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Abstract.  The majority of poultry genetic resources are maintained in situ in living populations. However, in situ conservation 
of poultry genetic resources always carries the risk of loss owing to pathogen outbreaks, genetic problems, breeding cessation, 
or natural disasters. Cryobanking of germplasm in birds has been limited to the use of semen, preventing conservation of 
the W chromosome and mitochondrial DNA. A further challenge is posed by the structure of avian eggs, which restricts 
the cryopreservation of ova and fertilized embryos, a technique widely used for mammalian species. By using a unique 
biological property and accessibility of avian primordial germ cells (PGCs), precursor cells for gametes, which temporally 
circulate in the vasculature during early development, an avian PGC transplantation technique has been established. To date, 
several techniques for PGC manipulation including purification, cryopreservation, depletion, and long-term culture have been 
developed in chickens. PGC transplantation combined with recent advanced PGC manipulation techniques have enabled 
ex situ conservation of poultry genetic resources in their complete form. Here, the updated technologies for avian PGC 
manipulation are introduced, and then the concept of a poultry PGC-bank is proposed by considering the biological properties 
of avian PGCs.
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Cryopreservation of animal germplasm enables sustainable and 
economical maintenance of genetic resources for the livestock 

industry and research. In mammals, an ex situ conservation strategy is 
methodologically possible by integrating key reproductive technolo-
gies such as cryopreservation of semen, ova and embryos, artificial 
insemination, in vitro fertilization, somatic nuclear transfer, and 
embryo transfer. Indeed, these technologies are used not only for 
ex situ preservation in domesticated animals, particularly in cattle, 
and experimental animals, but also for human infertility treatment. 
In the case of oviparous animals like birds, cryopreservation of 
intact embryos is the most simple as well as straightforward ex situ 
conservation strategy. However, in birds, this is impossible at present 
because of the large yolk-laden structure of their eggs. Although 
semen of some poultry such as chicken, goose, duck, and turkey can 
be cryopreserved successfully [1, 2], the post-thaw fertility of poultry 
semen lags behind other species, varying among breeds, lines, or 
individuals [3–5]. In the case of poultry, particularly the chicken, the 
current use of ex situ conservation is only limited to industrially as 
well as commercially valuable breeds or lines through the collection of 
frozen semen. By contrast, noncommercial breeds including indigenous 
breeds are exclusively maintained by in situ populations. However, 

in situ conservation of poultry genetic resources always carries the 
risk of loss owing to unexpected infectious disease outbreaks such 
as highly pathogenic avian influenza, and accidents. In addition to 
these risks, the periodic reproduction of in situ populations makes 
them costly to feed, and requires special facilities including a poultry 
house and farm. Moreover, cryobanking of semen is insufficient as 
an ex situ conservation strategy in birds because genes on the W 
chromosome and mitochondrial DNA cannot be maintained as the 
male is the homogametic (ZZ) sex. As an alternative, avian primordial 
germ cells (PGCs; Fig. 1), the first germ cell population established 
during early development, can be incorporated into the gonads [6] 
and differentiated into functional gametes following transplantation 
to recipient embryos [7, 8]. This technological development of 
avian PGC transplantation provides insight into ex situ conserva-
tion because PGCs enable the capture of the entire genetics of the 
stock. The practicality of the poultry PGC-bank is affected by the 
efficiency of each step of PGC manipulation, and the overall success 
rate in regenerating donor-derived progeny is critical to ensure an 
adequate effective population for genetic restoration. Because of 
the recent development of two innovative techniques for long-term 
culture of chicken PGCs in vitro [9, 10] and constant production of 
sterile chicken recipient embryos enabling the production of only 
donor-derived offspring [11], establishment of poultry PGC-bank 
programs will become more realistic. In this review, I introduce 
the updated technologies for avian PGC manipulation then propose 
the concept of poultry PGC-bank by considering the biological 
properties of avian PGCs.
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Appropriate Timing of PGC Collection and 
Transplantation in Chicken

During early development, PGCs originate in a particular region of 
the embryo that is often located a relatively great distance from where 
individual germ cells will eventually reside. Unlike other species, 
in avian and some reptile embryos, PGCs use blood circulation for 
transport to the gonadal anlage. This unique biological property and 
accessibility of avian PGCs provides an opportunity to collect and 
transplant PGCs [12]. It was first reported in 1993 that transfer of 
chicken PGCs from early embryonic blood to the bloodstream of 
recipient embryos can result in transmission of the donor genotype 
to offspring of recipient chickens [7]. Since then, several research 
groups have attempted to produce germline chimeras using intra-
vascular transplantation of PGCs, particularly in the chicken [8, 9, 
11, 13–22]. Because blood circulation of avian PGCs is transient, 
appropriate timing of their collection and transplantation remain to 
be verified. Although several qualitative descriptions of the migra-
tion of avian PGCs through blood circulation have been reported 
[23–25], there has been very little quantitative observation. Recent 
findings of germline-specific molecular markers such as the chicken 
homologue genes vasa, dead end and dazl enable reliable analysis 
of chicken PGCs [25–27]. Therefore, the distribution and number 
of immunohistochemically stained chicken PGCs using anti-Vasa 
antibody were observed to clarify when and where chicken PGCs 
move from the extraembryonic region to the vasculature, and from 
the vasculature to the gonadal anlage [28]. The entrance of PGCs 
from the anterior part of the extra-embryonic region into the vascular 
network starts at stage 10 (Arabic numerals refer to the staging system 
of Hamburger and Hamilton, 1951 [29]) and is completed at stage 13. 
The migration of PGCs to the gonadal anlage begins at stage 15 and 
is completed at stage 17. However, access to developing vasculature 
is technically difficult until a chicken embryo reaches stage 13. In 
addition, the frequency of germline transmission decreases when 

PGCs are transferred to the chicken embryos at stage 17 or later 
[21, 30]. Both male and female PGCs collected from 5- to 7-day-old 
chicken embryos (stages 27–31) also have the ability to differentiate 
into functional gametes following transplantation [31, 32]. Male germ 
cells obtained from adult chicken testes, possibly spermatogenic stem 
cells, retain germline competency after transplantation to recipient 
embryos [33], but their competency seems lower than PGCs. In 
contrast to males, the germline competency of female germ cells 
is readily lost from 15.5 days post-incubation owing to the start of 
meiosis [34]. Taking these into consideration, the appropriate times 
for chicken PGC collection and transplantation are stages 13–14 as 
well as 27–31, and stages 13–16, respectively.

Enrichment of PGCs

Because the PGCs are a very small cell population during early 
development and comprise less than 0.02% of blood cells and 
approximately 2% of gonadal cells [35, 36], transfer of intact 
blood or gonadal cells to recipient embryos results in very low 
efficiency of producing germline chimeric chickens [37]. Recent 
investigations of several cell surface antigens of chicken PGCs such 
as stage-specific embryonic antigen-1 (SSEA-1) and embryonic 
mouse antigen-1 (EMA-1) [38] enabled enrichment of chicken 
PGCs by magnetic–activated cell sorting (MACS) or florescence-
activated cell sorting (FACS) [36, 39]. The QCR1 antibody [40], 
which reacts with an epitope in PGCs of Japanese quail (Coturnix 
japonica) and common pheasant (Phasianus colchicus), but does 
not react with chicken PGCs, is available for PGC purification in 
these species [41, 42]. The antigen-antibody reaction-based system 
allows isolation of PGCs from both blood and gonads. In the future, 
further investigations of cell surface markers of PGCs in several 
avian species other than the chicken, Japanese quail, and common 
pheasant are anticipated. Since avian embryonic blood cells are 
roughly composed of a small number of PGCs and a huge number 
of erythrocytes, two approaches can be used to purify PGCs: one is 
separation of PGCs from erythrocytes by density gradient methods 
using Ficoll or Nycodenz [6, 35], and the other is erythrocyte lysis 
using an ammonium chloride-potassium buffer [43]. Among these, 
the Nycodenz gradient centrifugation method achieves both high 
recovery and purity rates of PGCs in the chicken and Japanese quail 
[35]. In addition to these species, availability of this method for duck 
(Anas platyrhynchos), green pheasant (Phasianus versicolor) and 
common pheasant has been confirmed (Nakamura et al., unpublished 
data). A unique PGC enrichment method from gonadal tissues was 
developed in the chicken using the biological property that PGCs 
are discharged when embryonic gonads are incubated in Dulbecco’s 
phosphate-buffered saline without Ca2+ and Mg2+ D-PBS(–) [44]. This 
is the simplest method currently available to harvest chicken PGCs 
and is potentially applicable in various avian species. In the future, 
further improvement of unstable PGC recovery rate is expected.

Long-term Culture of PGCs

Mammalian PGCs can only be propagated as lineage-restricted 
germ cells for short periods in vitro [45–47]. In 2006, Etches and 
colleagues demonstrated that chicken PGCs can be propagated for 

Fig. 1. Chicken primordial germ cells (PGCs) isolated from early 
embryonic blood. Arrow heads indicate erythrocytes. Scale bar, 
20 μm.
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the long-term in vitro while maintaining lineage specificity and 
germline transmission competency [9]. Chicken PGCs isolated from 
embryonic blood can be expanded in a complex medium containing 
chicken serum, fetal bovine serum (FBS), fibroblast growth factor 
2 (FGF2), and buffalo rat liver (BRL) cell-conditioned medium 
on a feeder of either BRL cells or Sandoz inbred mouse-derived 
thioguanine-resistant and ouabain-resistant (STO) fibroblasts [9]. 
Several research groups revealed that FGF signaling is required for 
chicken PGC proliferation in vitro [18, 48, 49]. A recent study has 
suggested that the membrane-bound form of chicken stem cell factor 
2 (SCF2), but not the secreted form of chicken SCF1, enhanced 
the propagation of chicken PGCs in cooperation with FGF2 [50]. 
However, this ill-defined culture system cannot support efficient 
propagation of female chicken PGCs. More recently, McGrew and 
colleagues defined serum-free, feeder-free, and physio-chemically 
permissive culture conditions for chicken PGCs, ascertaining that 
FGF2, insulin, and activin are sufficient for the propagation of 
chicken PGCs [10]. Furthermore, a lower osmolality condition (250 
mOsm/kg), one of the characteristics of the defined culture system, 
also enabled efficient derivation and propagation of both male and 
female chicken PGCs. Establishment of long-term culture systems 
of chicken PGCs provides the opportunity to significantly amplify 
donor PGCs before cryopreservation [51] as well as to manipulate 
the genome with subsequent cloning [52–54] in a manner similar to 
mouse embryonic stem (ES) cells in the chicken. Further investiga-
tions of culture conditions of non-chicken avian PGCs may help to 
conserve the genetic resources of wild birds ex situ.

Ultra-low Temperature Preservation of PGCs

To data, ultra-low temperature preservation of chicken PGCs has 
been performed using a slow-freezing method. The most widely 
used freezing protocol is cryopreservation of chicken PGCs in 
serum containing media supplemented with 10% dimethylsulfoxide 
(DMSO) as a cryoprotectant at a cooling rate of −1°C/min until 
reaching −80°C. This freezing protocol yields a recovery rate of 
approximately 50%, and over 85% viability of post-thawing chicken 
PGCs [13, 55, 56]. Several comparative studies have examined 
the types of cryoprotectant including their concentrations and the 
cooling rates to investigate a more efficient protocol [22, 55, 57, 
58]. To summarize previous studies, chicken PGCs in a medium 
containing more than 10% serum and either 5–10% DMSO or 
10% ethylene glycol as cryoprotectants at a cooling rate of −2°C/
min result in higher recovery and viability of post-thawed chicken 
PGCs than classic freezing protocols. Commercially available serum 
and DMSO-based cryomedium also results in higher recovery and 
viability of chicken PGCs after thawing than a common freezing 
protocol [55]. Due to its easier availability and higher performance, 
commercial cryomedium particularly CELLBANKER 1 (Nippon 
Zenyaku Kogyo, Koriyama, Japan) has been used to cryopreserve 
PGCs from chicken and quail [30, 59–61]. In contrast to the slow-
freezing method, a vitrification method can theoretically store cells 
both intracellularly and extracellularly by ice-free solidification. 
Although a previous study reported lower recovery and viable rates 
of vitrified PGCs than in frozen-thawed PGCs [56], the vitrification 
method could improve the recovery and viability of chicken PGCs 

after exploration of various vitrifying protocols.

Production of High-grade Germline Chimeras 
Through PGC Transplantation

The ideal host for germ cell transplantation is an infertile recipient. 
Indeed, several infertile animal models such as germ cell-deficient 
mutant mice and triploid fishes have been used widely in germ cell 
transplantation studies to produce only donor-derived sperm or 
eggs [62, 63]. To date, genetic mutants either lacking germ cells 
or with deficient gametogenesis have not been reported in birds. 
ZZZ triploid chickens develop and grow normally but are infertile 
[64]. ZZZ chicken embryos could potentially be used as recipients 
for PGC transplantation, but rarely occur. Thus, partial, if not 
complete, removal of endogenous PGCs prior to transplantation of 
donor PGCs is an effective approach to increase the efficiency of 
donor-derived gametes in recipient chickens. Surgical removal of 
tissues containing PGCs such as blastodermal cells or blood from 
recipient chicken embryos resulted in increased germline chimerism 
[65, 66]. Irradiation of chicken embryos with X-rays or gamma-rays 
resulted in decreased number of endogenous PGCs and thus increased 
the proportion of donor-derived gametes [67, 68]. However these 
methods failed to produce stable high-grade germline of chimeric 
chickens, suggesting recovery of the remaining endogenous PGCs 
after treatment. Busulfan (1,4-butanediol dimethanesulfonate), a 
DNA alkylating agent, is the most commonly used drug for removal 
of endogenous germ cells in mammals. In particular in adult male 
mice, a single intraperitoneal injection of over 40 mg/kg busulfan 
enables constant preparation of recipients lacking endogenous germ 
cells for germ cell transplantation [62, 69, 70]. Although busulfan 
also has sterilization effects on chicken and Japanese quail germ cells 
during development, the degree of germ cell depletion is variable 
owing to less efficient drug delivery [71, 72]. As shown in Fig. 2, 
Nakamura et al. (2008) developed a unique drug delivery method 
by utilizing a biological property of the chicken embryo - it lies on 
the top of the yolk even if the egg is rotated [73]. The principle of 
this method is as follows: a sustainable emulsion containing busulfan 
rapidly rises when it is injected into the yolk then contacts with the 
chicken embryos owing to a lower density than the yolk contents. 
This drug delivery method enabled a depletion of PGCs at a constant 
level. A subsequent study revealed that application of busulfan at an 
early time point could reduce the sterilizing effects of the residual 
drug on donor PGCs [74]. Finally, an experiment was attempted 
to transplant donor chicken PGCs to sterilized recipient embryos 
following administration of busulfan. Of 11 resulting recipients, 
seven produced only donor-derived gametes (99.5% on average of 
total recipients) [11]. As described above, the production efficiency 
of donor-derived gametes was markedly increased using sterile 
recipients. In the future, production of chicken lines where the germ 
cells are completely depleted is required for more efficient production 
of recipient chickens that produce only donor-derived offspring. 
For example, in combination with transgenesis of cultured PGCs 
in vitro, generation of Cre/loxP system-mediated germ cell-specific 
knock-out or ablation avian models via germline chimeras would 
be the best approach.
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Fig. 2. Production of sterilized recipient embryos by removal of endogenous primordial germ cells (PGCs) using a unique drug delivery method and its 
application for PGC transplantation. (A) A sustainable emulsion containing busulfan contacts with the chicken embryos rapidly after injection 
into the yolk. (B) This drug delivery method allowed elimination of PGCs at a constant level. (C) Donor PGCs could repopulate with gonads of 
sterilized recipient embryos after transplantation. (D) Use of sterile recipients enabled efficient production of chickens that produce only donor-
derived offspring. Scale bars, 1 cm (A) and 100 μm (B and C). (Revised: Nakamura et al., 2008; 2010)

Fig. 3. Outline of a poultry PGC-bank program.
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Conclusions and Perspectives on a Potential  
Poultry PGC Bank

In this review, recent technical advances regarding avian PGC 
manipulation for use in poultry PGC-bank programs have been 
introduced. As shown in Fig. 3, the procedures of ex situ conservation 
of poultry genetic resources consist of five steps; 1) collection of 
embryonic tissues containing PGCs from target lines or breeds, 2) 
purification or culture of PGCs, 3) PGC storage in liquid nitrogen, 
4) PGC transplantation to sterilized recipient embryos, and 5) 
recovery of populations by mating of male and female recipients. 
To date, successful long-term culture of PGCs from various chicken 
breeds including indigenous breeds has been reported [9, 18, 22, 
49]. Therefore, at least in the chicken, the major advantage of PGCs 
for use as a source of gene banking is that PGCs obtained from a 
single donor embryo would be amplified significantly in vitro prior 
to cryopreservation. In addition, transplantation of post-thaw PGCs 
to sterile recipients of a commercial layer line would be rapidly and 
significantly multiplied, recovering the population size from only a 
small flock of recipients.

The most important aspect of gene banking is the collection of 
germplasm without losing the present wealth of genetic diversity. 
To recover a population whilst maintaining sustainable genetic 
diversity from the germplasm repository, it will be necessary to 
conserve the germplasm from at least 13 individuals of each sex 
(ideally 25 individuals of each sex) [75]. Thus, the collection of 
PGCs from fertilized embryos obtained from various combinations 
of males and females in each population would be ideal for poultry 
gene banking. From an industrial point of view, cryopreservation 
of PGCs could be used as back-up for commercially or industrially 
important poultry lines or breeds that have been selected for a long 
time in case of they are lost as a consequence of pathogen outbreaks, 
genetic problems, breeding cessation, or natural disasters. Additionally, 
PGC cryobanking enables a dramatic reduction of costs associated 
with maintenance of live birds.

PGC collection sites should be considered in accordance with 
the situation. Collection of PGCs from developing gonads has the 
advantage of recovering a large number of PGCs and ensuring a 
prolonged period for collection. However all embryos which have 
the potential to hatch out under ordinary circumstances must be 
sacrificed for gonadal PGC collection. Therefore, the practical use 
of gonadal PGCs would be restricted if the availability of fertilized 
embryos is not limited, such as the case with industrially as well 
as commercially valuable poultry breeds or lines. However, the 
availability of fertilized embryos in most noncommercial breeds 
such as indigenous, rare and/or endangered breeds is restricted by 
several factors such as small population sizes, low egg production, 
and seasonal breeding. A unique biological property of avian PGCs 
that temporally circulate thorough the vascular system would provide 
the opportunity to combine the reproduction of living birds with 
collection of PGCs. Indeed, of the 88 fertilized embryos of Gifujidori 
used for PGC collection, 12 survived to sexual maturity with normal 
reproductive capacity. Subsequently, six Gifujidori offspring were 
successfully regenerated (6% of total offspring) by mating male and 
female recipient chickens that had received frozen-thawed Gifujidori 
PGCs [59]. In this method, drawing blood from donor embryos 

involves simple windowing procedures. It was also demonstrated 
that this procedure is available for combined preservation of living 
birds with PGCs in Japanese quail, green pheasant, and common 
pheasant (Nakamura et al., unpublished data).

In fish, male germ cells (type A spermatogonia) and female germ 
cells (oogonia) that are transplanted to the opposite sex of recipients 
can differentiate into functional eggs and sperm [63, 76]. Although 
chicken PGCs can differentiate into functional gametes in the gonads 
of opposite sex recipients, the efficiency is very low [77]. Histological 
analysis suggested that female PGCs in male chicken gonads are 
capable of passing through the first and second meiotic divisions, 
but rarely complete spermatid elongation [78]. For gene banking 
purposes, male and female PGCs should be collected separately and 
cryopreserved, as efficient germline transmission of PGCs requires 
that the sex of the donor be matched to the sex of the recipient.

If avian PGCs can differentiate into functional gametes in the gonads 
of xenogeneic recipients, PGC transplantation could be a powerful 
tool for ex situ conservation of wild birds including endangered 
species. In avian species, xenogeneic germline transmission between 
phylogenetically different genera (common pheasant to chicken), 
family (chicken to guinea fowl (Numida meleagris)) or order (duck 
to chicken, and houbara bustard (Chlamydotis undulata) to chicken) 
was reported only in males, but not in females [42, 79–82]. In future, 
detailed histological analysis is needed to evaluate the ability of 
xenogeneic gametogenesis by transfer of donor PGCs carrying a 
reporter gene to sterilized interspecific recipient embryos.

Recently, Nakamura et al. (2013) reported that cryopreservation 
of PGCs and subsequent production of functional gametes following 
transplantation is also feasible in Japanese quail in which the semen 
has not been cryopreserved [61]. More recently, a practical trial 
reported that successful transport of a chicken breed by shipment of 
cryopreserved PGCs using a dry shipper [30]. In such a situation, it 
should be possible to run poultry PGC-bank programs that conduct 
a collection, cryopreservation, depositing, and distribution service. 
Based on the recent technical advances in poultry PGC manipulation 
described here, collection, freezing and storage of PGCs from both 
industrial and indigenous poultry breeds has begun as part of the 
National Institute of Agrobiological Sciences (NIAS) Genebank 
projects (NIAS, Tsukuba, Japan). At present, the NIAS Genebank 
contains 15 chicken breeds, including eight indigenous breeds that are 
designated as natural treasures of Japan (Gifujiori, Hinaidori, Jitokko, 
Koeyoshi, Kurokashiwa, Satsumadori, Toumaru and Yakido), and 
three Japanese quail lines (Nakamura et al., unpublished data). To 
date, successful transplantation of freeze-thawed immature ovarian 
tissues to a juvenile recipient has been performed in the Japanese 
quail [83]. Because of its high production efficiency of donor-derived 
eggs in recipients, immature poultry ovarian tissues could also be a 
source for gene banking of female germplasm. Cryopreservation of 
PGCs together with frozen stocks of semen and immature ovaries 
will ensure preservation of poultry genetic resources economically 
and semi-permanently.

Final Notes

My name means “the bright falcon”. The falcon (Falco peregrinus 
japonensis) is classified as vulnerable (i.e., species facing a high risk 
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of extinction in the wild) by the Japanese Ministry of Environment 
Red List. PGC culture and xenotransplantation technologies might 
save falcons from extinction. I do not know whether this idea can be 
realized, but I intend to establish germ cell manipulation technologies 
that are universally available across species, to allow conservation 
of genetic resources of various animal species.
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