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Abl is a nonreceptor tyrosine kinase and plays an essential role in the modeling and remodeling of F-actin by transducing
extracellular signals. Abl and its paralog, Arg, are unique among the tyrosine kinase family in that they contain an unusual
extended C-terminal half consisting of multiple functional domains. This structural characteristic may underlie the role of Abl
as a mediator of upstream signals to downstream signaling machineries involved in actin dynamics. Indeed, a group of SH3-
containing accessory proteins, or adaptor proteins, have been identified that bind to a proline-rich domain of the C-terminal
portion of Abl and modulate its kinase activity, substrate recognition, and intracellular localization. Moreover, the existence of
signaling cascade and biological outcomes unique to each adaptor protein has been demonstrated. In this paper, we summarize
functional roles and mechanisms of adaptor proteins in Abl-regulated actin dynamics, mainly focusing on a family of adaptor
proteins, Abi. The mechanism of Abl’s activation and downstream signaling mediated by Abi is described in comparison with
those by another adaptor protein, Crk.

1. Introduction

The filamentous (F)-actin cytoskeleton is a fundamental
component of all eukaryotic cells and plays an integral role
in determining cell shape and locomotion. Thus, F-actin
dynamics must be regulated strictly in a spatiotemporal
manner for proper biological output. This is achieved
through functional interaction with other cytoskeletal com-
ponents, intermediate filaments (IFs) and microtubules
(MTs), and hundreds of accessory proteins. Signaling factors
that stimulate F-actin rearrangement such as extracellular
matrices (ECMs) and growth factors are known to cause
an increase in Abl tyrosine kinase activity, followed by the
relocalization of Abl to specific F-actin structures such as
focal adhesion sites, lamellipodia, and membrane ruffles
depending on the stimulus [1, 2], implying a role for Abl
in actin-based processes under the influence of upstream
signals as well as downstream signaling machineries. Indeed,
when the expression of Abl is downregulated or even the

Abl kinase activity is suppressed, the dynamism of F-actin-
based processes becomes impaired [3]. Therefore, tyrosine
phosphorylation of specific substrates and the formation of
actin cytoskeleton-remodeling protein complexes through
Abl appear essential to the rapid and dynamic regulation of
the assembly as well as disassembly of F-actin [4–7].

How can Abl be involved in such diverse aspects of
actin dynamics? Primary as well as higher structural features
may underlie such functional properties. Indeed, the overall
domain structure of the Abl kinases is unique among the
tyrosine kinase family [5, 6]. First, structural and bio-
chemical analyses have revealed that multiple autoinhibitory
mechanisms arise from interactions within the N-terminal
domain structure [8–12]. The formation and disruption of
this structure play a key role in the regulation of the kinase
activity of Abl. Next, the Abl protein is also unique in
that the kinase domain is followed by an unusual extended
carboxyl (C)-terminal region which consists of multiple
functional domains including an actin-binding region and
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Figure 1: Primary structure of Abl kinases. Only isoform 1b of c-Abl and Arg in mice is shown. Both have a “Cap” region at the extreme
N-terminus (Cap, gray), followed by the Src homology-3 domain (SH3, orange), Src homology-2 domain (SH2, blue-green), and catalytic
domain (kinase, purple). However, at the extreme N-terminus, v-Abl contains a viral “Gag” sequence (Gag, green) by replacing the “Cap”
and the SH3, and Bcr-Abl contains the N-terminal portion of the Bcr protein (Bcr, magenta) by replacing the “Cap,” which were generated by
uptake into a retrovirus and chromosomal translocation, respectively. In the C-terminal half, Abl has four P-x-x-P motifs and Arg has three
in the proline-rich region (PR, pink). At the extreme C-terminus, there are actin-binding domains in Abl and Arg (AB, beige). In addition,
Abl has a DNA-binding region (DB, light blue), while Arg has a microtubule-binding domain (MT, blue). Amino acid residues of each gene
in mice are numbered except for the human P210 Bcr-Abl gene [42]. The primary structure of c-Src is shown for comparison [43].

so can directly create and respond to cytoskeletal changes
that affect cell shape and movement [5]. Moreover, recent
studies have revealed the functional role of adaptor proteins
in regulation of the kinase activity and substrate recognition
of Abl through the interaction with specific motifs in this
portion, and the existence of the distinctive signaling cascade
unique to each member in these processes also became
evident, as described below [5, 6].

In this paper, we first introduce structural and func-
tional characteristics of Abl, summarize the outline of
Abl-mediated F-actin signaling cascades, and subsequently
describe the roles and functional modes of an adaptor
protein, Abi, in the process of Abl-mediated actin dynamics,
in comparison with those of another adaptor protein, Crk.

2. Abl Tyrosine Kinase Family

2.1. Origin and Physiological Roles. The Abl gene was first
isolated as a transforming gene in the Abelson murine
leukemia virus (A-MuLV) [13], whose product, v-Abl,
showed tyrosine kinase activity [14], and was subsequently
determined to be an altered form of the cellular Abl
gene (c-abl) [15]. In addition to the activation mech-
anism through incorporation into A-MuLV, a recipro-
cal t(9;22)(q34;q11)chromosomal translocation generates
a chimeric Bcr-Abl protein, with elevated kinase activity,
which has been frequently observed in chronic myeloid
leukemia (CML) and adult acute lymphoblastic leukemia
(ALL) patients [16, 17]. An Abl-related gene (or arg) is a
paralog of c-abl identified by sequence similarity [18]. In
addition to vertebrates, Abl-family genes have been found
in Drosophila melanogaster (dAbl) and Caenorhabditis elegans
(ABL-1) [19, 20].

Abl and Arg seem to have substantial functional over-
lap in vivo. Mice with a disrupted c-abl show defective
development [21, 22] and responsiveness of B cells [23, 24]
and T cells [25]. Some of the surviving c-abl−/− mice
were reported to show osteoporosis, decreased systolic blood

pressure, and cardiac hyperplasia [21, 22, 26]. In contrast,
Arg’s ablation leads only to relatively subtle neuronal defects
[27]. The c-abl−/− arg−/− double mutation, however,
causes embryonic death with abnormalities in neuroep-
ithelial cells and defects in neurulation [27]. In addition,
dysregulation of Abl leads to several pathological states;
recent evidence suggests possible roles of Abl in breast-cancer
invasiveness [28], neurological disorders [27], and microbial
pathogenesis [29, 30].

2.2. Primary Structure and Functional Domains. The overall
domain structure of each Abl family protein is shown in
Figure 1. The SH3, SH2, and kinase domains of c-Abl share
only 52% identity, with 37% identity in the SH3 and SH2
domains, when compared to another nonreceptor tyrosine
kinase, Src [6]. The “Cap” and SH3 domains are replaced
with the viral “Gag” sequence in v-Abl [14], while the
Abl breakpoint position in Bcr-Abl consistently leads to
removal of the “Cap” sequence but retention of the SH3
domain [16]. In the C-terminal half, Abl and Arg contain
proline-x-x-proline (P-x-x-P: x, any amino acid) motifs in
the proline-rich region (PR) which allows interactions with
SH3 domain-containing proteins and a calponin homology
(CH) domain at its extreme C-terminus that binds to both F-
and globular (G)-actin [31–33]. However, there is only 29%
sequence identity between Abl and Arg in the C-terminal half
[18], implying unique functions in each gene. Indeed, Abl
contains a DNA-binding region [34, 35], nuclear localization
signal motifs [35], and a nuclear export signal [36], allowing
it to shuttle between the nucleus and cytosol [37]. Nuclear
Abl plays a role in transcriptional regulation, particularly in
response to DNA damage [38], and activation of the nuclear
pool of Abl can induce apoptosis [39]. Cytoplasmic Abl, on
the other hand, becomes localized to dynamic regions of the
cytoskeleton including membrane ruffles, leading edges, and
F-actin protrusions in response to extracellular stimuli such
as growth factors like EGF and PDGF and cell adhesion [1,
7, 40]. The oncogenic Bcr-Abl and v-Abl proteins, however,
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Figure 2: Signaling upstream and downstream of Abl leading to actin dynamics. Abl kinase activity, localization, and substrate
phosphorylation which are responsible for F-actin dynamics may be modulated by ligand molecules, accessory proteins, phosphorylation
by other kinases, and/or adaptor proteins as described in the text. However, the role of adaptor proteins is mainly highlighted in this paper.
ECM: extracellular matrix.

do not enter the nucleus despite the presence of the nuclear
localization signals [41].

3. Regulatory Mechanism of Abl Kinase Activity

Abl kinase activity is regulated in a variety of ways reflecting
its domain structure, and this regulation may confer on Abl
its role as a mediator of signaling in actin dynamics [4]
(Figure 2). First, structural data and biochemical studies have
revealed multiple autoinhibitory mechanisms that constrain
the enzymatic activity. The N-terminal half consisting of the
“Cap”, SH3, SH2, and kinase domains (residues 1–531 in
c-Abl) represents the minimum segment for this autoregu-
lation [8] in which interaction made by its SH3 and SH2
domains with the distal surface of the kinase domain imposes
a “locked” inactive state [8, 9, 44–46]. Attachment of a
myristoyl group to the N-terminus or phosphorylation in the
“Cap” sequence further stabilizes this inactive conformation
through additional surface interaction [8, 9]. Consequently,
disruption of such structural hindrances leads to an increase
in kinase activity as observed in v-Abl and Bcr-Abl (Figure 2).
Release of the latch and clamp can also be achieved by
binding of either the intracellular domain of activated
integrins or P-x-x-P and/or phosphotyrosine-containing
ligands to the SH3 and SH2 domains [5, 45]. Indeed, when
fibroblasts were plated on fibronectin or treated with an α5
integrin cross-linking antibody, increased Abl kinase activity
was observed [39]. However, full activation of c-Abl kinase
activity requires the phosphorylation of both Y245 and Y412

[47–50]. Y245 resides between P242 and P249, which are
responsible for the intramolecular interaction with the SH3
domain. The phosphorylation of Y245 can be achieved by
the Src family kinases or autophosphorylation reaction in
trans [48, 51] and is presumed to activate Abl kinase through
the disruption of this intramolecular interaction, as has been
observed in the P242E/P249E mutant [52]. Y412, on the
other hand, is located in the activation loop of the kinase
domain and conserved in all tyrosine kinases. Y412 has been
identified as an autophosphorylation site accompanied by
the elevation of intrinsic kinase activity and is presumed to
be responsible for the binding of substrate [1, 6]. Indeed,
such phosphorylated forms have been identified in the Bcr-
Abl and v-Abl proteins [51, 53].

The importance of the C-terminal half in the regulation
of Abl has been clarified in various studies [31–33]. For
example, c-Abl mutant mice lacking the C-terminal portion
but retaining the SH3, SH2, and kinase domains exhibit
the same phenotype as c-abl knockout mice [22]. Moreover,
adaptor proteins consisting of multi-SH3 domains have been
identified to interact with the PR region of the C terminus
in Abl/Arg (Table 1). Also, the binding of F-actin to the AB
region could contribute by inhibiting the kinase activity [54].
Catalytic activity, on the other hand, is required for c-Abl
to modulate the F-actin cytoskeleton, suggesting that there
could be a bidirectional regulatory mechanism between Abl
and F-actin in the process of F-actin recognition and modu-
lation [4]. A contribution of the phosphorylation of Tyr and
Ser residues in this region has also been proposed [6].
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Table 1: Adaptor proteins for c-Abl in mice.

Adaptor protein Target domain in Abl References

c-Crk : CrkI, CrkII Proline-rich motif [55–57]

CrkL Proline-rich motif [58]

Abi1/E3B1 Proline-rich motif/SH3 [59–61]

Abi2/ArgBP1 Proline-rich motif/SH3 [62, 63]

CAP/Ponsin/SH3P12 Proline-rich motif [64, 65]

Vinexin Proline-rich motif [66]

Nck Proline-rich motif [67]

Cbl Proline-rich motif [68]

ArgBP2/Sorbs2 Proline-rich motif [63]

Adaptor proteins that bind Abl and function in Abl-mediated signaling in mouse cells are listed together with the target domain in Abl.

4. Regulation of Abl Kinase by Abi and Crk

4.1. Abi and Crk Families. Nine proteins have been identified
in mice that bind the C-terminal half of Abl and function as
adaptors (Table 1). Among them, the Abi and Crk families
are known to be phosphorylated by Abl and, in turn,
modulate Abl. Consequently, clarification of the mode of
interaction between Abi/Crk and Abl has been a subject of
intensive research in this field [59, 69, 70].

The Abi family proteins, Abi1 and Abi2, were originally
identified as proteins that bind to the P-x-x-P motif in Abl
and negatively modulate its transforming activity [62, 77].
A third member, Abi3, was identified as a new gene in
humans, NESH, possessing an SH3 domain, and was later
incorporated into the Abi family on the basis of amino acid
sequence similarity [78]. However, its binding to Abl has
not been identified. Features of the primary structure of the
Abi family are illustrated in Figure 3(a) [55–57, 71–76]; a
proline-rich region and SH3 domain are common. c-Crk, on
the other hand, is the cellular homolog of v-Crk which was
isolated as a transforming gene of the CT10 retrovirus [55].
c-Crk is expressed as two distinct proteins, CrkI and CrkII,
respectively, by an alternative splicing of c-crk mRNA [56,
57]. CrkI consists of one SH2 and one SH3 domain, while
CrkII has an additional SH3 domain separated by a “spacer
region” of approximately 60 amino acids: SH3 (N) and SH3
(C) (Figure 3(a)). The Crk SH2 domain shows affinity for the
binding motif pY-x-x-P. Indeed, multiple motifs are present
in prominent Crk SH2-binding proteins such as p130Cas
and paxillin [69, 76]. A paralog of Crk, Crk-like (CrkL), has
been identified [58]. CrkL also consists of one SH2 and two
SH3 domains without any catalytic domain (Figure 3(a)) and
interacts with the proline-rich region. Roles of CrkL have
been mostly characterized in Bcr-Abl-positive cells [76, 79].

Abi1-null mice die in the midgestational stage and show
phenotypes similar to those of α4 integrin or VCAM1
knockout mice, implying that Abi1 could be a key mediator
of α4-mediated signaling at the leading edge [80, 81]. Abi1
was actually found to interact and colocalize at the leading
edge of lamellipodia with phosphorylated α4, and deletion
of Abi1 dramatically diminishes spreading of fibroblasts
engineered to express α4 on both VCAM1 and fibronectin
[81]. Mice lacking Abi2 showed abnormal phenotypes in the

eye and brain [82]. On the other hand, Crk knockout mice
exhibited marked growth retardation with poorly developed
a heart and vasculature and died in utero [83]. These results
imply distinctive roles for Abi1, Abi2, and Crk in vivo.

4.2. Regulatory Mechanism of Abl Kinase by Abi and Crk.
Abi1 and Abi2 play a dual role as potential effectors and
regulators of the Abl kinase [70, 84]. Abl is known to
oligomerize through the N-terminal region (509 residues)
depending on its kinase activity, and Abi1 also oligomerizes
and an oligomeric form of Abi1 interacts with the Abl
protein [85]. How the phosphorylation of Abi by Abl
and/or autophosphorylation of Abl play roles in these steps
remains to be elucidated. Regarding this, several tyrosine
phosphorylation sites have been identified in Abi1 [86–90].
Among them, Y213 [89] and Y398 [90] were reported to play
a role in the regulation of Abl (Figure 4(a)). Regarding this,
preferred Abl target sites have been identified as I/V/L-Y-x1-5-
P/F using an mRNA display method [91]. When compared,
the flanking amino acid sequences of Y213 (D-Y-M-T-S-P)
lacks an upstream hydrophobic residue, whereas Y398 (I-
Y-D-Y-T-K-D-K) lacks a downstream proline/phenylalanine
residue [92]. Phosphorylation of Y213 was reported to
be involved in the binding to the Abl SH2 domain and
consequently induce downregulation of its catalytic activity
[89]. Phosphorylated Y213 was also shown to interact with
the p85 C-terminal SH2 domain and negatively regulate p85-
dependent macropinocytosis [93]. However, the interaction
of a phosphopeptide with the SH2 domain induces a
conformational change in Abl, increasing the kinase activity
[45, 94]. Furthermore, phosphorylation of Y213 in Abi1 is
seen in several Bcr-Abl-transformed leukemic cell lines [60].
Therefore, the significance of Y213 in the regulation of Abl
awaits further clarification. Y398 in the SH3 domain of Abi1,
on the other hand, was recently identified as another major
site of phosphorylation by Abl [90]. Y398, located in the
RT-loop of the SH3 domain, is highly conserved among
other SH3 domain-containing proteins and presumed to
play a role in the binding of target peptides [95]. Indeed,
the SH3 domain of Abi1 and the proline-rich domain
of Abl were identified as responsible for the interaction
between Abi1 and Abl, leading to the activation of Abl
kinase, whereas disruption of Y398, combined with Y213,
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Figure 3: Domain structure of the Abi and Crk family proteins. (a) Modular domains of the Abi and Crk family proteins in mice are
illustrated. For the Abi family, WAB (light green): WAVE-binding domain, SNARE (grey): Syntax-1 binding domain which is an overlapping
domain of WAB, HHR (red): Hox homology region, SR: serine/threonine-rich region, PP (cyan): polyproline structure, SH3 (orange): SH3
domain [55, 71–75]. For the Crk family, SH2 (blue-green): SH2 domain, SH3 (orange): SH3 (N) and SH (C) domains [56, 57, 76]. Amino
acid residues in each protein are numbered; only isoform 1 for Abi2 and Abi3 is shown. (b) Proteins reported to interact with Abi1 and CrkII
involved in the regulation of Abl-mediated actin dynamics are shown.
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significantly weakens the binding of Abi1 to Abl [90]. Abi2
binds Abl at two sites: one is through the SH3 domain
of Abl and the P-x-x-P motif of Abi2, and the other is
through the P-x-x-P motif of Abl and the Abi2 SH3 domain
[62] (Figure 4(a)). Y324 of Abi2 is predicted as a site of
phosphorylation by Abl based on a conserved flanking amino
acid sequence (E-Y-S-D-P) [96] and is presumed to play a
role in the regulation of Abl kinase activity [62]. However,
since the Y213 and Y398 residues are also conserved in Abi2,
pY213 and/or pY398 could play a role for Abi2 as in the case
of Abi1.

The modulation of Abl kinase by Crk occurs in discrete
steps [84, 97] (Figure 4(b)). The initial and an essential event
is the interaction between the Crk SH3 (N) domain and three
of the four PR motifs of Abl, inducing transactivation of
c-Abl to phosphorylate CrkII at Y221 in the spacer region
[98, 99]. This phosphorylation induces an intramolecular
SH2-pTyr clamp and suppression of the c-Abl kinase activ-
ity as well, resulting in the disassembly of Crk-mediated
signaling complexes and abrogates downstream signaling
[100]. In contrast, v-Crk lacks Y221 and hence is presumed
to take an open structure constitutively [97]. In addition
to Y221, a recent study identified Y251 in the RT loop of
SH3(C) as a second site of phosphorylation by Abl [101].
Y251, when phosphorylated, binds to the Abl SH2 domain
to transactivate Abl, demonstrating a positive regulatory
mechanism by CrkII. In this regard, functional significance
as well as similarity between Y251 in the CrkII SH3(C)
and Y398 in the Abi1 SH3 may be noted, although the
target domain Abl seems to be different. A form of CrkII
phosphorylated at Y251 has been observed in CML cell
lines [101]. Tyrosine phosphorylation of Crk thus can both
positively and negatively regulate Abl kinase activity and
its signaling cascades (Figure 4(b)). The SH2 and SH3 (N)
domains may be required for bridging other cellular proteins
as substrates by Abl.

The interaction of Abi and Crk with Abl is also regulated
by the phosphorylation of Abl by other protein kinases. For
example, the serine/threonine kinase Pak2 phosphorylates
c-Abl at S637 and S638 which reside next to the P-x-x-P motif
[102]. Phosphorylation at these sites weakens the binding of
Abi1, while enhancing the binding of Crk, resulting in an
increase in Abl kinase activity. Taken together, Abi1, Abi2,
and Crk, as adaptor proteins, appear to regulate Abl in
distinctive ways (Figure 4).

5. Signaling Cascades in Abl-Mediated F-Actin
Dynamics in Normal and CML Cells and
Involvement of Abi and Crk

5.1. Abl in Actin Dynamics. Abl transduces extracellular sig-
nals to cytoskeleton actin assembly/disassembly through its
kinase activity. The actin-related protein-2/3 (Arp2/3) com-
plex is a central player in the regulation of both the initiation
of actin polymerization and the organization of the resulting
filaments [103]. Members of the Wiscott-Aldrich syndrome
protein (WASp) family have been identified as a nucleation-
promoting factor (NPF) for the Arp2/3 complex; WASp, N

(neural)-WASp, and three WAVE (WASp-family verprolin-
homologous protein) isoforms, WAVE 1, 2, and 3, are
included in this family [103–105]. They form the nucleation
complex of Rho GTPase-mediated actin polymerization by
binding to the VCA domain of the WASp proteins at the C-
terminus. Functional interaction between Abl and the WASP
family has been observed. Namely, WAVE1 translocates to
the cell membrane upon PDGF stimulation and is found
in a complex containing Abl and other signaling proteins,
inducing plasma membrane ruffling [106]. WAVE2 mediates
actin reorganization by relaying signals from Rac1 to the
Arp2/3 complex, resulting in a lamellipodial protrusion. Abl-
dependent phosphorylation of WAVE2 is necessary for this
process [107]. On the other hand, phosphorylation of N-
WASp at Y256 by Abl is required for shigella-promoted
actin comet tail elongation [72]. This observation indicates
that Abl could regulate N-WASP activity independent of the
activation of the Rho GTPase family.

Mena (mammalian-enabled)/VASP (vasodilator-stim-
ulated phosphoprotein) proteins interact with barbed ends
of actin-filament and permit its elongation by preventing
the capping of the barbed end: the anticapping hypothesis
[108]. Indeed, Mena/VASP proteins colocalize to the tips of
filopodia and lamellipodia and also at focal adhesion sites
[109, 110]. Functional interaction between Ena and Abl was
first identified by genetic experiments in flies in which Ena
functions as a suppressor of lethality associated with zygotic
Abl mutations [111]. Indeed, dAbl can phosphorylate Ena
at several tyrosine residues, reducing its ability to bind to
SH3-domain-containing proteins [112]. In the mammalian
system, Abl can target a single tyrosine residue in Mena
[75], but the significance of this event is unclear. However,
VASP coimmunoprecipitates with Abl in an adhesion-
dependent manner, suggesting the VASP protein complex
functions cooperatively with Abl in F-actin reorganization
[113].

Cells achieve cell-cell adhesion through cadherin recep-
tors which are linked to the actin cytoskeleton through
the catenin complex and are regulated by the Rho GTPase
family [114]. E-cadherin interacts with the Arp2/3 complex
to promote local actin assembly and lamellipodial protrusion
during the formation of early cell-cell adhesion contacts
[115]. Abl plays important roles in this intercellular signaling
as well. Namely, cell-cell adhesion enhances Abl kinase
activity through an as-yet-unknown mechanism, leading to
increased CrkII phosphorylation by Abl, and subsequent Rac
activation through ELMO [116–118]. Conversely, when Abl
kinase activity is lost, it leads to disruption of E-cadherin-
based cell-cell contacts [114, 118].

5.2. Abi and Crk in Actin Dynamics. Adaptor proteins not
only are important for the regulation of Abl as described
above, but also regulate the downstream signaling machiner-
ies leading to acitn dynamics. Abi and Crk proteins bind Abl
and also function as scaffold proteins that permit the assem-
bly of respective multimolecular complexes (Figure 3(b)).
This property confers essential but distinct roles to each
Abi and Crk protein in Abl-mediated actin dynamics.
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Indeed, focal adhesion proteins (e.g., paxillin, p130Cas, and
Crk) and/or proteins found in filopodial structures (e.g.,
DOCK180, Abi, and PSTPIP) are included among the targets
of Abl downstream of integrins [5]. Abi1 is essential for
the stability and integrity of the WAVE complex [119–
121]. In the complex, WAVE1 binds to Abi1 through a
region within WAVE1 WHD and promotes the localization
to the tip of the lamellipodium [73]. On the other hand,
Abi1 interacts directly with the WHD domain of WAVE2
and mediates the assembly of a WAVE2-Abi1-Nap1-PIR121
complex. Similar complexes are observed in Abi2 [118] and
thought to act as an inhibitory complex for WAVE activity
[122, 123]. The Abi1/WAVE2 complex also plays important
roles in F-actin dynamics stimulated by colony-stimulating
factor-1 in dendritic cells [124] and by T-cell receptor at
the T-cell and B-cell contact sites [125]. Regarding this,
Abi1-promoted tyrosine phosphorylation at Y150 of WAVE2
by Abl was reported to be important in the regulation of
membrane ruffling and dendritic morphogenesis [71]. While
the Abi1/WAVE complex plays a role in Rac-dependent
membrane dynamics, the Abi1/N-WASP complex, cooper-
ating with cdc42, regulates actin-based vesicular transport,
EGFR endocytosis, and EGFR and transferrin receptor cell-
surface distribution. Thus, Abi1 is a dual regulator of
WAVE and N-WASp activities in the respective processes
[126].

Furthermore, Abi1 connects Abl and the substrate. Abi1
binds Mena and VASP through the polyproline region of Abi
(Figure 3(b)) and promotes Abl-mediated phosphorylation
at Y296 and Y39, respectively [75, 127]. Phosphorylation

of VASP abrogates its affinity for Zyxin and subsequent
accumulation at focal adhesion sites and modulates leukemic
cell adhesion [127]. Furthermore, treatment with imatinib,
a selective Abl inhibitor, increases the association of Abl
at the lamellipodial cell edge, providing evidence that
imatinib leads to the activated conformational change of
Abl [128]. Thus, activated Abl presumably faces Mena/VASP
and WAVE2 at the lamellipodial tip where Abi1 is localized
and phosphorylates these substrates by an Abi1-bridged
mechanism [127]. While present in the WAVE complex, Abi3
does not promote Abl-mediated phosphorylation, suggesting
differences among Abi family members in the regulation of
Abl [129].

Bcr-Abl-positive leukemic cells exhibit abnormalities in
cell motility, cell adhesion, and integrin function [130].
These characteristic properties are believed to play critical
roles in the progression of CML. Abi1 plays an important
role in these processes through direct interaction between
its SH3 domain and the C-terminal proline-rich sequences
of Bcr-Abl [131]. Knockdown of the expression of Abi1
appeared to suppress Bcr-Abl-induced leukemogenesis in
vivo and also inhibited Bcr-Abl-stimulated actin cytoskeleton
remodeling, MT1-MMP clustering, and cell adhesion and
migration in vitro [132, 133]. Bcr-Abl subsequently induces
tyrosine phosphorylation of Abi1, accompanied by cellular
translocation of the Abi1/WAVE2 complex to a site adjacent
to the membrane, where an F-actin-enriched structure
containing adhesion molecules such as β1 integrin, paxillin,
and vinculin is assembled. Phosphorylation of Abi1 was
reported to enhance the phosphorylation of Mena by Abl,
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accompanying the enhanced adhesion of leukemic cells and
Bcr-Abl transformed cells in vitro [90].

Crk, on the other hand, binds and activates Abl kinase
as described above, inducing increased tyrosine phosphory-
lation of p130Cas [76]. The phosphorylated p130Cas then
binds the Crk SH2 domain, while DOCK180 binds the Crk
SH3 (N) domain (Figure 3(b)), resulting in ternary complex
of p130Cas-Crk-DOCK180, which is sufficient to activate
Rac1 and localize to focal adhesion sites [134]. The formation
of this complex is an important step in the Abl-mediated
actin dynamics through Crk. Paxillin contains two Y-x-x-P
motifs and also binds the SH2 domain of Crk [135]. Paxillin
is a substrate for several tyrosine kinases and functions as a
scaffold to organize signal transduction proteins including α4
integrin into a large complex at focal adhesion sites [136].
These characteristic properties lead to an accumulation of
Crk effectors bound via the Crk SH3 domain at sites of
paxillin abundance. C3G was the first Crk SH3 (N) domain-
binding protein identified. C3G is a guanine nucleotide
releasing Rap1 whose targets have been implicated in cell
proliferation, cytoskeletal reorganization during cell adhe-
sion to ECM, and cell-to-cell contact [114, 118].

While the integrin-induced tyrosine phosphorylation of
paxillin and p130Cas [137, 138] is associated with enhanced
rates of fibroblast spreading and migration, tyrosine phos-
phorylation of Crk may negate these effects by disrupting
the Abl : Crk : paxillin or Abl : Crk : p130Cas complex [139].
This raises the interesting possibility that Abl may both
activate and inactivate cytoskeletal rearrangements at focal
adhesion sites during cell spreading and migration and
thereby attenuate cell migration by modulating cell adhesion
and contractility [140]. Indeed, fibroblasts that are deficient
in Abl migrate faster than wild-type controls, and reconstitu-
tion with Abl slows these cells [141, 142]. These results also
highlight Crk as an important player in Abl-mediated actin
dynamics and cell locomotion.

Finally, upstream signals and downstream signaling
cascades of Abl-mediated actin dynamics are schematically
summarized in Figure 5 in which signaling pathways unique
to each adaptor protein are shown together with the
respective outcomes.
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