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Abstract

A thorough understanding of sex-independent and sex-specific neurobiological fea-

tures that underlie cognitive abilities in healthy individuals is essential for the study

of neurological illnesses in which males and females differentially experience and

exhibit cognitive impairment. Here, we evaluate sex-independent and sex-specific

relationships between functional connectivity and individual cognitive abilities in

392 healthy young adults (196 males) from the Human Connectome Project. First,

we establish that sex-independent models comparably predict crystallised abilities in

males and females, but only successfully predict fluid abilities in males. Second, we

demonstrate sex-specific models comparably predict crystallised abilities within and

between sexes, and generally fail to predict fluid abilities in either sex. Third, we

reveal that largely overlapping connections between visual, dorsal attention, ventral

attention, and temporal parietal networks are associated with better performance on

crystallised and fluid cognitive tests in males and females, while connections within

visual, somatomotor, and temporal parietal networks are associated with poorer per-

formance. Together, our findings suggest that shared neurobiological features of the

functional connectome underlie crystallised and fluid abilities across the sexes.
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1 | INTRODUCTION

Sex differences in brain-behaviour relationships are widely studied

and controversial in neuroscience. Studies often report contradictory

findings, and many are not replicated. While some studies have found

evidence for sex differences in healthy cognitive functioning

(Camarata & Woodcock, 2006; Irwing & Lynn, 2005; Lynn &

Irwing, 2004), others have reported a lack of differences (Hyde, 2005;

Jäncke, 2018). Similarly, while some studies have found evidence for

sex differences in healthy brain function and structure (Cummings

et al., 2020; De Bellis et al., 2001; R. C. Gur et al., 1999; Ingalhalikar

et al., 2014; Kogler et al., 2016; Ritchie et al., 2018; Rodriguez,

Warkentin, Risberg, & Rosadini, 1988; Scheinost et al., 2015; Weis,

Hodgetts, et al., 2019; Weis, Patil, et al., 2019), others have observed

the opposite (Bishop & Wahlsten, 1997; Eliot, Ahmed, Khan, &

Patel, 2021; Sommer, Aleman, Somers, Boks, & Kahn, 2008). Finally,

while some studies have demonstrated sex differences in the relation-

ship between neural function/structure and cognitive functioning in
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healthy individuals (R. C. Gur & Gur, 2017; Kimura, 2004;

Satterthwaite et al., 2015), others have shown otherwise (Eliot, 2011;

Sommer et al., 2008). It has also been suggested that sex differences

in neural circuitry and/or neurochemistry may reflect compensation

for genetic and/or hormonal differences to ensure that male and

female behaviours are more similar than different, and many of the

contradictory findings may be attributable to differences in sample

sizes, methodology, and publication bias (Eliot et al., 2021). Hence, it

remains to be determined whether males and females have shared or

distinct brain-behaviour relationships.

In recent years, sex differences in cognitive manifestations of var-

ious neurological, neurodevelopmental, and neuropsychiatric illnesses

have become increasingly evident (Han et al., 2012; Irvine, Laws,

Gale, & Kondel, 2012; Laws, Irvine, & Gale, 2016; Subramaniapillai,

Almey, Rajah, & Einstein, 2020). Insight into sex-independent and sex-

specific brain-behaviour relationships in healthy young adults can

enable better understanding of the neurobiological underpinnings of

cognitive deficits within and across sexes, paving the way for the

development and implementation of personalised treatment strate-

gies. In this study, we aim to disentangle sex-specific and sex-

independent brain-behaviour relationships between resting-state

functional connectivity and cognitive abilities in healthy young adults.

Resting-state functional connectivity is defined as the temporal

dependence of the blood-oxygen-level dependent (BOLD) response in

anatomically separate brain regions at rest (Aertsen, Gerstein, Habib, &

Palm, 1989; Friston, Frith, Liddle, & Frackowiak, 1993; M. P. Van Den

Heuvel & Pol, 2010). Many studies have linked functional connectivity

to cognitive functioning (Casey, Galvan, & Hare, 2005; Casey, Giedd, &

Thomas, 2000; Cole, Yarkoni, Repovs, Anticevic, & Braver, 2012;

Moeller, Willmes, & Klein, 2015; Park & Friston, 2013; Seeley

et al., 2007; Spreng, Stevens, Chamberlain, Gilmore, & Schacter, 2010;

M. P. van den Heuvel, Stam, Kahn, & Hulshoff Pol, 2009) and

predicted individual cognitive abilities from functional connectivity

(Chen et al., 2020; Dhamala, Jamison, Jaywant, Dennis, &

Kuceyeski, 2021; He et al., 2020; J. W. Li et al., 2019; Zimmermann,

Griffiths, & McIntosh, 2018). Recent work in this area has shown

global signal regression, or removal of trends in the fMRI signal,

improves prediction accuracy (J. W. Li et al., 2019), machine and deep

learning models perform comparably (He et al., 2020), and shared net-

work features predict scores from distinct cognitive domains (Chen

et al., 2020; Dhamala et al., 2021). These studies aim to capture brain-

behaviour relationships that exist between functional connectivity

and cognitive abilities, but it remains unclear whether these relation-

ships are consistent across the sexes.

Sex differences in functional connectivity have been observed

across distinct populations, including North American children and

adolescents with and without psychiatric illnesses, as well as North

American and German healthy adults (Cummings et al., 2020; Gong,

He, & Evans, 2011; R. C. Gur & Gur, 2017; Kogler et al., 2016;

Satterthwaite et al., 2015; Scheinost et al., 2015; Weis, Hodgetts,

et al., 2019; Zhang, Dougherty, Baum, White, & Michael, 2018). Previ-

ous work in a developmental cohort has shown males exhibit stronger

inter-network connectivity, while females exhibit stronger intra-

network connectivity (Satterthwaite et al., 2015). Extant literature also

suggests hormonal modulation of functional connectivity (Dubol

et al., 2020; Fitzgerald, Pritschet, Santander, Grafton, & Jacobs, 2020;

Hjelmervik, Hausmann, Osnes, Westerhausen, & Specht, 2014;

Pritschet et al., 2020; Weis, Hodgetts, et al., 2019). In terms of func-

tional connectivity features that discriminate sex, two studies identi-

fied that connections within and between frontoparietal and default

mode networks strongly contribute to the predictions (Weis, Patil,

et al., 2019; Zhang et al., 2018). Together, these studies suggest sex

differences exist in functional organisation of the brain, but do not

address whether these differences translate into sex differences in

connectivity-cognition relationships.

A recent study similar to this one investigated differences

between males and females in predictability of individual intelligence

quotient (IQ) and sub-domain cognitive scores using whole-brain

functional connectivity (Jiang, Calhoun, Fan, et al., 2020). Their

individualised prediction integrated feature selection and regression

with a leave-one-out cross validation strategy, resulting in distinct

functional connectivity features being selected for each interaction.

They reported that IQ and other cognitive scores are generally more

predictable in females than they are in males, and the sex-specific

models rely on distinct functional connections to make predictions. A

second study from the same group used a similar approach to predict

IQ in males and females using functional connectivity, cortical thick-

ness, or both (Jiang, Calhoun, Cui, et al., 2020). The reported no differ-

ences in prediction accuracy between males and females but found

that sex-specific models relied on distinct neurobiological correlates.

While these findings suggest the presence of distinct brain-behaviour

relationships across the sexes, their leave-one-out prediction

approach, resulting in distinct features for every iteration, limits the

extent to which we can compare and generalise these results because

the features used are dependent on which subject is left out in the

cross validation. In this current study, we aim to address this concern

and expand upon this work.

Here, we study sex-independent and sex-specific brain-behaviour

relationships between functional connectivity and individual cognitive

abilities in 392 healthy young adults (196 male–female pairs matched

for cognitive composite scores) from the Human Connectome Project

(Van Essen et al., 2013). First, we quantify whether sex-independent

models differ in how accurately they can predict distinct cognitive

abilities from functional connectivity in males and females. Second,

we investigate whether sex-specific models better predict individual

cognitive abilities from functional connectivity within or between

sexes. Third, we evaluate whether shared or sex-specific functional

connectivity features map to cognitive abilities.

2 | METHODS

The methods used here build upon our prior work (Dhamala

et al., 2021) but the analyses presented are novel and aim to identify

shared and sex-specific features that predict cognitive abilities. Our

experimental workflow is shown in Figure 1. The data that support
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the findings of this study are openly available as part of the Human

Connectome Project at https://www.humanconnectome.org/study/

hcp-young-adult/document/1200-subjects-data-release (Van Essen

et al., 2013). Code used to generate the results presented here are

available on GitHub (https://github.com/elvisha/SexSpecificCognitive

Predictions).

F IGURE 1 Experimental workflow. (a) First, we generated individual functional connectivity using Pearson correlation of regional global signal
regressed resting-state functional MRI time series. (b) Second, we compiled cognitive scores for all subjects. The NIH Toolbox Cognition Battery
assesses five cognitive domains using seven tests. The Crystallised Cognition Composite (blue) reflects language (vocabulary, reading decoding).
The Fluid Cognition Composite (green) reflects executive function (cognitive flexibility, inhibitory control and attention), episodic memory,

working memory, and processing speed. The Total Cognition Composite (dotted) combines the Crystallised and Fluid Composite scores. (c) Third,
we predicted each cognitive score from functional connectivity using sex-independent and sex-specific linear ridge regression models. We
randomly shuffled and split the male and female subjects into train (80%) and test (20%) groups. Male and female training subsets were
concatenated for the sex-independent models and kept separate for the sex-specific models. We performed five shuffled iterations of nested
cross validation with three-fold inner and outer loops. The model hyperparameter was optimised in the inner loop and validated in the outer loop.
The median optimised hyperparameter from five iterations of nested cross validation was used to train the final model on the entire (sex-
independent or sex-specific) training set and evaluated on the (sex-independent or sex-specific) test hold-out set. This was repeated for
100 unique train/test splits
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2.1 | Dataset

We used publicly-available high resolution, pre-processed MRI data

from the Human Connectome Project (HCP)—Young Adult S1200

release (Van Essen et al., 2013). MRI data were acquired on a

Siemens Skyra 3T scanner at Washington University in St. Louis.

Acquisitions included T1-weighted and T2-weighted anatomical

images (0.7 mm isotropic), and functional MRI (2.0 mm isotropic,

TR/TE = 720/33.1 ms, 8� multiband acceleration). Functional MRI

were collected with both left–right and right–left phase encoding. We

examined resting-state functional MRI (rfMRI) time series from

196 male–female pairs (n = 392) of unrelated healthy young adults

with four complete rfMRI runs. Male–female pairs were matched for

their crystallised, fluid, and total composite scores to ensure there

were no significant differences in cognitive function (p >.05) between

the two sexes. Although the term gender is used in the HCP Data Dic-

tionary, we use the term sex in this article because the database col-

lected self-reported biological sex information as opposed to gender

identification. We did not verify the self-reported biological sex using

genetic information.

2.2 | Parcellation

We used a subject-specific CoCo439 parcellation that was developed

in-house by combining parts of several atlases. This parcellation

includes 358 (of 360) functionally derived cortical regions from HCP

multi-modal parcellation (MMP; M. F. Glasser et al., 2016; two hippo-

campal regions were excluded as they were included in other subcor-

tical ROIs); 12 anatomically defined subcortical regions derived from

FreeSurfer's aseg.mgz, adjusted by FSL's FIRST tool (Patenaude,

Smith, Kennedy, & Jenkinson, 2011); 12 anatomically defined subcor-

tical nuclei from AAL3v1 (Rolls, Huang, Lin, Feng, & Joliot, 2020);

30 anatomically defined subcortical nuclei from FreeSurfer 7 (Iglesias

et al., 2018; 50 nuclei were merged down to 30 to remove the

smallest nuclei, as with AAL3v1); and 27 anatomically defined cerebel-

lar regions from the SUIT atlas (Diedrichsen, Balsters, Flavell,

Cussans, & Ramnani, 2009). Additional details and corresponding files

for this parcellation are available on GitHub (https://github.com/

kjamison/nemo#parcellations).

2.3 | Functional connectivity extraction

Each subject underwent four gradient-echo EPI resting-state fMRI

(rsfMRI) runs of �15 min each over two sessions. There are 1,200 vol-

umes per scan for a total of 4,800 volumes for each subject over the

four runs. The minimal pre-processing pipeline performed by the HCP

consortium included motion and distortion correction, registration to

subject anatomy and standard MNI space, and automated removal of

noise artefacts by independent components analysis (M. F. Glasser

et al., 2013; Griffanti et al., 2014; Salimi-Khorshidi et al., 2014). We

regressed the global signal and its temporal derivative from each

rsfMRI time series and concatenated the four scans. We then com-

puted the zero lag Pearson correlation between the concatenated

time series from each pair of regions to derive the functional connec-

tivity matrix, which we then Fisher's z-transformed. We used the

vectorised upper triangular of this functional connectivity matrix to

predict cognition.

2.4 | Cognition

The NIH Toolbox Cognition Battery is an extensively validated battery

of neuropsychological tasks (Carlozzi et al., 2017; Gershon

et al., 2013; Heaton et al., 2014; Mungas et al., 2014; Tulsky

et al., 2017; Weintraub et al., 2013, 2014; Zelazo et al., 2014) that

assesses five cognitive domains: language, executive function, epi-

sodic memory, processing speed, and working memory through seven

individual test instruments (Heaton et al., 2014). The specific tasks

include Dimensional Change Card Sort Test, Flanker Inhibitory Con-

trol and Attention Test, Picture Sequence Memory Test, Picture

Vocabulary Test, Oral Reading Recognition Test, List Sorting Working

Memory Test, and Pattern Comparison Processing Speed (Heaton

et al., 2014). Three composite scores are derived from participants'

scores on the NIH Toolbox Cognitive Battery tasks: Crystallised Cog-

nition Composite, Fluid Cognition Composite, and Total Cognition

Composite (Heaton et al., 2014). Crystallised cognition primarily rep-

resents language (vocabulary and reading decoding) abilities, while

fluid cognition represents a wider range of higher-order cognitive pro-

cesses including executive function (cognitive flexibility and inhibitory

control and attention), episodic memory, working memory, and

processing speed. These composite scores are based on initial factor

analysis of the NIH Toolbox Cognition Battery. Specifically, the

Crystallised Cognition Composite comprises the Picture Vocabulary

and Oral Reading Recognition tests and assesses language and verbal

skills. The Fluid Cognition Composite comprises scores on the Dimen-

sional Change Card Sort, Flanker Inhibitory Control and Attention,

Picture Sequence Memory, List Sorting Working Memory, and Pattern

Comparison Processing Speed tests to broadly assess processing

speed, memory, and executive functioning. The Total Cognition Com-

posite combines the Crystallised and Fluid Cognition Composites.

Composite scores tend to be more reliable/stable but do not capture

variability in individual tasks (Heaton et al., 2014). In this study, we

investigated the Crystallised, Fluid, and Total Cognition Composites,

along with the individual scores from the seven tasks

comprising them.

2.5 | Prediction of cognitive performance

We used functional connectivity to predict 10 distinct outputs (three

composite scores and seven task scores). For each prediction, we

trained three distinct models: one sex-independent (trained on both

male and female subjects), and two sex-specific (one trained on males,

and one trained on females). For each model, we randomly shuffled
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and split the male and female subjects into train (80%) and test (20%)

splits. We concatenated the male and female training sets for the sex-

independent models, and kept them separate for the sex-specific

models. We fit a linear ridge regression model on Scikit-learn

(Pedregosa et al., 2011) using the training subset and tuned the

regularisation parameter with five shuffled iterations of nested cross

validation with three-fold inner and outer loops. We optimised the

regularisation parameter in the inner loop and validated it in the outer

loop. We took the median optimised hyperparameters from the five

iterations to generate a single final model. We trained this model on

the entire (sex-independent or sex-specific) training set, extracted fea-

ture weights, and evaluated the model's prediction accuracy and

explained variance on two distinct hold-out test sets: one test set

comprised of male subjects and the other comprised of female sub-

jects. Male and female train and test sets consisted of equal numbers

of subjects. We quantify prediction accuracy as the Pearson correla-

tion between the true and predicted values (J. W. Li et al., 2019). We

repeated this using 100 unique train/test splits to generate a distribu-

tion of performance metrics.

2.6 | Model significance

For each predictive model, we generated a corresponding null distri-

bution to assess model significance as previously described (Dhamala

et al., 2021; Parkes et al., 2021). We permuted the predicted variables

(cognitive score) 25,000 times and then randomly split the data into

train and test sets. For each of these 25,000 permutations, we trained

and tested the model on the permuted data to obtain a null distribu-

tion of model performance. We assessed whether the original model's

performance was significantly non-zero by comparing the prediction

accuracy from each of the original model's 100 train/test splits to the

median prediction accuracy from the null distribution. Specifically, the

p-value for the model's significance is the proportion of 100 original

models that had prediction accuracies less than or equal to the median

performance of the null model. We then corrected the p-values for

multiple comparisons over all models (trained on both sexes, trained

on males only, and trained on females only to predict 10 distinct cog-

nitive scores) and both test subsets (males only and females only)

using the Benjamini-Hochberg False Discovery Rate (q = 0.05) proce-

dure (Benjamini & Hochberg, 1995).

2.7 | Model comparisons

For each cognitive score, our workflow generated two distributions of

100 performance values: the first representing model performance

when evaluated on only male individuals, and the second representing

model performance when evaluated on only female individuals. For

each cognitive score, we compared prediction performance across the

male and female test sets using an exact test of differences

(MacKinnon, 2009).

2.8 | Feature importance

We adjusted feature weights to increase their interpretability as

described in (Haufe et al., 2014). Briefly, for each iteration of a model,

we used the feature weights, W, the covariance of the input variable

(functional connectivity) in the training set, Σx, and the covariance of

the output variable (cognitive score) in the training set, Σy , to extract

the adjusted feature weights, A, as follows:

A¼ΣxWΣ�1
y

We then averaged the adjusted feature weights over the 100 itera-

tions of each model to obtain feature importance matrices. Pairwise

regional feature importances were mapped to the network level

(Figure S1) by assigning each cortical region from the CoCo439

atlas to one of 17 networks from the Yeo 17-network parcellation

(Yeo et al., 2011). Subcortical regions in the CoCo439 atlas were

assigned to a subcortical network, and cerebellar regions to a cere-

bellar network. The average of the positive and negative feature

importances of region pairs within and between the 17 networks

were calculated separately; the result is a set of positive and nega-

tive importance of connections between and within the 17 net-

works. We evaluated the Pearson correlation between different

models' pairwise network-level feature importances, where positive

and negative importances were considered together by concatenat-

ing them into a single vector. We also computed sex differences in

positive and negative importance of connections between and

within the 17 networks using an exact test of differences

(MacKinnon, 2009).

3 | RESULTS

An overview of our experimental workflow is shown in Figure 1. Refer

Section 2 for details.

3.1 | Sex-independent models

Sex-independent models significantly predict Total and

Crystallised Composite scores for both sexes, and Fluid Composite

scores in males only, (corrected p <.05). Within the crystallised

domain, we significantly predict Picture Vocabulary scores in both

sexes (corrected p <.05), but only significantly predict Reading

scores in females (corrected p <.05). Within the fluid domain, we

significantly predict Dimensional Change Card Sort, Picture

Sequence Memory, and Processing Speed scores in males

(corrected p <.05), while we fail to significantly predict Flanker and

List Sorting scores in males or females. Prediction accuracy for

sex-independent models is shown in Figure 2 and Table 1.

Explained variance for sex-independent models is shown in

Figure S2 and Table S1.

DHAMALA ET AL. 1091



3.2 | Sex-specific models

Sex-specific male-trained and female-trained models significantly

predict Total Composite scores in both sexes (corrected p <.05).

Using female-trained models, we significantly predict Crystallised

Composite scores in both sexes (corrected p <.05), but fail to signif-

icantly predict Fluid Composite scores in either sex. Using male-

trained models, we significantly predict Crystallised Composite

scores in females and Fluid Composite scores in males (corrected

p <.05). Within the crystallised domain, we significantly predict Pic-

ture Vocabulary scores in both sexes using both sex-specific models

(corrected p <.05), but only significantly predict Reading scores in

the opposite sex (corrected p <.05). Within the fluid domain, we sig-

nificantly predict Dimensional Change Card Sort in males using

male-trained models (corrected p <.05), but fail to significantly pre-

dict all Flanker, Picture Sequence Memory, List Sorting, and

Processing Speed scores in either sex using either sex-specific

model. Prediction accuracy for sex-specific models is shown in

Figure 3 and Table 2. Explained variance for sex-specific models is

shown in Figure S3 and Table S2.

3.3 | Model comparisons

Using exact tests of differences, we did not identify any significant

differences in model performance between the sexes in the sex-

independent models or the sex-specific models for any cognitive

score.

3.4 | Feature importance comparisons

We correlated network-level feature importances between the

sex-independent and sex-specific models (Figure 4). Feature

importances between all pairs of sex-independent and sex-

specific models are significantly correlated (corrected p <.05).

Features important in predicting the Total Composite, Crystallised

Composite, and specific crystallised task scores from the sex-

independent models are equally correlated to those from the

male- and female- specific models. Sex-independent features

important in predicting the Fluid Composite and specific fluid task

scores are more strongly correlated to features important to pre-

dict those scores in males than in females. Features important in

predicting each of the scores from the sex-specific models are

generally more strongly correlated within sexes for different cog-

nitive scores than across sexes for the same cognitive score; how-

ever, the correlations between models trained on different sexes

is generally high. Features important in predicting the Total Com-

posite score are correlated with features important to predict the

Crystallised and Fluid composite scores and each of the individual

task scores. Feature importance for predicting specific crystallised

task scores are more strongly correlated with feature importance

for predicting the Crystallised Composite score in females than

they are in males. Features important for predicting specific fluid

task scores are more strongly correlated to those important for

predicting the Fluid Composite score in males than they are in

females.

F IGURE 2 Violin plots of prediction accuracy (correlation between
true and predicted cognitive scores) for sex-independent models
predicting cognitive composite scores and individual task scores. Blue
violins represent accuracy of models tested on male subjects and red
represents accuracy of models tested on female subjects. The shape of the
violin plots indicates the entire distribution of values, dashed lines indicate
the median, and dotted lines indicate the interquartile range. Solid colour
violin plots represent models that performed above chance levels based
on permutation tests. Vertical dotted lines separate individual tests
according to cognitive domain: general, crystallised, and fluid

TABLE 1 Prediction accuracy (correlation between true and
predicted cognitive scores) for sex-independent models predicting
cognitive composite scores and individual task scores

Male-tested Female-tested

Total composite .53 (.15)*** .38 (.15)***

Crystallised composite .42 (.13)*** .45 (.16)***

Picture vocabulary .44 (.12)*** .43 (.15)***

Reading .30 (.15) .35 (.15)*

Fluid composite .41 (.19)* .25 (.17)

Flanker .10 (.17) .08 (.16)

Dimensional change card sort .32 (.21)*** .17 (.18)

Picture sequence memory .25 (.18)* .14 (.20)

List sorting .14 (.19) .05 (.20)

Processing speed .28 (.15)* .13 (.17)

Note: Median prediction accuracy (interquartile range) is shown. Bolded

prediction accuracy values denote that the model performed better than

chance after corrections for multiple comparisons.

*p <.05.

**p <.01.

***p <.001.
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3.5 | Network-level feature importance

Stronger functional connections between visual, dorsal attention, ven-

tral attention, and temporal parietal networks are associated with

higher crystallised abilities in males and females (Figure 5). Stronger

functional connections within and between visual, dorsal attention,

ventral attention, and temporal parietal networks, as well as within

visual, dorsal attention, and default mode networks predict higher

fluid abilities in females, while stronger functional connections

between visual, ventral attention, and temporal parietal networks pre-

dict higher fluid abilities in males. Stronger functional connections

within visual, somatomotor, and temporal parietal networks predict

lower fluid and crystallised abilities in both sexes. Generally similar

functional connections predict Picture Vocabulary and Reading scores

F IGURE 3 Violin plots of prediction accuracy (correlation between true and predicted cognitive scores) for sex-specific models predicting
cognitive composite scores and individual task scores. Purple indicates results from models trained and tested on males; blue indicates results
from models trained on males and tested on females; green indicates results from models trained on females and tested on males; and orange
indicates results from models trained and tested on females. The shape of the violin plots indicates the entire distribution of values, dashed lines
indicate the median, and dotted lines indicate the interquartile range. Solid colour violin plots indicate those models that performed above chance
levels based on permutation tests. Vertical dotted lines separate individual tests according to cognitive domain: general, crystallised, and fluid

TABLE 2 Prediction accuracy
(correlation between true and predicted
cognitive scores) for sex-specific models
predicting cognitive composite scores
and individual task scores

Male-trained Female-trained

Male-tested Female-tested Male-tested Female-tested

Total composite .48 (.12)*** .36 (.14)* .46 (.19)*** .24 (.17)*

Crystallised composite .29 (.18) .39 (.14)* .38 (.16)*** .32 (.16)*

Picture vocabulary .35 (.15)* .38 (.16)*** .39 (.11)*** .36 (.13)*

Reading .17 (.16) .28 (.13)* .30 (.18)* .21 (.18)

Fluid composite .37 (.17)* .24 (.16) .30 (.18) .13 (.19)

Flanker �.02 (.22) .17 (.17) .13 (.17) �.10 (.17)

Dimensional change card sort .30 (.22)*** .19 (.18) .25 (.22) .04 (.19)

Picture sequence memory .25 (.18) .07 (.19) .05 (.19) .15 (.17)

List sorting .09 (.17) .15 (.21) .15 (.19) �.10 (.16)

Processing speed .24 (.16) .19 (.17) .26 (.19) .01 (.18)

Note: Median prediction accuracy (interquartile range) is shown. Bolded prediction accuracy values

denote that the model performed better than chance after corrections for multiple comparisons.

*p <.05.

**p <.01.

***p <.001.
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in both sexes (Figure 6) as well as scores in individual fluid tasks, with

the exception of List Sort and Picture Sequence scores (Figure S4). In

females, stronger functional connections within visual, dorsal atten-

tion, control, and default mode networks predict higher List Sort

scores, while stronger connections between those networks predict

lower scores. In males, stronger connections between visual, dorsal

attention, and ventral attention, as well as within dorsal attention,

control, and default mode networks predict higher List Sort scores,

while stronger connections within visual, somatomotor, and temporal

parietal networks predict lower scores. Stronger functional connec-

tions within visual and temporal parietal networks predict higher Pic-

ture Sequence scores in females, while stronger connections within

the default mode network, and between visual, dorsal attention, and

ventral attention networks predict higher scores in males. Similar pat-

terns of connectivity-cognition associations are also observed with

the sex-independent models (Figure S5).

3.6 | Sex differences in network-level feature
importance

Using exact tests of differences, we found there are no significant sex

differences in the strength of the positive or negative associations

between functional connectivity and the Crystallised Composite,

F IGURE 4 Pearson correlation of network-level feature importance for the sex-independent and sex-specific models predicting each
cognitive score. Positive and negative network-level feature importance were computed by taking the positive and negative sums of the regional
feature importance. Correlations were evaluated between the concatenated positive and negative network-level feature importances
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Picture Vocabulary, Reading, or Flanker scores, but there are signifi-

cant sex differences in the strength of the positive and negative asso-

ciations between functional connectivity and Total Composite, Fluid

Composite, Card Sort, List Sort, Picture Sequence, and Processing

Speed scores (Figure S6). Specifically, females generally exhibit stron-

ger negative connectivity-cognition associations (i.e., stronger func-

tional connections = lower cognitive scores), while males generally

exhibit stronger positive connectivity-cognition associations

(i.e., stronger functional connections = higher cognitive scores).

4 | DISCUSSION

In this study, we quantified sex-independent and sex-specific relation-

ships between functional connectivity and cognition. Using whole

brain resting-state functional connectivity, we predicted individual

crystallised and fluid abilities in 392 healthy young adults. First, we

find sex-independent models predict with equivalent accuracy

crystallised abilities in both sexes but only successfully predict fluid

abilities in males. Second, we show sex-specific models perform com-

parably when predicting crystallised abilities within and between

sexes, but generally fail to predict fluid abilities in either sex, except

for the Fluid Composite and Dimensional Change Card Sort score in

males. Third, we demonstrate that sex-specific models predicting

crystallised and fluid abilities generally rely on shared functional con-

nections within and between distinct cortical networks. Together, our

findings largely suggest that shared neurobiological features predict

general and specific crystallised abilities in both sexes.

Crystallised cognition represents language abilities, while fluid

cognition represents executive function, memory, and processing

speed. Prior work has shown Total and Crystallised Composite scores

are more predictable than the Fluid Composite (Dhamala et al., 2021)

but that work did not investigate whether the same is true for specific

tasks within the cognitive domains or whether these results hold

equally among males and females. In this current work, we replicate

and expand upon those previous findings.

Results from our sex-independent models suggest they might be

capturing shared relationships between functional connectivity and

crystallised abilities in males and females, but male-specific relation-

ships between functional connectivity and fluid abilities. This is

supported by our observation that connectivity–cognition relation-

ships for fluid abilities from the sex-independent models more closely

resemble those from the male-specific models than the female-

specific models. Results from our sex-specific models provide addi-

tional support for our findings from the sex-independent models, as

we find that connectivity-cognition relationships for crystallised abili-

ties and overall cognition are generally shared between the sexes. We

also observe an even greater inability to predict fluid abilities with our

sex-specific models compared to our sex-independent models, which

could be in part due to the decreased sample size in the sex-specific

models. The general lack of predictability observed for fluid abilities in

both types of models may be underscored by individual differences in

the signal-to-noise ratio of the specific brain-behaviour relationships.

Fluid abilities are more susceptible to factors including sleep, stress,

and mood which directly influence executive functions and memory

and less stable within an individual over time (Nilsson et al., 2005;

O'Neill, Kamper-DeMarco, Chen, & Orom, 2020; Salthouse, 2010).

This contradicts prior reports of successful prediction of fluid intelli-

gence from functional connectivity (Finn et al., 2015). However, it is

worth noting that even though our models do not perform better than

chance (as evaluated by comparing to a null distribution), our Fluid

Composite prediction accuracies are generally comparable to those

previously reported as significant (evaluated using Pearson's correla-

tion; Finn et al., 2015). Other prior work has also demonstrated that

fluid intelligence, as well as other behavioural variables, can be suc-

cessfully predicted using white matter functional connectivity at accu-

racies comparable to those reported in this study (J. Li, Biswal,

et al., 2020; J. Li, Chen, et al., 2020). Our smaller sample size and

choice of significance evaluation method may explain our inability to

successfully predict fluid intelligence and the differences in the con-

clusions we draw from our results. Moreover, despite initially

matching participants across sex by cognitive scores, we are only able

to successfully predict cognitive abilities in males, perhaps due to sig-

nificantly greater variance in their cognitive scores. Of the 10 cognitive

measures predicted in this study, the Fluid Cognition Composite,

Flanker, and Processing Speed scores have significantly different vari-

ances across the sexes. Specifically, male scores for those cognitive

measures had significantly larger variances than female scores

(corrected p <.05; data not shown). Using the sex-independent

models, the Fluid Cognition Composite and the Processing Speed

scores, were predicted above chance levels in males but not in

females, while the Flanker predictions were comparable to chance

levels for both sexes. A lower variance in the scores within the

females means a more restricted range of scores making it less likely

that a significant association can be identified. Additionally, it may

result in a lower signal-to-noise ratio in females, thus make the scores

harder to predict. Similar results demonstrating sex differences in pre-

dictions of fluid intelligence have previously been published (Greene,

Gao, Scheinost, & Constable, 2018). Specifically, they showed that

models using resting-state functional connectivity to predict fluid

intelligence in children/adolescents and adults tend to perform better

in males than in females across different edge thresholds (Greene

et al., 2018). Moreover, they also showed that predicting fluid intelli-

gence using emotion task-based models significantly outperformed

working memory task-based models in females, while working mem-

ory task-based models significantly outperformed emotion task-based

models in males, and suggested that there exist fundamental sex dif-

ferences in the spatial distribution and modulation of networks related

to fluid intelligence (Greene et al., 2018).

Our understanding of cognitive sex differences and brain-

behaviour relationships have widely shifted over the decades. While

research has confirmed some differences, many others have been

refuted (Halpern, 2013; Miller & Halpern, 2014). Two similar studies

to date investigating sex-specific brain-behaviour relationships have

reported contradictory findings. Implementing a connectome-based

prediction modelling approach, Jiang et al observed no differences in
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prediction accuracy between males and females when predicting IQ

using functional connectivity (Jiang, Calhoun, Cui, et al., 2020). In a

second study from the group, they demonstrated IQ was more pre-

dictable in females than in males (Jiang, Calhoun, Fan, et al., 2020). In

this current work, our sex-independent models comparably predict

overall cognition and crystallised abilities in males and females, but

only successfully predict some fluid abilities in males and fail to pre-

dict other fluid tasks in both sexes altogether. In this study, we

implemented a nested cross validation approach with 100 different

randomised splits of the data to generate a distribution of perfor-

mance accuracy measures. Previous studies relied on integrating fea-

ture selection with a leave-one-out cross validation approach

resulting in a single accuracy value for the model and distinct features

being used to predict the output variable for each subject (Jiang,

Calhoun, Cui, et al., 2020; Jiang, Calhoun, Fan, et al., 2020). Due to

these methodological differences, our prediction accuracy results can-

not be directly compared to prior work. However, it is worth noting

that our sex-specific models comparably predict overall and

crystallised aspects of cognition in males and females, supporting one

of the previous studies (Jiang, Calhoun, Cui, et al., 2020) but con-

tradicting the other (Jiang, Calhoun, Fan, et al., 2020).

In this study, we find connections within and between distinct

cortical networks are crucial to predict cognition, and these features

are shared between the sexes, contradicting extant literature

implementing sex-specific models (Jiang, Calhoun, Cui, et al., 2020;

Jiang, Calhoun, Fan, et al., 2020). More specifically, we find stronger

connections between the visual, dorsal attention, ventral attention,

and temporal parietal networks predict higher crystallised and fluid

ability scores in both sexes, while stronger connections within visual,

somatomotor, and temporal parietal networks predict lower

crystallised and fluid ability scores in both sexes. While some differ-

ences in male and female models' feature importances exist, their cor-

relations are moderate to high (R = .6–.9). Specifically, we observe

that there exist significant sex differences in the strength of the posi-

tive and negative associations between functional connectivity and

Total Composite, Fluid Composite, Card Sort, List Sort, Picture

Sequence, and Processing Speed scores. While males and females

share positive (i.e., stronger functional connections predict higher cog-

nitive scores) and negative (i.e., stronger functional connections pre-

dict weaker cognitive scores) connectivity-cognition associations,

females exhibit stronger negative relationships between distributed

network connectivity patterns and the cognitive scores while males

exhibit stronger positive relationships. Hence, while males and

females share the same connectivity-cognition relationships, the

strength of those relationships may vary between the sexes. How-

ever, the List Sort, Picture Sequence, and Processing Speed models

performed worse than chance for predictions in both sexes, and the

Fluid Composite and Card Sort models only performed better than

chance in males, limiting the relevance of this finding. We also demon-

strate that feature importance correlations, within and between sexes,

are stronger for tasks within the crystallised domain than tasks within

the fluid domain or tasks between the two domains. This is likely

related to the models' overall lower accuracies in predicting fluid

abilities; if the models are not reliably mapping functional connectivity

to fluid abilities, there will be more noise in their feature importance,

resulting in lower correlations across models. Our results contradict

findings from prior work identifying distinct correlates of cognition in

males and females. In one study, authors reported that the top

100 functional connections to predict IQ in males and females are dis-

tinct with only three overlapping features (Jiang, Calhoun, Fan,

et al., 2020). In a second study, authors found that male IQ was more

strongly correlated with functional connectivity in left

parahippocampus and default mode network, while female IQ was

more strongly correlated with functional connectivity in putamen and

cerebellar network (Jiang, Calhoun, Cui, et al., 2020). This discrepancy

in findings could be due to model differences, particularly in the cross-

validation, feature selection, and inference choices, or the choice of

cognitive score.

4.1 | Limitations

In this study, we trained and tested sex-independent and sex-specific

models on 196 male and 196 female subjects, all unrelated. Over each

of the 100 unique train/test splits, we ensured the same set of male/

female subjects were in the training and testing subsets for the sex-

independent and the male/female-specific models. Maintaining this

consistency of subjects allowed us to maintain the variance within the

subjects, but also resulted in our sex-independent models being

trained and tested on twice as many subjects as our sex-specific

models. Prior work has demonstrated that fluid abilities are more diffi-

cult to predict than crystallised abilities (Dhamala et al., 2021). In this

study, we found sex-independent models were able to predict some

fluid abilities above chance levels in males, but sex-specific models

generally did not perform above chance levels for either sex. The

inherent difficulty in predicting fluid abilities, combined with the lower

number of subjects for the sex-specific models, may explain why

many of our sex-specific models performed poorly. In this study, our

main goal was to evaluate whether the models differed in their predic-

tions of cognitive abilities between males and females rather than

between the models themselves. However, future work in this area

should explore whether sex-independent and sex-specific models dif-

fer from one another when training sample sizes are consistent.

Many researchers studying cognitive differences between males

and females compare group averages between the sexes. While this

approach can yield insightful results pertaining to general sex differ-

ences, their relevance to individual cognitive abilities in males and

females is limited. Genetic, hormonal, cultural, and psychosocial fac-

tors can influence sex-related and sex-independent individual differ-

ences in functional connectivity and cognition (Cosgrove, Mazure, &

Staley, 2007; Miller & Halpern, 2014). Here, we sought to uncover

whether relationships between functional connectivity and cognition

are shared between the sexes or are distinct. Our results largely sug-

gest shared network connectivity features equally predict cognitive

abilities in males and females. However, we must acknowledge that

here, due to the limitations of the data set, we can only consider
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individuals' sex but not their gender identity or fluidity. Our society

projects distinct gender roles onto males and females paving the way

for a lifetime of gender-differentiated experiences (Eliot, 2011). These

distinct social factors may drive gender differences in brain-behaviour

relationships, even in the absence of sex differences, that our study is

not designed to capture. Future work in this area should aim to collect

and integrate data about gender identity and fluidity so we can better

understand how relationships between connectivity and cognition

may or may not vary with gender.

Many machine learning models based on neuroimaging data

struggle with generalisability due to differences in study sites, scanner

types, and scan parameters. The models we have designed in this

study were only trained, validated, and tested on data from the

Human Connectome Project. Although we implement a nested cross

validation approach and evaluate our models with 100 distinct train/

test splits, the results we report may not be entirely comparable or

generalisable to other datasets. Future studies should aim to integrate

data from multiple sites to address this limitation.

Application of machine learning algorithms to neuroimaging data

is prone to the curse of dimensionality. Here, we parcellated the brain

into 439 regions and computed pairwise functional connectivity

between those regions, resulting in 96,141 connections (features) for

each of the 392 subjects. Given our small sample size, large feature

dimensionality, and results from the statistical tests we performed, we

are limited in the conclusions we can draw from our results.

Even though we find that certain cognitive metrics are successfully

predicted in one sex but not the other, results from the

non-parametric exact tests of differences found no sex differences in

model performance (Nieuwenhuis, Forstmann, & Wagenmakers,

2011). Hence, we cannot conclude from these findings that there

exist sex differences in how accurately our predictive models can

capture brain-behaviour relationships. Moreover, due to our limited

sample size, it is possible that it was easier for the sex-specific

models to capture similar overarching connectivity-cognition rela-

tionships across the sexes rather than specific differences. Finally, it

is possible that the extent to which differences in variability of cog-

nitive scores across the sexes influenced our model performance and

the specific relationships captured was in part due to our limited

sample size. Repeating these experiments on a larger sample size

(with and without matching across sexes for variance in cognitive

scores) will provide additional insights into whether sex differences

in these relationships are truly biologically driven or are capturing

confounds in the samples.

5 | CONCLUSION

A comprehensive understanding of neurobiological markers that

underlie cognitive abilities within and across sexes is necessary if we

are to understand sex-specific effects of ageing and illness on cogni-

tion. Here, we implement predictive modelling approaches to explore

sex-independent and sex-specific relationships between functional

connectivity and cognitive abilities. We report three main findings.

We demonstrate that sex-independent models comparably capture

relationships between connectivity and crystallised abilities in males

and females, but only successfully capture relationships between con-

nectivity and fluid abilities in males. We find sex-specific models com-

parably predict crystallised abilities within and between sexes but fail

to predict fluid abilities in either sex. Finally, we find that stronger

connections between visual, dorsal attention, ventral attention, and

temporal parietal networks predict higher crystallised and fluid ability

scores, and stronger connections within visual, somatomotor, and

temporal parietal networks predict lower crystallised and fluid ability

scores in both sexes. Taken together, this suggests that brain-

behaviour relationships are shared between the sexes and rely on

overlapping network connectivity within and between cortical

structures.

CITATION GENDER DIVERSITY STATEMENT

Recent work in neuroscience and other fields has identified a bias in cita-

tion practices such that papers from women and other minorities are

under-cited relative to the number of such papers in the field (Caplar,

Tacchella, & Birrer, 2017; Chakravartty, Kuo, Grubbs, & McIlwain, 2018;

Dion, Sumner, & Mitchell, 2018; Dworkin et al., 2020; Maliniak, Pow-

ers, & Walter, 2013; Thiem, Sealey, Ferrer, Trott, & Kennison, 2018).

Here we sought to proactively consider choosing references that reflect

the diversity of the field in thought, form of contribution, gender, and

other factors. We used classification of gender based on the first names

of the first and last authors (Dworkin et al., 2020), with possible combi-

nations including male/male, male/female, female/male, and female/

female. Excluding self-citations to the first and last authors of our current

paper, the references contain 50.0% male/male, 17.6% male/female,

16.2% female/male, and 16.2% female/female. We look forward to

future work that could help us to better understand how to support

equitable practices in science.
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