical information, by modeling survival times both categorically
(long/short survival) and continuously. We use differential correlation and proportional hazards regression to identify sets of
LRPs that are both prognostic and correlated. Of 475 candidate LRPs, 77 show reproducible evidence of correlation; 55 show
differential correlation. Survival models identify 16 LRPs with reproduced, significant interactions. Only two pairs show both
interactions and correlation (PDGFA*PDGFRA and COL1A1*CD44) suggesting that the majority of prognostically useful
LRPs act without positive feedback. We further assess the connectivity of receptors using a Gaussian graphical model
finding one large graph and a number of smaller disconnected networks. These LRPs can be organized into mutually
exclusive signaling clusters suggesting different mechanisms apply to different patients. We conclude that a mix of
autocrine and endocrine LRPs influence prognosis in ovarian cancer, there exists a heterogenous mix of signaling themes
across patients, and we point to a number of novel applications of existing targeted therapies which may benefit ovarian
cancer.
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Background

Signal transduction contains cluses to how abberation in cancer

cells may lead to uncontrolled growth and division. It has been

hypothesized that evidence of functional signal transduction can

be found by examining the mRNA expression-based correlation

structure of known ligand-receptor pairs (LRPs) [1]. If correlation

is found between a pair, one infers that they form a positive-

feedback loop, an autocrine signaling relationship.

A survey in 2006 examined autocrine signaling pairs in

epithelial ovarian cancer (EOC) [2] and confirmed their findings

by immunohistochemical staining. Importantly, this study contin-

ued to develop the idea that differential signaling (a change in

autocrine status) might be associated with prognosis.

Statistical differential correlation or differential co-expression

(DC) techniques have advanced significantly in recent years

allowing for the consideration of multivariate associations beyond

treating LRPs one at a time [3]. For example, a Gaussian

graphical model (GGM) studies the precision matrix (the inverse of

the correlation) to infer signaling and statistical work has

developed techniques for proper false discovery control [4].

Recently, it has been proposed to directly estimate the difference

in precision matrices to study differential signaling [5].

Combining new correlation techniques with the foreknowledge

of candidate signaling pairs derived from protein folding models

and confirmatory biochemical experiments [6], we conjectured

that a multivariate survey may yield better functional understand-

ing of clinically relevant signaling with strong translational

potential. We focus on the Cancer Genome Atlas (TCGA) study

of ovarian cancer [7] as a discovery set paired with two large,

independent studies for validation [8,9]. Our plan is an update of

the study conducted by Castellano et al. (n = 522) in that each of

the new datasets totals over 500 patients and comprise a more

clinically relevant set – a higher percentage of high-grade EOC

and long follow up periods – each conducted as single study

instead of several small studies.

We augment the autocrine signaling hypothesis with similar

correlation-based models of cancer-relevant signal transduction.

Zandi and colleagues reviewed a number of modes of deleterious

signaling in the EGFR family of transmembrane receptors [10],

relevant to expression data are: the overexpression of the ligand,

the overexpression of the receptor, and receptor-receptor crosstalk.
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In addition to DC analysis, we consider whether the interaction

term in a survival regression model can detect an association

directly. Finally, we consider whether prognostic LRPs vary over

time and heterogenously across patients.

Methods

Ligand-Receptor Pair Database
We identified interacting pairs from the Database of Ligand-

Receptor Partners (DLRP, http://dip.doe-mbi.ucla.edu/ [1]),

matching 162 ligands, 131 receptors and 419 paired interactions

on the Affymetrix array. We augmented this set with KEGG

pathways [6] hsa04060 (Cytokines/Chemokines) hsa04512 (Cell

adhesion molecules) and hsa04514 (ECM interactions). In total,

there are 475 pairs (200 ligands, 166 receptors) for consideration

after verifying the ligand/receptor functions (Table S1).

Expression and Clinical Data
Correlation and survival analysis depend on 503 TCGA

samples [7] (Table S2) and 500 validation samples collected from

two studies by Tothill and colleagues [8] and Yoshihara and

colleagues [9]. In each study, measurements are made on tumor

tissue excised during surgery prior to chemotherapy. Expression is

measured on Affymetrix’s HT-HG-U133A and HG-U133 Plus 2.0

arrays (GPL570, GPL571) for the TCGA and Tothill (GSE9899)

studies as well as an Agilent platform (GPL56480). Notably the

TCGA study uses 3 independent platforms, we opted to analyze

just the U133A assay as it was most complete at the time of data

acquisition. We follow the standard RMA [11] algorithm and

further reduce data to gene level measurements by the brightest-

spot rule. Standard gene names are then matched across

platforms.

While TCGA samples are selected for advanced serous EOC,

Tothill’s study contains a representative number of endometriod

subtypes; cases with low maligant potential are omitted. Yoshi-

hara’s dataset are strictly high-grade, high-stage ovarian cancers.

Further, the rate of optimal debulking surgeries is high in the

Yoshihara data set (40% vs. 23% pv0:001, Table 1). Beyond this

difference, these patients all undergo debulking surgery and

adjuvant platinum-based chemotherapy as standard treatment.

We have focused on progression-free survival (PFS) instead of

overall survival as post-recurrence treatments are varied and will

confound the genetic signals apparent in pre-treatment tissue.

Below, we will stratify patients based on PFS to 18 months, the

typical median time to progression for advanced EOC [12]. This is

a clinically meaningful endpoint as patients who progress after this

time will typically be called ‘‘platinum sensitive’’ and will receive a

second regimen of platinum (and taxane) chemotherapy. Standard

treatment for patients who recur before this interval is uncertain.

Models and Hypotheses
We summarize the various LRP models to be tested. Each of

these models will have its own specialized analysis. Throughout

the paper, we will refer to a specific LRP as Ligand*Receptor to

emphasize the pairing.

N Model 1. Correlation of ligand-receptor pair expression

implies autocrine signaling. [1]

N Model 2. Correlation in short PFS subset and lack of or

inverse correlation in long PFS subset implies prognostic

autocrine signaling. [2]

N Model 3. Significant statistical interactions crossed by

correlated sets should imply functionally relevant signaling.

N Model 4. Receptor-Receptor correlation implies receptor

cross-talk or heterodimerization. [10]

Correlation Models
We compute Pearson’s correlation between the expression of

ligand and receptor genes. Significance tests are based on the

statistic t~
ffiffiffiffiffiffiffiffiffiffi
n{2
p r2

1{r2

� �1=2

that follows a t-distribution with n-

2 degrees of freedom [13]. Note that correlation is invariant to

scaling and centering. To account for the effect of outliers, we

performed a sensitivity analysis using Spearman’s rank correlation

Table 1. Clinical differences between discovery and validation studies.

Studies

Discovery Validation

TCGA Tothill Yoshihara

N 503 240 260

Age Mean 59.8 60.2 NA p~0:5626

Stage I, II 24 9 0

III, IV 463 215 260 p~0:731*

Grade 1 4 5 0

2,3 473 218 260 p~0:240**

Cytoreduction Optimal 102 53 103

Suboptimal 348 140 157 pv0:0001+

Follow Up

OS Median 30 28 41.5

PFS Median 13.2 14 19

*excludes Yoshihara data, p-value = .001597 when including Yoshihara data.
+definition of optimal/suboptimal not clearly defined in Yoshihara data.
doi:10.1371/journal.pone.0107193.t001
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(the effect of a small number of outliers will be attenuated). Our

results did not change substantially.

Differential correlation is based on stratifying patients into long

PFS intervals (PFS w18 months) and short PFS intervals. Patients

censored prior to 18 months are excluded from analysis, because

these patients have insufficient followup to positively identify them

into a long or short response; that is, patients who are known to

recur before 18 months are assigned to the short interval group.

There are 227 long PFS intervals and 186 short in the TCGA

study. For each LRP, we computed correlation in each set

separately (Bonferroni pv:05) and classified pairs as ‘‘both’’ if long

and short PFS sets have significant differences. We imagine that

the long PFS subset represents nominal function, so that if a pair is

correlated in the long PFS set and not in the short PFS set, we say

the effect is a ‘‘loss’’ of function. Conversely, if a set is correlated in

the short PFS set and not in the long PFS set we say the effect is a

‘‘gain’’ of deleterious function.

Survival regression models
For each LRP, we regressed PFS on a set of candidate Cox

proportional hazards regression models. In these models, the

Ligand and Receptor may act additively or may interact. We

selected the model maximizing Akaike’s Information Criterion for

each pair, classifying them as simply additive or synergistic if the

interaction term was significant. We considered both scaled and

centered data and expression rescaled to quantiles so that the

hazard ratios have a more consistent interpretation. Again, the

quantile scale reduces the potential effect of outliers.

Partial correlation for receptor crosstalk models
We estimated the Gaussian graphical model (GGM) via the

GeneNet algorithm with edge posterior probability 0.90 [4], again

stratifying patients into long and short PFS subsets. Edges that

appear in both sets are classified as functional but not specific to

prognosis, edges specific to the short survivors are termed ‘‘gain of

function’’ and the edges specific to the long survivors are termed

‘‘loss of function.’’ We harmonized the estimated graphs by

combining them with significant LRPs selected through the DC

analysis. The graphical layout was done by hand aiming to

emphasize clarity and size of the contiguous networks.

Heterogeneity and predictive models
Our analysis so far assumes homogeneity in time and across

patients. We attempt to relax the first by noting that the DC

analysis requires us to pick a timepoint to define long/short PFS.

We vary this threshold across 1 to 60 months and record the

change in DC test statistics. This sensitivity analysis highlights the

range of time for which a particular signaling pair is relevant for

prognosis.

To test homogeneity in signaling pairs across patients, we select

only the LRPs from the DC analysis and run a supervised

clustering algorithm to detect subgroups [14]. This algorithm

clusters patients based on having similar survival models. We

assigned patients to their maximum a posteriori class and computed

an importance score: the absolute value of the expression level of

the interaction multiplied by the cluster specific regression effect

for each patient. Large scores reflect the determination that

signaling in this LRP has a large influence on a particular patient’s

prognosis; small values imply little influence.

Results

Global correlation and active autocrine signaling
Following Graeber and Eisenberg’s hypothesis, we tested for

significant correlation between 475 ligand-receptor pairs and

found 96 significant pairs in the TCGA discovery set (Bonferroni

pv0:05). Of these, 77 are reproduced in our validation set with

significant correlation and concordant direction of effect (Table

S3). Using Spearman’s rank correlation to attenuate the effect of

outliers, 70 of the 77 are robust to extreme values. Three pairs

have significant negative correlation: INHBA*ACVR1B, IN-

HBA*ACVR2B and JAM2*F11R. We note that the magnitude

of the selected correlations is remarkably strong (median

abs(r)~0:288 with 13/77, 16% greater than 0.50) which is

consistent with previous studies [2]. A list of the full list of

significant pairs, their estimated correlation and significance tests

in both data sets is included in supplemental material.

For reference, we considered the distribution of sample

correlations after permuting the relationship between ligand and

receptor. Pairs that were individually significant (p,0.05) had an

average correlation of r~0:17 given the true pairings versus and

average r~0:05 for pairs with significant associations given

random associations (t-test p = 4.4e-11). If we randomly select

475 transcript pairs from any measured gene, the average effect

drops to r~0:018 (t-test p = 2.8e-16). This implies that the average

direction and magnitude of the observed LRPs are unlikely to be

coincidental.

Ligand-receptor correlation stratified by long/short
prognosis

Stratifying patients by long and short PFS, we identify 63 pairs

with significant correlation in one or both subgroups. Of these 55

are found to have a significant gain or loss in the validation set. We

note in Figure 1B, that significant correlations are uniformly

positive consistent with a positive feedback loop. A pair can have

positive or non-significant (n/s) correlation in the (long; short) PFS

strata: we classify them as (positive; n/s), a loss of function; (n/s,

positive), a gain of function; (positive, positive) functional but not

specific to survival.

Using the discovery cohort, the selected set of pairs comprises

39 receptors and 56 ligands (Table S4). The most frequently

represented receptors are FGFR2, FGFR3, and EPHA5, each

with at least 5 connections. While most of the remaining ligands

are specific to one receptor (34/39, 87%), CCL13, CCL7, CCL8,

FGF9, IL15 each form pairs with 3 receptors. With reference to

the findings by Castellano and colleagues [2], we find that in at

least one dataset, ENFB2*EPHA4 had a gain of function,

LIF*IL6ST had loss of function and IL15*IL2RG had non-

specific function. The rest of the pairs had no significant change in

correlation in either dataset.

This set is largely concordant with the analysis using all patients

together. All pairs labelled with correlation in both sets were

previously selected (34 of 63). Three pairs identified by stratified

analysis had no significant marginal correlation

( JAG2*NOTCH3, NGF*NGFR, and INHBC*ACVR2B);

these pairs would have been missed without stratification. A

significant subset of previously identified pairs were not significant

in the stratified analysis (36/96, 38%), likely due to a loss of power

due to splitting the sample, implying they are likely lower

confidence results.

Ligand-receptor interaction in regression models
No single ligand or single receptor was associated with PFS

without considering its paired relationship (Cox regression,

Prognostic Signaling Loops in Ovarian Cancer
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Bonferroni-adjusted likelihood ratio test). We subsequently identify

significant paired ligands and receptors which supports the

hypothesis that signal transduction is associated with survival

versus simple overexpression of the ligand or receptor.

Regressing on the quantiles of expression, 29 pairs have selected

interaction models (Table S5). Of these, 16 have interaction or

additive models in the validation cohort. Four have consistent

directions of effects across datasets; three of these are in the ephrin

family and one is FGF1-FGFR2. If we consider scaled and

centered expression data (Table S6), 9 pairs are again selected and

validated: PDGFA*PDGFRA, COL1A1*CD44, IF-

NA14*IFNAR2, JAG2*NOTCH2, EFNA3*EPHA1,

EFNB3*EPHA4, FGF1*FGFR2, VEGFA*NRP1, and

EREG*ERBB4.

When cross-tabulated by the correlation analysis, most pairs

with significant interaction regression models do not have

marginal correlation between the ligand and receptor. Thus, we

infer the existence of a class of prognostic signaling pairs that

operate without an autocrine feedback loop and we hypothesize

that these ligand-receptor pairs act on prognosis in a typical

endocrine fashion.

Graphical model of receptor crosstalk
We considered whether there is evidence of receptor hetero-

dimerization and crosstalk functioning as a mechanism of

oncogenic signaling. Continuing to assume that correlation implies

signaling cooperativity, we used Gaussian graphical modeling

techniques to estimate the graphical edges between receptors. We

discovered 29 edges (posterior probability w0:90) between the 39

receptors with significant differential associations from the

stratified analysis. These edges are again classified into Loss/

Gain/Non-specific function based on whether they are significant

in the long PFS strata, the short PFS strata or both; the majority

are losses (22/29, 76%) suggesting a breakdown in signaling

coincides with poorer outcomes.

Figure 2 connects the active ligand-receptor pairs to one

another via cooperating receptors. We see that there is one large

network of ephrins, the fibroblast growth factor (FGF), and Notch

signaling that, as noted, tends to lose its coherence in the short PFS

Figure 1. Correlation among ligand-receptor pairs. (A) Correlation in ligand-receptor pairs (LRPs) in the discovery and validation datasets is
largely concordant. (B) Stratified by prognosis, there is evidence of differential correlation. (C) The intersection of correlation and survival regression
model interactions suggests that some LRPs are prognostic but not necessarily correlated (not autocrine).
doi:10.1371/journal.pone.0107193.g001
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strata. There exists a small CCR chemokine network that is

strongly interconnected (13/18 possible edges) indicating both

their promiscuity and potential for a multivariate risk phenotype.

Other small graphs include a PDGFR family and VEGF/PGF

growth factor family. The remaining receptors operate indepen-

dently.

Heterogeneity in prognostic signaling
To study heterogeneity in signaling across patients, we applied a

supervised clustering algorithm to identify prognostic, multivariate

sets of LRPs. It identifies four subsets of patients defined by the

relationship of signaling pairs and PFS visualized in Figure 3.

Patients are arranged by cluster (columns) and LRPs are in rows

where LRPs with significant univariate associations with PFS are

highlighted.

The first cluster of patients has no relation between signaling

and PFS (Cox model p~0:281) and has the worst prognosis (13.9

vs 18.0 months median, p = 1.8e-05) likely reflecting the fact that

this cluster has the highest rate of patients with progressive disease

after primary treatment. The second cluster’s model has a mild

prognostic effect (R2 = 0.254, p = 1.0e-06) with 6 significant pairs

(PDGFA*PDGFRA, COL1A*CD44, COMP*CD36,

FGF9*FGFR2, PGF*FLT1, INHBA*ACVR1). Notably,

these interactions are differentially expressed between the first

and second clusters implying they may be markers for identifying

these patients. The third and fourth clusters are strong models

(R2.0.600, p,1e-06 for both) with 7 and 10 significant, mutually

exclusive LRPs. Patients in the third cluster have significantly

shorter PFS (17.3 months versus 25.1, p = 0.00873). Both the

longest and shortest PFS groups contain similar signaling

pathways; notably the presence of ephrins and FGF differ between

them. The models and their clinical associations are summarized

in Table 2 with a summary of the drug target relevant signals.

Varying the cutpoint for long/short PFS, we considered

whether the DC test statistic was sensitive to a particular time

range for each LRP (Figure 3). While all pairs remain significantly

DC throughout the range of followup, there are two critical

periods where significance drops for several pairs implying they

may be more relevant to early followup: at 8.75 months,

CCL12*CCR7 and CCL8*CCR2; and at 26.63 months,

CCL13*CCR2, CCL7*CCR2, and CCL7*CCR5. Notably,

these times seem to correspond to the median time to initiation of

secondary therapies for platinum resistant and platinum sensitive

cancers suggesting that these cytokines are related to therapy

response.

Discussion

We have extended autocrine signaling loop screening tech-

niques to incorporate survival outcomes more comprehensively.

We confirmed the association of ephrin family receptors [2] as well

as NOTCH signaling [7] with ovarian cancer prognosis. We find a

Figure 2. Multivariate correlation graph. Connecting all of the validated LRPs to one another via estimated receptor cross-talk shows a mix of
small independent graphs and a large single signaling graph. Grey edges are not specific to prognosis; blue edges are gained in poor prognosis
patients.
doi:10.1371/journal.pone.0107193.g002
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class of LRPs showing autocrine-type correlation but with no effect

on survival; these would have been false-positive associations made

in previous studies. Conversely, we find a class of LRPs with

survival associations that have no significant correlation which

implies their nominal function affects prognosis without any

system feedback. In addition, we have shown that mutually

Figure 3. Heterogeneity analysis by patient and in time. (A) Patient heterogeneity implies four prognosis clusterse driven by different LRPs. (B)
Each of these clusters has a distinct prognosis. (C) Over time, there are significant changes in the prognostic association and specific LRPs at about 9
and 27 months, close to the second treatment times for platinum resistant and sensitive patients.
doi:10.1371/journal.pone.0107193.g003
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exclusive sets of LRPs may function in different programs of both

gain and loss of signaling function. The connection between these

LRPs might be made via correlated changes between receptors

and we have estimated the relevant wiring between them.

Drawn from a solely computational analysis, our conclusions

are limited to transcriptome-type studies. Two recent concerns

with these studies are run batch effects and the influence of tumor

purity. We have used multiple large and independent datasets to

reproduce candidate signals to alleviate some of these concerns.

While a natural next step is to verify that these transcripts are

indeed expressed in these tissues, the finding that they are

reproducible using similar probes is promising.

In the context of chemotherapy, assessing the prognostic

importance of signal transduction is an appealing avenue for

biomarker development relevant for ovarian cancers: nearly 75%

of cases eventually fail surgical control with primary platinum/

taxane adjuvant chemotherapy [12] and common second-line

treatments (gemicitabine [15], topotecan [16]) show differences in

immune effect/response.

We have highlighted three particular receptor tyrosine kinases

(VEGFR, PDGFR and FGFR) each of which is targeted

individually or in combination by one of a number of inhibitors

at various stages of approval [17]. Among these compounds are

bevacizumab, targeting VEGF signaling [18]; sunitinib, targeting

VEGF and PDGF; nintedanib targeting all three; and imatinib

targeting just PDGFR. The prevalence of these three signaling

interactions leads us to conjecture that different patients may

respond to therapies targeting different combinations of receptors

which might be inferred from expression data.

We conjecture that the prevalence of immune related LRPs in

our validated sets and the per patient heterogeneity suggest the

potential for an actionable biomarker to distinguish the utility of

chemotherapy or immunotherapy treatment strategies. Further,

the discovery of so many immune interactions is likely to be

representative of the immunogenic nature of ovarian cancers [19]

and of chemotherapy; it is a positive control confirmation for this

correlation-based approach.

Supporting Information

Table S1 List of ligand-receptor pairs.

(CSV)

Table S2 List of TCGA cases used in study.

(CSV)

Table S3 Ligand-receptor correlation in TCGA and
validation studies.

(CSV)

Table S4 Stratified correlation in TCGA and validation
studies.

(CSV)

Table S5 Regression model selection using quantile
scaled data.

(CSV)

Table S6 Regression model selection using scaled and
centered data.

(CSV)

Table 2. Clinical associations for signaling clusters.

Signaling Cluster

Plot Color Black Blue Green Red

n 101 186 106 110

Events 100 95 93 73

PFS Model fit LRT 0.281 0.001* 0.001* 0.001*

R2 0.196 0.254 0.620 0.675

Stage % III/IV 93% 94% 91% 91% p = 0.665

Grade % 3/4 86% 85% 80% 88% p = 0.420

Clinical Complete Response 56 106 62 64

Response Partial Response 13 17 17 12

Stable Disease 2 12 7 5

Progressive Disease 14 8 6 8

Objective Response Rate 68% 66% 75% 69% p = 0.522

Disease Control Rate 70% 73% 81% 74% p = 0.292

OS Median Months 38.3 41.0 44.8 51.9 p = 0.0875

PFS Median Months 13.9 16.6 17.3 25.1 p,0.001

Notable Effects VEGF VEGF Immune VEGF

PDGF PDGF PDGF

Ephrins FGF FGF

Notch TGFb Notch

*: p-value smaller than 0.001.
OS: Overall survival.
PFS: Progression-free survival.
LRT: Likelihood-ratio test.
doi:10.1371/journal.pone.0107193.t002
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